
Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

Lecture 12!
!

Even more CUDA memory!
!

Histogram!
!

Sorting on GPU!
!

Other problems

1(34)

1(34)

Information Coding / Computer Graphics, ISY, LiTH

Last time!
!

• Coalescing!
!

• Constant memory!
!

• Texture memory!
!

• Reduction!

2(34)2(34)

Information Coding / Computer Graphics, ISY, LiTH

Coalescing - access in order!
!

Example: Assume that we can get 4 data items
per transaction.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Thread

RAM

Good!

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Thread

RAM

Bad!

One access One access
Eight separate accesses

3(34)3(34)

Information Coding / Computer Graphics, ISY, LiTH

Reduction - many to few!
!

Problems that are tricky to run in parallel.!
!

Acceleration can be limited or nonexistant for
small datasets.!

!
Find miniumum, maximum, average...

4(34)4(34)

Information Coding / Computer Graphics, ISY, LiTH

43

3143

4335 2231

4312 2231535 831

4

2

1

8

etc
16

Tree-based reduction!
!

Break down the problem in small parallel parts.

5(34)5(34)

Information Coding / Computer Graphics, ISY, LiTH

Divergent branching =!
!

"if" statements:!
!

Branches can be bad in GPU code!!
!

Why?

6(34)6(34)

Information Coding / Computer Graphics, ISY, LiTH

Divergent branching in SIMD:!
!

All branches execute all code! Data masked with
result of "if".!

!
Warp-level problem!!

!
Can not be avoided within warps if a single thread
gets a different result from others. Can be avoided

if all threads in warp take same branch

7(34)7(34)

Information Coding / Computer Graphics, ISY, LiTH

if X then 10010110

|

| and with 10010110

|

else

|

| and with 01101001

|

endif

if X then 11111111

|

|

|

else

|

|

|

endif

Non-divergent warpDivergent warp

8(34)8(34)

Information Coding / Computer Graphics, ISY, LiTH

9(34)9(34)

Information Coding / Computer Graphics, ISY, LiTH

Lecture questions!
!

1) In what way does bitonic merge sort fit the GPU
better than many other sorting algorithms?!

!
2) Bitonic merge sort is Nlog2N and QuickSort is NlogN.
Why they will still have similar complexity on the GPU?!

!
3) What is the reason to use pinned memory?!

!
4) What problem does atomics solve?

10(34)10(34)

Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

More memory!
!

Managed memory!
!

Atomics!
!

Pinned memory

11(34)

11(34)

Information Coding / Computer Graphics, ISY, LiTH

Managed memory!
!

Makes read/write memory as easy as constant!!
!

New, simpler Hello World!

#include <stdio.h>

const int N = 16;

const int blocksize = 16;

__global__

void hello(char *a, int *b)

{

 a[threadIdx.x] += b[threadIdx.x];

}

__managed__ char a[N] = "Hello \0\0\0\0\0\0";

__managed__ int b[N] = {15, 10, 6, 0, -11, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

int main()

{

 printf("%s", a);

 dim3 dimBlock(blocksize, 1);

 dim3 dimGrid(1, 1);

 hello<<<dimGrid, dimBlock>>>(a, b);

 cudaDeviceSynchronize(); // Synchronize

 printf("%s\n", a);

 return EXIT_SUCCESS;

}

12(34)12(34)

Information Coding / Computer Graphics, ISY, LiTH

Managed memory!
!

Managed memory must be declared __managed__!
!

Memory accessible both from CPU and GPU. Risk for
racing!!

!
Copy to GPU or copy to __managed__, same thing.!

!
Do not expect performance penalty (but always be

ready for surprises).

13(34)13(34)

Information Coding / Computer Graphics, ISY, LiTH

Atomic operations!
!

A special memory access method, for avoiding
conflicts and race conditions.!

!
Available in CUDA from Compute model 1.1 (which

means everywhere).!
!

Specify compute model with!
!

-arch compute_11!
!

but you probably don't have to. (I didn't.)

14(34)14(34)

Information Coding / Computer Graphics, ISY, LiTH

Example: Histogram!
!

Simple method for gathering statistics about a set of
data. Much data in, little out.!

!
Common in image processing.!

!
for all elements i in a[]!

h[a[i]] += 1!

15(34)15(34)

Information Coding / Computer Graphics, ISY, LiTH

Histogram in parallel!
!

Each thread reads a[threadIdx]!
!

and perform h[a[threadIdx]] = h[a[threadIdx]] + 1!
!

...not

16(34)16(34)

Information Coding / Computer Graphics, ISY, LiTH

Histogram memory conflicts!
!

If you try to parallelize these operations, multiple threads will write
simultaneously at the same item!

!
Non-atomic operations will read h[a[i]], add 1, and write back.

Read

Add 1

Write back

Read

Add 1

Write back

10

11

Read

Add 1

Write back

10

11

Write back11

10

Unknown write order

Add 1
Read

Write unsynchronized values in sequence

17(34)17(34)

Information Coding / Computer Graphics, ISY, LiTH

Solution: Atomics!
!

Read - modify - write in one operation!
!

Guaranteed not to be subject to racing!
!

atomicAdd, atomicSub, atomicExch, atomicMin,
atomicMax, atomicInc, atomicDec, atomicCAS,

atomicAND, atomicOR, atomicXor!
!

More types in Fermi and up!
!

Supported for both global and shared memory.

18(34)18(34)

Information Coding / Computer Graphics, ISY, LiTH

But it comes for a cost!!
!

Slower than other operations!
!

Simpler but slower than reduction solutions!

19(34)19(34)

Information Coding / Computer Graphics, ISY, LiTH

How would I do histograms?!
!

Atomics are fairly OK... 256 lanes of parallelism.!
!

Split to parts for separate blocks.!
!

Produce one histogram for each part.!
!

Merge result, possibly in several reduction steps.

20(34)20(34)

Information Coding / Computer Graphics, ISY, LiTH

Example: Find maximum!
!

for all elements i in a[]!
maxValue = max(maxValue, a[i])!

!
Easy? Yes! Parallel? No!!

!
All threads will write to the same memory element!!

!
Use atomics? Very slow! All write at the same time,

must wait -> sequential performance!!
!

Solution: Use reduction instead!

21(34)21(34)

Information Coding / Computer Graphics, ISY, LiTH

Atomic conclusions!
!

Simplifies some operations!
!

Serializes conflicting operations!
!

Can hurt performance! Don't overuse!

22(34)22(34)

Information Coding / Computer Graphics, ISY, LiTH

More exotic optimizations and tools!
!

Pinned memory!
!

Multiple streams!
!

Not where you start but let's not ignore the
options.

23(34)23(34)

Information Coding / Computer Graphics, ISY, LiTH

Pinned memory!
!

Can boost performance for memory transfer!
!

Page-locked memory!
!

So far: malloc() and cudaMalloc()!
!

New call: cudaHostAlloc()!
!

Allocated page-locked memory! Fixed physical
location!

24(34)24(34)

Information Coding / Computer Graphics, ISY, LiTH

Pinned memory!
!

Page-locked memory is a limited resource!!
!

For non-pinned memory, CUDA copies it internally to page-locked
memory, then DMA to GPU. Transfer time goes up!

Host
Pageable
memory

Pinned
memory

VRAM

Device

Picture
based on
an NVidia
article

Host
Pinned
memory

VRAM

Device

Normal, pageable data transfer Pinned data transfer

25(34)25(34)

Information Coding / Computer Graphics, ISY, LiTH

Pinned memory, streams,
overlapping computation!

!
Pinned memory is part of an optimization approach

with overlapping computations!
!

No longer just a slight speedup of data transfer!!
!

cudaMemCpyAsynch() can copy locked memory
asynchronously!

26(34)26(34)

Information Coding / Computer Graphics, ISY, LiTH

Multiple streams!
!

CUDA commands are placed in a queue, a stream!!
!

These are the same queues as you can post CUDA events
to.!
!

We usually only use the default CUDA stream.!
!

Multiple CUDA streams can be used to overlap work -
especially computing and data transfers!

27(34)27(34)

Information Coding / Computer Graphics, ISY, LiTH

Copy result to CPU

Run kernel
Copy data to GPU

Copy result to CPU

Run kernel
Copy data to GPU

Single stream computation!
!

The kernel can not run until the data is
transferred.!

!
For this example, 2/3 data transfer, 1/3

computation

28(34)28(34)

Information Coding / Computer Graphics, ISY, LiTH

Dual stream computation!
!

While one stream runs a kernel, the
other stream performs data copying,!

!
More time for computing, in this

example kernels are running 1/2 of the
time instead of 1/3.

Copy result to CPU

Run kernel
Copy data to GPU

Copy result to CPU

Run kernel
Copy data to GPU

Copy result to CPU

Run kernel
Copy data to GPU

Copy result to CPU

Run kernel
Copy data to GPU-

-

-

29(34)29(34)

Information Coding / Computer Graphics, ISY, LiTH

Not all devices...!
!

Asynchronous data copying as well as concurrent execution
is not guaranteed...!

!
so make a device query!!

!
CU_DEVICE_ATTRIBUTE_ASYNCH_ENGINE_COUNT: Can

we copy memory asynch?!
!

CU_DEVICE_ATTRIBUTE_CONCURRENT_KERNELS: Can
we run multiple kernels?

30(34)30(34)

Information Coding / Computer Graphics, ISY, LiTH

Debugging CUDA!
!

Let’s get a bit more efficient when your code
doesn’t work!

!
• Catch error codes!

!
• printf() from kernels!

!
• cudagdb

31(34)31(34)

Information Coding / Computer Graphics, ISY, LiTH

Catch those error codes!
// Check for errors everywhere	
err = cudaMalloc((void**)&ad, csize);	
// If the GPU won't even take our data we are toasted	
if (err) printf("cudaMalloc %d %s\n", err, cudaGetErrorString(err));	
...	 	
dim3 dimBlock(blocksize, 1);	
dim3 dimGrid(1, 1);	
hello<<<dimGrid, dimBlock>>>(ad, bd);	
// Most important thing to check? Did the kernel run at all?	
err = cudaPeekAtLastError();	
if (err) printf("cudaPeekAtLastError %d %s\n", err, cudaGetErrorString(err));	

and pass them to cudaGetErrorString() for an explanation

32(34)32(34)

Information Coding / Computer Graphics, ISY, LiTH

printf() from kernels!
!

Yes - printf() if legal in a kernel since Compute
Capability 2.0!

!
But don’t try to print 100000 messages per

second...

33(34)33(34)

Information Coding / Computer Graphics, ISY, LiTH

More advanced debugger tools!
!

There are more tools to help you out there!!
!

cuda-gdb!
!

Variant of the GDB debugger!
!

Allows breakpoints and single-stepping CUDA
kernels!

34(34)34(34)

