
Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

Lecture 11!
!

More CUDA

1(92)

1(92)

Information Coding / Computer Graphics, ISY, LiTH

In this episode...!
!

• Error checking!
!

• Query device capabilities!
!

• CUDA events!
!

• More on CUDA memory:!
!

Coalescing, Constant memory, Texture memory...

2(92)2(92)

Information Coding / Computer Graphics, ISY, LiTH

Lab 4!
!

This week!!
!

”Mandelbrot revisited” part, to follow up lab 1.

3(92)3(92)

Information Coding / Computer Graphics, ISY, LiTH

The story so far...!
!

• CUDA and its language extensions!
!

• The CUDA architecture!
!

• Intro to memory!
!

• Matrix multiplication example, using shared
memory

4(92)4(92)

Information Coding / Computer Graphics, ISY, LiTH

CUDA and its language extensions!
!

Kernel invocation myKernel<<<>>>()!
!

__global__ __device__ __host__!
!

cudaMalloc(), cudaMemcpy()!
!

threadIdx, blockIdx, blockDim, gridDim!
!

Using nvcc

5(92)5(92)

Information Coding / Computer Graphics, ISY, LiTH

The CUDA architecture!
!

Blocks and threads!
!

Grid-block-thread hierarchy!
!

Indexing data with thread/block numbers

6(92)6(92)

Information Coding / Computer Graphics, ISY, LiTH

Intro to memory!
!

global memory!
!

shared memory!
!

constant memory!
!

local memory!
!

texture memory/texture units!
!

register memory

7(92)7(92)

Information Coding / Computer Graphics, ISY, LiTH

Matrix multiplication example, using
shared memory

Huge speedup - my GPU went from questionable
performance to clearly faster than CPU!

8(92)8(92)

Information Coding / Computer Graphics, ISY, LiTH

Over to today’s episode:

9(92)9(92)

Information Coding / Computer Graphics, ISY, LiTH

Lecture questions:!
!

1. Why can using constant memory improve
performance?!

!
2. What is CUDA Events used for?!

!
3. What does coalescing mean and what should we

do to get a speedup from coalescing?!
!

4. Why can we not synchronize between blocks?

10(92)10(92)

Information Coding / Computer Graphics, ISY, LiTH

Error checking!
!

• Functions returns error codes (but kernel
launch does not)!

!
• cudaGetLastError()!

!
• cudaPeekLastError()!

!
• cudaGetErrorString()

11(92)11(92)

Information Coding / Computer Graphics, ISY, LiTH

Asynchronous error checking!
!

Asynchronous errors can not be returned by the
function call!!

!
Call cudaDeviceSynchronize() and check the

latest error code.

12(92)12(92)

Information Coding / Computer Graphics, ISY, LiTH

Demo hello-error.cu!
!

Extended "Hello World" with!
!

• cudaDeviceSynchronize()!
• cudaGetLastError()!

• cudaGetErrorString()!
!
!

and intentionally correct dimensions.

13(92)13(92)

Information Coding / Computer Graphics, ISY, LiTH

Some synchronization from last time:!
!

__syncthreads() is used inside a kernel.!
Stop thread until all threads in the block reach the location!!

!
cudaDeviceSynchronize() is used from the host. Wait until all

current kernels finish.!
!

cudaStreamSynchronize() waits until all kernels in a stream
(group of kernels) finish.!

!
No synchronization between blocks!

14(92)14(92)

Information Coding / Computer Graphics, ISY, LiTH

Why no synchronization
between blocks?!

!
Queue of blocks, one SM at a time.!

!
More blocks than SMs!Blocks SMs

15(92)15(92)

Information Coding / Computer Graphics, ISY, LiTH

Query devices!
!

You can’t trust all devices to have the same - or
even similar - properties.!

!
New boards may have totally different

properties.!
!

Query CUDA for a list of features using
cudaGetDeviceProperties()

16(92)16(92)

Information Coding / Computer Graphics, ISY, LiTH

Example query result (9400M)!
!

---- Information for GeForce 9400M ----	
Compute capability: 1.1	

Total global memory (VRAM): 259712 kB	
Total constant Mem: 64 kB	

Number of SMs: 2	
Shared mem per SM: 16 kB	
Registers per SM: 8192	
Threads in warp: 32	

Max threads per block: 512	
Max thread dimensions: (512, 512, 64)	
Max grid dimensions: (65535, 65535, 1)

17(92)17(92)

Information Coding / Computer Graphics, ISY, LiTH

Example query result 2 (GT 750M)		
	

---- Information for GeForce GT 750M ----	
Compute capability: 3.0	

Total global memory/VRAM: 2096704 kB	
Total constant Mem: 64 kB	

Number of Streaming Multiprocessors (SM): 2	
Shared mem per SM: 48 kB	
Registers per SM: 65536	

Threads in warp: 32	
Max threads per block: 1024	

Max thread dimensions: (1024, 1024, 64)	
Max grid dimensions: (2147483647, 65535, 65535)

18(92)18(92)

Information Coding / Computer Graphics, ISY, LiTH

What is important?!
!

Compute capability - can this board at all work with
our program?	

	
Amount of shared memory - make sure we fit.	

	
Max threads, max dimensions - make sure we fit.	

	
Threads in warp: If you optimize on warp level.	

	
Number of SMs: Lower bound for blocks

19(92)19(92)

Information Coding / Computer Graphics, ISY, LiTH

Compute capability!
!

Essentially CUDA/architecture version number.!
!

1.0: Original release.!
1.1: Mapped memory, atomic operations.!

1.3: Double support.!
2.0: Fermi.!
3.0: Kepler.!

5.0: Maxwell.!
6.0: Pascal.!
7.5: Turing.!
8.6 Ampère.!

8.9 Ada Lovelace
Olympen

Asgård

20(92)20(92)

Information Coding / Computer Graphics, ISY, LiTH

21(92)21(92)

Information Coding / Computer Graphics, ISY, LiTH

More features of interest:!
!

3.5: Dynamic parallelism!
5.3: Half precision float!

7.x: Tensor cores

22(92)22(92)

Information Coding / Computer Graphics, ISY, LiTH

Maxwell!
5.0!
32!
?!
2048!
!
64k*!
255!
1024!

Pascal!
6.0!
32!
?!
2048!
!
64k!
255!
1024!

Turing!
7.5!
32!
?!
1024!
!
64k!
255!
1024!

23(92)23(92)

Information Coding / Computer Graphics, ISY, LiTH

24(92)24(92)

Information Coding / Computer Graphics, ISY, LiTH
8.6!
32!
!
!
!
1536!
!
!
!
!
!
!
96k

25(92)25(92)

Information Coding / Computer Graphics, ISY, LiTH

Do I care about Compute
capability?!

!
While learning CUDA - not much. Stick to the

basics, it works on all.!
!

But if you write professional CUDA code, of
course.

26(92)26(92)

Information Coding / Computer Graphics, ISY, LiTH

CUDA Events!
!

Timing!!
!

Two ways of timing CUDA programs:!
!

• CPU timer. Synchronize at start and end.!
!

• CUDA Events. Synchronize at end.!
!

Synchronize? Because CUDA runs asynchronously.

27(92)27(92)

Information Coding / Computer Graphics, ISY, LiTH

CUDA Events API!
!

cudaEventCreate - initialize an event variable!
!

cudaEventRecord - place a marker in the queue!
!

cudaEventSynchronize - wait until all markers have
received values!

!
cudaEventElapsedTime - get the time difference

between two events

28(92)28(92)

Information Coding / Computer Graphics, ISY, LiTH

CUDA memory!
!

Coalescing!
!

Constant memory!
!

Texture memory!
!

Pinned memory

29(92)

29(92)

Information Coding / Computer Graphics, ISY, LiTH

We already know…!
!

• Global memory is slow.!
!

• Shared memory is fast and can be used as
”manual cache”!

!
• There were some other kinds of memory...

30(92)30(92)

Information Coding / Computer Graphics, ISY, LiTH

Coalescing!
!

Always access global memory ”in order”!
!

If threads access global memory in order of thread
numbers, performance will be improved!

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Thread

RAM

Good!

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Thread

RAM

Bad!

31(92)31(92)

Information Coding / Computer Graphics, ISY, LiTH

WTF?!
!

How can performance depend on what order I
access my data??? Isn’t it ”random access”?!

!
Yes... You can access in any order you want, but
ordered access helps the GPU to read more data

in one access!!
!

Why? Because the GPU can get much data in a
single transaction, and neighbor threads are

tested for accessing the same area!

32(92)32(92)

Information Coding / Computer Graphics, ISY, LiTH

Coalescing!
!

Example: Assume that we can get 4 data items
per transaction.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Thread

RAM

Good!

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Thread

RAM

Bad!

One access One access
Eight separate accesses

33(92)33(92)

Information Coding / Computer Graphics, ISY, LiTH

Coalescing on Fermi & later!
!

Effect reduced by caches - but not removed. !
!

Coalescing is still needed for maximum performance.!
!

"A very important performance consideration... is the
coalescing of global memory accesses." (CUDA C Best

Practices Guide 2022)

34(92)34(92)

Information Coding / Computer Graphics, ISY, LiTH

Accelerating by coalescing!
!

Pure memory transfers can be significantly faster by
taking advantage of memory coalescing!!

!
Example: Matrix transpose!

!
No computations!!

!
Only memory accesses.

35(92)35(92)

Information Coding / Computer Graphics, ISY, LiTH

__global__ void transpose_naive(float *odata, float* idata, int width, int height)	
{	
 unsigned int xIndex = blockDim.x * blockIdx.x + threadIdx.x;	
 unsigned int yIndex = blockDim.y * blockIdx.y + threadIdx.y;	
 	
 if (xIndex < width && yIndex < height)	
 {	
 unsigned int index_in = xIndex + width * yIndex;	
 unsigned int index_out = yIndex + height * xIndex;	
 odata[index_out] = idata[index_in]; 	
 }	
}

Matrix transpose!
!

Naive implementation

How can this be bad?

36(92)36(92)

Information Coding / Computer Graphics, ISY, LiTH

Matrix transpose!
!

Coalescing problems

Row-by-row and column-by-column.!
Column accesses non-coalesced!

37(92)37(92)

Information Coding / Computer Graphics, ISY, LiTH

Matrix transpose!
!

Coalescing solution

Read from global memory to
shared memory!

!
In order from global, any

order to shared

Write to global memory!
!

In order write to global, any
order from shared

38(92)38(92)

Information Coding / Computer Graphics, ISY, LiTH

__global__ void transpose(float *odata, float *idata, int width, int height)	
{	
	__shared__ float block[BLOCK_DIM][BLOCK_DIM+1];	
		
	// read the matrix tile into shared memory	
	unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x;	
	unsigned int yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y;	
	if((xIndex < width) && (yIndex < height))	
	{	
		unsigned int index_in = yIndex * width + xIndex;	
		block[threadIdx.y][threadIdx.x] = idata[index_in];	
	}	
	
	__syncthreads();	
	
	// write the transposed matrix tile to global memory	
	xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;	
	yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y;	
	if((xIndex < height) && (yIndex < width))	
	{	
		unsigned int index_out = yIndex * height + xIndex;	
		odata[index_out] = block[threadIdx.x][threadIdx.y];	
	}	
}

Better CUDA matrix transpose kernel

Shared memory for temporary storage

Read data to temporary buffer

Write data to global memory

39(92)39(92)

Information Coding / Computer Graphics, ISY, LiTH

Varying results!
!

My demos tend to give varied results on my laptop GPU.
Yes, I am still searching...!

!
Overall, I get!

!
• usually some speedup for coalescing!

• no noticable speedup from avoiding bank conflicts!
!

Cache effect?!
!

Let's try in the lab on full-scale GPUs!

40(92)40(92)

Information Coding / Computer Graphics, ISY, LiTH

Coalescing rules of thumb!
!

• The data block should start on a multiple of 64!
!

• It should be accessed in order (by thread number)!
!

• It is allowed to have threads skipping their item!
!

• Data should be in blocks of 4, 8 or 16 bytes

41(92)41(92)

Information Coding / Computer Graphics, ISY, LiTH

Shared memory!
!

Split into multiple memory banks (32). Fastest if you
access different banks with each thread!

!
Interleaved, 32 bits chunks!

!
Thus: Address in 32-bit steps between threads for best

performance

Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7
Address space

42(92)42(92)

Information Coding / Computer Graphics, ISY, LiTH

How can I get that?!
!

Introduce a padding, an offset to make the memory
accesses hit different banks

In steps of 8

In steps of 9

43(92)43(92)

Information Coding / Computer Graphics, ISY, LiTH

Constant memory!
!

Sounds boring... but has its uses.!
!

Read-only (for kernels)!
!

__constant__ modifier!
!

Use for input data, obviously

44(92)44(92)

Information Coding / Computer Graphics, ISY, LiTH

45(92)45(92)

Information Coding / Computer Graphics, ISY, LiTH

Benefits of constant memory!
!

• No cudaMemcpy needed! Just use it from kernel,
write from CPU!!

!
• For data read by all threads, significantly faster than

global memory!!
!

• Read-only memory is easy to cache.

46(92)46(92)

Information Coding / Computer Graphics, ISY, LiTH

Why faster access? When?!
!

All (or many) threads reading the same data
simultaneously.!

!
One read can be broadcast to all ”nearby” threads.!

!
Nearby? All threads in same ”half-warp” (16 threads)!

!
But no help if threads are reading different data!

47(92)47(92)

Information Coding / Computer Graphics, ISY, LiTH

Example of using constant memory: Ray-caster!
!

Two demos, "Cuda by example" and "Attack in packs"!
!

With and without using __const__

48(92)48(92)

Information Coding / Computer Graphics, ISY, LiTH

Ray-caster example!
!

Every thread renders one pixel!
!

Loop through all spheres, find closest with intersection!
!

Write result to an image buffer.!
!

Image buffer displayed with OpenGL.!
!

Non-const: Uploads sphere array by cudaMemcpy()!
!

Const: Declares array __const__, uses directly from
kernel. (Slightly simpler code!)

49(92)49(92)

Information Coding / Computer Graphics, ISY, LiTH

Ray-caster example!
!

Resulting time:!
!

Without using const: 31 ms!
!

With const: 25 ms!
!

Significant difference - for something that simplified the code!

50(92)50(92)

Information Coding / Computer Graphics, ISY, LiTH

Constant memory conclusions!
!

Relatively fast memory access - for the case when all
threads read the same memory simultaneously!!

!
Some advantage for code complexity.!

!
NOT something we use for everything.

51(92)51(92)

Information Coding / Computer Graphics, ISY, LiTH

G80 processor!
hierarchy

Texture memory/ Texture units!
!

Using texture units to access memory

52(92)52(92)

Information Coding / Computer Graphics, ISY, LiTH

Texture memory/ Texture units!
!

Texture memory, yet another kind of memory (or
memory access method)!

!
But didn’t we hide the graphics heritage...?!

!
Access global memory through the texturing units.

Lets CUDA take advantage of the strong points with
texturing units.

53(92)53(92)

Information Coding / Computer Graphics, ISY, LiTH

Texture memory features!
!

Read-only (writable using "surface objects").!
!

Cached! Can be fast if data access patterns are good.!
!

Texture filtering, linear interpolation.!
!

Edge handling.!
!

Especially good for handling 4 floats at a time (float4).!
!

cudaBindTextureToArray() binds data to a texture unit.

54(92)54(92)

Information Coding / Computer Graphics, ISY, LiTH

Texture memory for graphics!
!

Texture data mostly for rendering textures!
!

One texel used by 4 neighbor pixels (when not exact
integer coordinates)!

!
Designed for spatial locality

55(92)55(92)

Information Coding / Computer Graphics, ISY, LiTH

Varying access patterns - but
neighbors are still neighbors!

56(92)56(92)

Information Coding / Computer Graphics, ISY, LiTH

Spatial locality for other things than
textures!

!
Image filters of local nature!

!
Physics simulations with local updates, transfer of heat,

liquids, pressure...!
!

Big jumps, no gain!

57(92)57(92)

Information Coding / Computer Graphics, ISY, LiTH

Using texture memory in CUDA!
!

Allocate with cudaMalloc!
!

Bind to texture unit using cudaBindTexture2D()!
!

Read from data using tex2D()!
!

Drawback: Just like in OpenGL, messy to keep track of
which texture unit/texture reference is which data.

58(92)58(92)

Information Coding / Computer Graphics, ISY, LiTH

0 1 2-1

0

1

2

-1
0 1 2-1

0

1

2

-1
1

Clamp and repeat

Texture access needs no boundary checks!

59(92)59(92)

Information Coding / Computer Graphics, ISY, LiTH

Clamp and repeat
You are used!

!to this
Now you can!

!get this or this

1 2

3 4

ERROR ERROR ERROR ERROR

ERROR ERROR ERROR ERROR

ERROR

ERROR

ERROR

ERROR

1 2

3 4

1 2

3 4

3 4

1 2

2

4

4

2

1

3

3

1

1

1

1

3

33

2

2

2

4

4 4

60(92)60(92)

Interpolation!
!

Computation tricks when optimizing!
!

Texture access provides hardware accelerated
linear interpolation!!

!
Access texture data on non-integer coordinates

and the texture hardware will do linear
interpolation automatically!!

!
Can be used for many calculations, e.g. filters.

Information Coding / Computer Graphics, ISY, LiTH

Interpolation!

Texture accesses and calculations hardware
accelerated!

a b x
B∆a + A∆b

=
A B

∆a = |a-x| ∆b = |b-x|

61(92)61(92)

Information Coding / Computer Graphics, ISY, LiTH

Hardware interpolation too good to be
true...!

!
The interpolation trick sounds kind of useful (for some

cases)... but isn’t as useful as it seems.!
!

Why? It is meant for interpolating between texels, visually.
Small errors is not a problem then! May have low

precision, like 10 steps.!
!

Not as fun then...!

62(92)62(92)

Information Coding / Computer Graphics, ISY, LiTH

Demo using texture memory!
!

Heat transfer demo!

63(92)63(92)

Information Coding / Computer Graphics, ISY, LiTH

Demo using texture memory!
!

Heat transfer demo!
!

Makes local operations modelling heat dissipation!

64(92)64(92)

Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

CUDA-OpenGL Interoperability!
!

Visualize results with OpenGL

CUDA kernel OpenGL!
visualization

65(92)

65(92)

Information Coding / Computer Graphics, ISY, LiTH

CUDA and graphics!
!

Simplest way: Pass output from CUDA, typically to an OpenGL texture.!
!

Example: Julia set, Lab 4 Mandelbrot, ray caster...!
!

Good for visualizing results. Better methods exist, without having to move
data to CPU and back.

66(92)66(92)

Information Coding / Computer Graphics, ISY, LiTH

CUDA-OpenGL Interoperability!
!

• Integrate for better performance!!
!

• Possible to visualize without leaving GPU!
!

An output which is not the CPU!

67(92)67(92)

Information Coding / Computer Graphics, ISY, LiTH

CUDA!
kernel

OpenGL!
visuali-!
zation

CPU

GPU

No visuali-!
zation

CUDA!
kernel

CPU

GPU

Simple
visualization

OpenGL!
visuali-!
zation

CUDA!
kernel

CPU

GPU

Visualization with
OpenGL

interoperability

68(92)68(92)

Information Coding / Computer Graphics, ISY, LiTH

Steps for interoperability!
!

• Decide what data CUDA will process!
!

• Allocate with OpenGL!
!

• Register with CUDA!
!

• Map buffer to get CUDA pointer!
!

• Pass pointer to CUDA kernel!
!

• Release pointer!
!

• Use result in OpenGL graphics

69(92)69(92)

Information Coding / Computer Graphics, ISY, LiTH

glGenBuffers(1, &positionsVBO);!
glBindBuffer(GL_ARRAY_BUFFER, positionsVBO);!
unsigned int size = NUM_VERTS * 4 * sizeof(float);!
glBufferData(GL_ARRAY_BUFFER, size, NULL, GL_DYNAMIC_DRAW);!
glBindBuffer(GL_ARRAY_BUFFER, 0);!
!
cudaGraphicsGLRegisterBuffer(&positionsVBO_CUDA, positionsVBO,!
cudaGraphicsMapFlagsWriteDiscard);!

• Allocate with OpenGL!
!

• Register with CUDA

Allocate VBO (vertex buffer)

Register with CUDA

70(92)70(92)

Information Coding / Computer Graphics, ISY, LiTH

cudaGraphicsMapResources(1, &positionsVBO_CUDA, 0);!
size_t num_bytes;!
cudaGraphicsResourceGetMappedPointer((void**)&positions, &num_bytes,!
positionsVBO_CUDA);printError(NULL, err);!
!
// Execute kernel!
dim3 dimBlock(16, 1, 1);!
dim3 dimGrid(NUM_VERTS / dimBlock.x, 1, 1);!
createVertices<<<dimGrid, dimBlock>>>(positions, anim, NUM_VERTS);!
!
// Unmap buffer object!
cudaGraphicsUnmapResources(1, &positionsVBO_CUDA, 0);!

• Map buffer to get CUDA pointer!
!

• Pass pointer to CUDA kernel!
!

• Release pointer

71(92)71(92)

Information Coding / Computer Graphics, ISY, LiTH

// CUDA vertex kernel!
__global__ void createVertices(float4* positions, float time, unsigned int num)!
{ !
!unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;!
!!
!positions[x].w = 1.0;!
!positions[x].z = 0.0;!
!positions[x].x = 0.5*sin(kVarv * (time + x * 2 * 3.14 / num)) * x/num;!
!positions[x].y = 0.5*cos(kVarv * (time + x * 2 * 3.14 / num)) * x/num;!
}!

Simple CUDA kernel for
producing vertices for graphics

72(92)72(92)

Information Coding / Computer Graphics, ISY, LiTH

Simple examples:

Just vertices - but you can draw surfaces, compute
textures, use any OpenGL effects (light, materials)

73(92)73(92)

Information Coding / Computer Graphics, ISY, LiTH

But should we use CUDA for OpenGL?!
!

Great for visualizing!
!

Faster than going over CPU!
!

Slower than plain OpenGL for graphics!!
!

and OpenGL has CUDA-like functionality built-in!
(Compute Shaders.) (Later lecture)!

!

74(92)74(92)

Information Coding / Computer Graphics, ISY, LiTH

Conclusions!
!

CUDA can be coupled closer to OpenGL than the simple
way we have done before!!

!
Moving data back and forth is wastefui, there is

performance to gain!!
!

Some interesting alternatives exist as well. Compute
Shaders are closer to the graphics pipeline and easier to

integrate.

75(92)75(92)

Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

Reduction!
!

Parallelizing problems of limited parallel nature

76(92)

76(92)

Information Coding / Computer Graphics, ISY, LiTH

Examples of reduction algorithms!
!

Extracting small data from larger!
!

• Finding max or min!
!

• Calculating median or average!
!

• Histograms!
!

Common problems!

77(92)77(92)

Information Coding / Computer Graphics, ISY, LiTH

Sequentially trivial!
!

Loop through data!
!

Add/min/max, accumulate results!
!

Fits badly in massive parallelism!

78(92)78(92)

Information Coding / Computer Graphics, ISY, LiTH

Tree-based approach!

43

3143

4335 2231

4312 2231535 831

79(92)79(92)

Information Coding / Computer Graphics, ISY, LiTH

In 2D, typically 4-to-1 per level!
!

Pyramid hierarchy

80(92)80(92)

Information Coding / Computer Graphics, ISY, LiTH

Tree-based approach!
!

Each level parallel! Can be split onto large numbers of
threads!

!
but!
!

the parallelism is reduced for each level, and the results
need to be reorganized to a smaller number of threads!

81(92)81(92)

Information Coding / Computer Graphics, ISY, LiTH

43

3143

4335 2231

4312 2231535 831

4

2

1

8

etc
16

82(92)82(92)

Information Coding / Computer Graphics, ISY, LiTH

Multiple kernel runs for varying size!!
!

For n = k downto 0 do!
Launch 2n threads!

!
Multiple levels can be merged into one - but not all of

them!

83(92)83(92)

Information Coding / Computer Graphics, ISY, LiTH

Important reminder: You can not
synchronize between blocks!!

!
Why?!

!
Risk for deadlock between blocks that

are not simultaneously active

84(92)84(92)

Information Coding / Computer Graphics, ISY, LiTH

Multiple levels per kernel run for
avoiding overhead

(Picture by Mark Harris, NVidia)

85(92)85(92)

Information Coding / Computer Graphics, ISY, LiTH

Align memory access for
coalescing

Good Bad

86(92)86(92)

Information Coding / Computer Graphics, ISY, LiTH

Many important optimizations:!
!

• Align memory access for coalecing!
• Avoid "if" statements, divergent branches!
• Avoid bank conflicts in shared memory!

• Loop unrolling to avoid loop overhead (classic old-style
optimization!)!

• Switch to CPU for small levels

87(92)87(92)

Information Coding / Computer Graphics, ISY, LiTH

(Picture by Mark Harris, NVidia)

Huge speed difference reported by Harris

88(92)88(92)

Information Coding / Computer Graphics, ISY, LiTH

Variations exist!
!

Having other ideas on how to make a reduction?!
!

There are other approaches that can work well.!
!

Optimizing matters. Watch out for special cases.

89(92)89(92)

Information Coding / Computer Graphics, ISY, LiTH

Conclusions:!
!

• Multiple kernel runs for varying problem size!
!

• Multiple kernel runs for synchronizing blocks!
!

• Optimizing matters! Not only shared memory and
coalescing!

90(92)90(92)

