
Information Coding / Computer Graphics, ISY, LiTH

Lecture 10!
!

Introduction to CUDA!
!

Ingemar Ragnemalm!
Information Coding, ISY

1(63)

1(63)

Information Coding / Computer Graphics, ISY, LiTH

Laborations!
!

Lab 4-6 are ready, no changes planned but last
minute changes may occur.!

!
!

The ”lab questions” are vital! Answers must be written
down before we can examine you!!

!
Thus - no lab reports needed.

2(63)2(63)

Information Coding / Computer Graphics, ISY, LiTH

Lecture material!
!

Lecture material available on the web, new and last year's.!
!

The old local course page is obsolete but is linked to!
!

http://computer-graphics.se/TDDD56!
!

The lecture material is linked from the "Lectures" page.

3(63)3(63)

Information Coding / Computer Graphics, ISY, LiTH

Previous lecture:!
!

GPU development - why did it become a
general purpose parallel architecture!

!
GPU architecture!

!
A quick look at GPU coding (Hello World!)

4(63)4(63)

Information Coding / Computer Graphics, ISY, LiTH

G80 processor hierarchy

8 top-level groups
of TPCs

SM (Streaming
Multiprocessor) is a

group of 8 SIMD
cores

5(63)5(63)

Information Coding / Computer Graphics, ISY, LiTH

This lecture:!
!

CUDA!
!

Programming model and language!
!

Introduction to memory spaces and memory
access!

!
Shared memory!

!
Matrix multiplication example

6(63)6(63)

Information Coding / Computer Graphics, ISY, LiTH

Lecture questions:!
!

1. What concept in CUDA corresponds to a
SM (streaming multiprocessor) in the

architecture?!
!

2. How does matrix multiplication benefit from
using shared memory?!

!
3. When do you typically need to synchronize

threads?

7(63)7(63)

Information Coding / Computer Graphics, ISY, LiTH

Why do we focus on CUDA?!
!

Easiest start! Compact and comfortable code.!
!

Drawback: NVidia only.!
!

We do not forget the alternatives! We return to
them later.!

!
!

8(63)8(63)

Information Coding / Computer Graphics, ISY, LiTH

CUDA = Compute Unified
Device Architecture!

!
Developed by NVidia!

!
Only available on NVidia boards, G80 or

better GPU architecture!
!

Designed to hide the graphics heritage and
add control and flexibility

Really?

9(63)9(63)

Information Coding / Computer Graphics, ISY, LiTH

Computing model:!
!

1. Upload data to GPU!
!

2. Execute kernel!
!

3. Download result!
!

Similar to shader-based solutions and
OpenCL

10(63)10(63)

Information Coding / Computer Graphics, ISY, LiTH

Integrated source!
!

Source of host and kernel code in the same source file!!
!

Major difference to shaders and OpenCL.!
!

Kernel code identified by special modifiers.

11(63)11(63)

Information Coding / Computer Graphics, ISY, LiTH

Threads and warps!
!

CUDA = Architecture and C extension!
!

Spawn a large number of threads, to be ran virtually in parallel!
!

Just like in graphics! Fragments/computations not quite
executed in parallel.!

!
A bunch at a time - a warp.!

!
Looks much more like an ordinary C program! No more ”data

stored as pixels” - just arrays!

12(63)12(63)

Information Coding / Computer Graphics, ISY, LiTH

Simple CUDA example!
!

A working, compilable example!
!

#include <stdio.h>	
	
const int N = 16; 	
const int blocksize = 16; 	
	
__global__ 	
void simple(float *c) 	
{	
	 c[threadIdx.x] = threadIdx.x;	
}	
	
int main()	
{	
	 int i;	
	 float *c = new float[N];	 	
	 float *cd;	
	 const int size = N*sizeof(float);	
	 	

	 cudaMalloc((void**)&cd, size);	
	 dim3 dimBlock(blocksize, 1);	
	 dim3 dimGrid(1, 1);	
	 simple<<<dimGrid, dimBlock>>>(cd);	
	 cudaMemcpy(c, cd, size, cudaMemcpyDeviceToHost); 	
	 cudaFree(cd);	
	 	
	 for (i = 0; i < N; i++)	
	 	 printf("%f ", c[i]);	
	 printf("\n");	
	 delete[] c;	
	 printf("done\n");	
	 return EXIT_SUCCESS;	
}	

13(63)13(63)

Information Coding / Computer Graphics, ISY, LiTH

Simple CUDA example!
!

A working, compilable example!
!

#include <stdio.h>	
	
const int N = 16; 	
const int blocksize = 16; 	
	
__global__ 	
void simple(float *c) 	
{	
	 c[threadIdx.x] = threadIdx.x;	
}	
	
int main()	
{	
	 int i;	
	 float *c = new float[N];	 	
	 float *cd;	
	 const int size = N*sizeof(float);	
	 	

	 cudaMalloc((void**)&cd, size);	
	 dim3 dimBlock(blocksize, 1);	
	 dim3 dimGrid(1, 1);	
	 simple<<<dimGrid, dimBlock>>>(cd);	
	 cudaMemcpy(c, cd, size, cudaMemcpyDeviceToHost); 	
	 cudaFree(cd);	
	 	
	 for (i = 0; i < N; i++)	
	 	 printf("%f ", c[i]);	
	 printf("\n");	
	 delete[] c;	
	 printf("done\n");	
	 return EXIT_SUCCESS;	
}	

Read back data

Allocate GPU memory

Kernel
Call kernel

1 block, 16 threads

thread identifier

14(63)14(63)

Information Coding / Computer Graphics, ISY, LiTH

Modifiers for code!
!

Three modifiers are provided to specify how code should
be used:!

!
__global__ executes on the GPU, invoked from the CPU.

This is the entry point of the kernel.!
!

__device__ is local to the GPU!
!

__host__ is CPU code (superfluous).!

CPU

__host__ myHostFunc()

GPU

__global__ myGlobalFunc(()

__device__ myDeviceFunc(()

15(63)15(63)

Information Coding / Computer Graphics, ISY, LiTH

Memory management!
!

cudaMalloc(ptr, datasize)!
cudaFree(ptr)!

!
Similar to CPU memory management, but done by the

CPU to allocate on the GPU!
!

cudaMemCpy(dest, src, datasize, arg)!
!

arg = cudaMemcpyDeviceToHost!
or cudaMemcpyHostToDevice

16(63)16(63)

Information Coding / Computer Graphics, ISY, LiTH

Kernel execution!
!

simple<<<griddim, blockdim>>>(…)!
!
!

grid = blocks, block = threads!
!

Built-in variables for kernel:!
!

threadIdx and blockIdx !
blockDim and gridDim!

!
(Note that no prefix is used, like GLSL does.)

17(63)17(63)

Information Coding / Computer Graphics, ISY, LiTH

Compiling Cuda!
!

nvcc!
!

nvcc is nvidia’s tool, /usr/local/cuda/bin/nvcc!
!

Source files suffixed .cu!
!

Command-line for the simple example:!
!nvcc simple.cu -o simple	
	

(Command-line options exist for libraries etc)

18(63)18(63)

Information Coding / Computer Graphics, ISY, LiTH

Compiling Cuda for larger applications!
!

nvcc and gcc in co-operation!
!

nvcc for .cu files!
!

gcc/g++ for .c/.cpp etc!
!

Mixing languages possible.!
!

Final linking must include C++ runtime libs.!
!

Example: One C file, one CU file

19(63)19(63)

Information Coding / Computer Graphics, ISY, LiTH

Example of multi-unit compilation!
	

Source files: cudademokernel.cu and cudademo.c!
	

nvcc cudademokernel.cu -o cudademokernel.o -c	
	

gcc -c cudademo.c -o cudademo.o -I/usr/local/cuda/include	
	

g++ cudademo.o cudademokernel.o -o cudademo -L/usr/local/
cuda/lib -lcuda -lcudart -lm	

!
!

Link with g++ to include C++ runtime

20(63)20(63)

Information Coding / Computer Graphics, ISY, LiTH

C/CUDA program!
code .cu

nvcc CPU binary

PTX code

Target binary!
codePTX to target

CUDA compilation
behind the scene

21(63)21(63)

Information Coding / Computer Graphics, ISY, LiTH

Executing a Cuda program!
!

You might need to set environment variable to find Cuda runtime.!
!

export DYLD_LIBRARY_PATH=/usr/local/cuda/lib:$DYLD_LIBRARY_PATH!
!

Then run as usual:!
!

./simple!
!
!

A problem when executing without a shell!!
!

Launch with execve()

22(63)22(63)

Information Coding / Computer Graphics, ISY, LiTH

Computing with CUDA!
!

Organization and access!
!

Blocks, threads...

23(63)23(63)

Information Coding / Computer Graphics, ISY, LiTH

Warps!
!

A warp is the minimum number of data items/
threads that will actually be processed in parallel

by a CUDA capable device.!
!

This number might vary with different GPUs but
is generally 32.!

!
We usually don’t care about warps but rather

discuss threads and blocks.

24(63)24(63)

Information Coding / Computer Graphics, ISY, LiTH

Processing organization!
!

1 warp = 32 threads!
!

1 kernel - 1 grid!
!

1 grid - many blocks!
!

1 block -> 1 SM!
!

1 block - many threads!
!

Use many threads and many blocks! > 200
blocks recommended.!

!
Thread # multiple of 32

25(63)25(63)

Information Coding / Computer Graphics, ISY, LiTH

...almost right!
!

1 block -> 1 SM!
!

but not!
!

1 SM -> 1 block!
!
!

A block is always assigned to one SM, but one
SM may run more than one block at a time.

26(63)26(63)

Information Coding / Computer Graphics, ISY, LiTH

Distributing computing over threads
and blocks!

!
Hierarcical model

Grid
Block 0,0 Block 1,0 Block 2,0 Block 3,0

Block 0,1 Block 1,1 Block 2,1 Block 3,1

Block n,n
Thread 0,0 Thread 1,0 Thread 2,0

Thread 0,1 Thread 1,1 Thread 2,1

Thread 3,0

Thread 3,1

Thread 0,2 Thread 1,2 Thread 2,2

Thread 0,3 Thread 1,3 Thread 2,3

Thread 3,2

Thread 3,3gridDim.x * gridDim.y blocks

BlockDim.x * blockDim.y threads

27(63)27(63)

Information Coding / Computer Graphics, ISY, LiTH

Indexing data with thread/block IDs!
!

Calculate index by blockIdx, blockDim, threadIdx!
!

Another simple example, calculate square of
every element, device part:

// Kernel that executes on the CUDA device	
__global__ void square_array(float *a, int N)	
{	
	 int idx = blockIdx.x * blockDim.x + threadIdx.x;	
	 if (idx<N) a[idx] = a[idx] * a[idx];	
}	
	

28(63)28(63)

Information Coding / Computer Graphics, ISY, LiTH

// main routine that executes on the host	
int main(int argc, char *argv[])	
{	
	 float *a_h, *a_d;	 // Pointer to host and device arrays	
	 const int N = 10;	 // Number of elements in arrays	
	 size_t size = N * sizeof(float);	
	 a_h = (float *)malloc(size);	
	 cudaMalloc((void **) &a_d, size); // Allocate array on device	
// Initialize host array and copy it to CUDA device 	
	 for (int i=0; i<N; i++) a_h[i] = (float)i; 	
	 cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);	
// Do calculation on device: 	
	 int block_size = 4; 	
	 int n_blocks = N/block_size + (N%block_size == 0 ? 0:1); 	
	 square_array <<< n_blocks, block_size >>> (a_d, N); 	
// Retrieve result from device and store it in host array 	
	 cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);	
// Print results and cleanup	
	 for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]); 	
	 free(a_h); cudaFree(a_d); 	
}	

Host part of "cudademo" example!
!

Set block size and grid size

29(63)29(63)

Information Coding / Computer Graphics, ISY, LiTH

Some new calls in cudademo example!
!

! /* find number of devices in current "context" */!
! cudaGetDevice(&devid);!

!
! /* find how many devices are available */!

! cudaGetDeviceCount(&devcount);!
!

and there is also!
!

cudaSetDevice(devId)!

30(63)30(63)

Information Coding / Computer Graphics, ISY, LiTH

Julia example!
!

• Bigger problem, addressing calculation must be 2D!
!

• Simple OpenGL output (similar to the labs)

31(63)31(63)

Information Coding / Computer Graphics, ISY, LiTH

__global__ void kernel(unsigned char *ptr, float r, float im)	
{	
 // map from blockIdx to pixel position	
 int x = blockIdx.x * blockDim.x + threadIdx.x;	
 int y = blockIdx.y * blockDim.y + threadIdx.y;	
	
 int offset = x + y * DIM;	
	
 // now calculate the value at that position	
 int juliaValue = julia(x, y, r, im);	
--- calculate colors ---	
 ptr[offset*4 + 0] = red;	
 ptr[offset*4 + 0] = green;	
 ptr[offset*4 + 0] = blue;	
 ptr[offset*4 + 3] = 255;	
}	

Julia example
For this case: Separate for x and y

Actual index!
which implies!
memory position

Every thread computes one single pixel!

32(63)32(63)

Information Coding / Computer Graphics, ISY, LiTH

Julia conclusions!
!

Many blocks, many treads in each block. Make sure
everything is in use.!

!
Index by thread and block.!

!
Exceptional speedup - trivially parallellizable problem!!

!
Load balancing? No problem. Why?

33(63)33(63)

Information Coding / Computer Graphics, ISY, LiTH

Conclusion about indexing!
!

Every thread does its own calculation for indexing
memory!!

!
blockIdx, blockDim, threadIdx!

!
1, 2 or 3 dimensions!

!
Usually 2 dimensions

34(63)34(63)

Information Coding / Computer Graphics, ISY, LiTH

Memory access!
!

Vital for performance!!
!

Memory types!
!

Coalescing!
!

Example of using shared memory

35(63)

35(63)

Information Coding / Computer Graphics, ISY, LiTH

Memory types!
!

Global!
!

Shared!
!

Constant (read only)!
!

Texture cache (read only)!
!

Local!
!

Registers!
!

Care about these when optimizing - not to begin with

36(63)36(63)

Information Coding / Computer Graphics, ISY, LiTH

Global memory !
!

400-600 cycles latency!!
!

Shared memory fast temporary storage!
!

Coalesce memory access!!
!

Continuous!
Aligned on power of 2 boundary!

Addressing follows thread numbering!
!

Use shared memory for reorganizing data for faster
access and coalescing!

37(63)37(63)

Information Coding / Computer Graphics, ISY, LiTH

Using shared memory to reduce
number of global memory accesses!

!
Read blocks of data to shared memory!

!
Process!

!
Write back as needed!

!
Shared memory as ”manual cache”!

!
Example: Matrix multiplication

38(63)38(63)

Information Coding / Computer Graphics, ISY, LiTH

To multiply two N*N matrices, every item will have to be
accessed N times!!
!
Naive implementation: 2N3 global memory accesses!!
!

Matrix multiplication

39(63)39(63)

Information Coding / Computer Graphics, ISY, LiTH

Matrix multiplication on CPU	
	

Simple triple ”for” loop
void MatrixMultCPU(float *a, float *b, float *c, int theSize)	
{	
	 int sum, i, j, k;	
	
	 // For every destination element	
	 for(i = 0; i < theSize; i++)	
	 	 for(j = 0; j < theSize; j++)	
	 	 {	
	 	 	 sum = 0;	
	 	 	 // Sum along a row in a and a column in b	
	 	 	 for(k = 0; k < theSize; k++)	
	 	 	 	 sum = sum + (a[i*theSize + k]*b[k*theSize + j]);	
	 	 	 c[i*theSize + j] = sum;	
	 	 }	
}	

40(63)40(63)

Information Coding / Computer Graphics, ISY, LiTH

Naive GPU version!
!

Replace outer loops by thread indices
__global__ void MatrixMultNaive(float *a, float *b, float *c,
int theSize)	
{	
	 int sum, i, j, k;	
	 	
	 i = blockIdx.x * blockDim.x + threadIdx.x;	
	 j = blockIdx.y * blockDim.y + threadIdx.y;	
	
	 // For every destination element	
	 sum = 0;	
	 // Sum along a row in a and a column in b	
	 for(k = 0; k < theSize; k++)	
	 	 sum = sum + (a[i*theSize + k]*b[k*theSize + j]);	
	 c[i*theSize + j] = sum;	
}	

41(63)41(63)

Information Coding / Computer Graphics, ISY, LiTH

Naive GPU version inefficient!
!

Every thread makes 2N global memory accesses!!
!

Can be significantly reduced using shared memory

42(63)42(63)

Information Coding / Computer Graphics, ISY, LiTH

Optimized GPU version!
!

Data is split into patches.!
!

Every element accesses data in all the patches in the same row
for A, column for B!

!
Each output patch is mapped to one block.!

!
For every such block:!

Every thread reads one element to shared memory!!
! Then loop over the appropriate row and column for the block

43(63)43(63)

Information Coding / Computer Graphics, ISY, LiTH

Let each block handle a part of the output (green right).!
!
Green areas middle and left contibute to output.!
!
Load the contributing areas into shared memory.!

Contributing areas for patch

44(63)44(63)

Information Coding / Computer Graphics, ISY, LiTH

Example: 16 blocks

45(63)45(63)

Information Coding / Computer Graphics, ISY, LiTH

46(63)46(63)

Information Coding / Computer Graphics, ISY, LiTH

Destination!
element for!
thread

C A B

Destination!
patch for thread All patches on the same!

row in A are needed to!
produce the destination!
block

And all patches in!
the same column!
of C

For every patch, the thread reads one!
element matching the destination element

For every patch, we loop!
over the part of one row!
and column to perform!
that part of the
computation

What one thread reads is used by!
everybody in the same row (A) or!
column (B)!

Every patch!
corresponds!
to one block,!
computing the!
output for that!
patch!

47(63)47(63)

Information Coding / Computer Graphics, ISY, LiTH

C A B

⊕
⊙
⊙
⊙
⊙

Piece by piece, patch by patch

48(63)48(63)

Information Coding / Computer Graphics, ISY, LiTH

Optimized GPU
version

__global__ void MatrixMultOptimized(float* A, float* B, float* C, int theSize)	
{	
	 int k, b, gx, gy, gi, bx, by, gia, gib, li;	
	 	
// Global index for thread	
	 gx = blockIdx.x * blockDim.x + threadIdx.x;	
	 gy = blockIdx.y * blockDim.y + threadIdx.y;	
	 gi = gy*theSize + gx;	
	
// Local index for thread	
	 li = threadIdx.y*blockDim.y + threadIdx.x;	
	 	
	 float sum = 0.0;	
	 // for all source blocks	
	 for (b = 0; b < gridDim.x; b++) // We assume that gridDimx and y are equal	
	 {	
	 	 __shared__ float As[BLOCKSIZE*BLOCKSIZE];	
	 	 __shared__ float Bs[BLOCKSIZE*BLOCKSIZE];	
	 	 	
	 	 bx = blockDim.x*b + threadIdx.x; // modified x for A	
	 	 by = blockDim.y*b + threadIdx.y; // modified y for B	
	 	 gia = gy*theSize+bx; // resulting global index into A	
	 	 gib = by*theSize+gx; // resulting global index into B	
	 	 	
	 	 As[li] = A[gia];	
	 	 Bs[li] = B[gib];	
	 	 	
	 	 	 	 __syncthreads(); // Synchronize to make sure all data is loaded	
	 	 	
	 	 // Loop in block	
	 	 for (k = 0; k < blockDim.x; k++)	
	 	 	 sum += As[threadIdx.y*blockDim.x + k] * Bs[k*blockDim.x + threadIdx.x];	
	 	 	
	 	 __syncthreads(); // Synch again so nobody starts loading data before all finish	
	 }	
	 	
	 C[gi] = sum;	
}	

Allocate shared memory

Copy one element to!
shared memory

Loop over patches (1D)

Loop over row/column in!
patch, compute, accumulate!
result for one element

Write result to global memory

49(63)49(63)

Information Coding / Computer Graphics, ISY, LiTH

5-10 times faster? So what did I do?!
!

• Decent number of threads and blocks!
!

• Use shared memory for temporary storage!
!

• All threads read ONE item, but use many!!
!

• Synchronize!
!

• Even more for CPU - compared to single-thread CPU :)

50(63)50(63)

Information Coding / Computer Graphics, ISY, LiTH

Modified computing model:!
!

! Upload data to global GPU memory!
!

! For a number of parts, do:!
!

! ! Upload partial data to shared memory!
!

! ! Process partial data!
!

! ! Write partial data to global memory!
!

! Download result to host

51(63)51(63)

Information Coding / Computer Graphics, ISY, LiTH

Thread synchronization!
!

As soon as you do something where one part of a
computation depends on a result from another thread, you

must synchronize!!
!

__syncthreads()!
!

Typical implementation:!
!

! ! ! ! • Read to shared memory!
! ! ! ! • __syncthreads()!

! ! ! ! • Process shared memory!
! ! ! ! • __synchthreads()!

! ! ! ! • Write result to global memory!

52(63)52(63)

Information Coding / Computer Graphics, ISY, LiTH

Thread synchronization!
!

Really wonderfully simple - everybody are doing
the same thing anyway!!

!
Synchronization simply means "wait until

everybody are done with this part"!
!

Deadlocks can still occur!

53(63)53(63)

Information Coding / Computer Graphics, ISY, LiTH

Limitation of synchronization!
!

Thread synchronization can only be done within a
block! No synchronization between blocks!!

!
Why is this a necessary limitation?

54(63)54(63)

Information Coding / Computer Graphics, ISY, LiTH

Limitation of synchronization!
!

Thread synchronization can only be done within a
block! No synchronization between blocks!!

!
Why is this a necessary limitation?!

!
Because all blocks are not active at the same time!

Blocks are queued until an SM is free!

55(63)55(63)

Information Coding / Computer Graphics, ISY, LiTH

Limitation of synchronization!
!

Thread synchronization can only be done within a
block! No synchronization between blocks!!

!
Why is this a necessary limitation?!

!
Because all blocks are not active at the same time!

Blocks are queued until an SM is free!!
!

But I must synchronize globally!!
!

Answer: Run multiple kernel runs! More on this later.

56(63)56(63)

Information Coding / Computer Graphics, ISY, LiTH

Global synchronization!
!

Another synchronization is global synchronization.!
!

Called by the host.!
!

Wait until all blocks are finished!!
!

cudaDeviceSynchronize()!
!

There is also!
!

cudaStreamSynchronize()

57(63)57(63)

Information Coding / Computer Graphics, ISY, LiTH

Lecture questions revisited:!
!

1. What concept in CUDA corresponds to a SM
(streaming multiprocessor) in the architecture?!

!
2. How does matrix multiplication benefit from using

shared memory?!
!

3. When do you typically need to synchronize
threads?

58(63)58(63)

Information Coding / Computer Graphics, ISY, LiTH

More code ≠ slower!
!

The fast version requires more code!!
!

Instructions are cheap, memory access is
expensiove!

59(63)59(63)

Information Coding / Computer Graphics, ISY, LiTH

Summary:!
!

• Make threads and blocks to make the hardware
occupied!

!
• Access data depending on thread/block number!

!
• Memory accesses are expensive!!

!
• Shared memory is fast!

!
• Make threads within a block cooperate!

!
• Synchronize

60(63)60(63)

Information Coding / Computer Graphics, ISY, LiTH

Thread/block balancing!
!

How many threads?!
!

How many threads per block?!
!

If many, try 256 threads/block!
!

If smaller problem, how do you utilize the hardware the best?

61(63)61(63)

Information Coding / Computer Graphics, ISY, LiTH

What comes next?!
!

• More CUDA!
!

• Even more CUDA!
!

but then!
!

• OpenCL and compute shaders - the alternatives!
!
!

Most that I say about CUDA translate easily to other platforms!

62(63)62(63)

Information Coding / Computer Graphics, ISY, LiTH

That’s all folks!!
!
!

Next: More about memory management and
optimization.

63(63)63(63)

