
Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

Lecture 9

Computations on graphics
processors

Ingemar Ragnemalm
Information Coding, ISY

1(80)

1(80)

Information Coding / Computer Graphics, ISY, LiTH

Did you find it amazing to run on 8
cores in a single desktop?

2(80)2(80)

Information Coding / Computer Graphics, ISY, LiTH

Did you find it amazing to run on 8
cores in a single desktop?

How about doing that
with 10240 cores?

3(80)3(80)

Information Coding / Computer Graphics, ISY, LiTH

This lecture:
Plan for this part of the course

GPU evolution

GPU architecture

A first intro to general computing
solutions with GPUs

4(80)4(80)

Information Coding / Computer Graphics, ISY, LiTH

My part of the course:
5 lectures

1 lesson

3 labs

Local sub-page: http://computer-graphics.se/TDDD56/

5(80)5(80)

Information Coding / Computer Graphics, ISY, LiTH

Lectures:
9. GPU evolution and architecture

10. Intro to CUDA

11. CUDA memory, threads, synchronization

12. More CUDA, sorting on GPU

13. Intro to OpenCL. Computing with shaders

6(80)6(80)

Information Coding / Computer Graphics, ISY, LiTH

Labs:
4. CUDA

5. Image filter with CUDA

6. OpenCL

No lab reports,
demonstrations during the lab

7(80)7(80)

Information Coding / Computer Graphics, ISY, LiTH

Literature for this part:

ATTACK IN PACKS

Available at Bokakademin
Inexpensive!

Also on-line (free!)

8(80)8(80)

Information Coding / Computer Graphics, ISY, LiTH

Printed version: 100kr

Online version here:

http://computer-graphics.se/
TDDD56/

You decide what you need!

9(80)9(80)

Information Coding / Computer Graphics, ISY, LiTH

Questions
1. How can a GPU be much faster than a CPU?

2. Why is the G80 so much faster than the previous GPUs
(e.g. 7000 series)?

3. A texturing unit provides access to texture memory. What
more is it than just another memory?

4. What current trend is driven by the GPU evolution?

10(80)10(80)

Information Coding / Computer Graphics, ISY, LiTH

The decline of CPU evolution
Three ”walls”:

11(80)11(80)

Information Coding / Computer Graphics, ISY, LiTH

The decline of CPU evolution
Three ”walls”:

Tenessee Waltz

Max Wall

Wall-E

12(80)12(80)

Information Coding / Computer Graphics, ISY, LiTH

The decline of CPU evolution
Three ”walls”:

13(80)13(80)

Information Coding / Computer Graphics, ISY, LiTH

The decline of CPU evolution
Three ”walls”:

Power wall

Memory wall

ILP wall

14(80)14(80)

Information Coding / Computer Graphics, ISY, LiTH

The decline of CPU evolution
Three ”walls”:

Power wall

Memory wall

ILP wall

• Clock frequency can no longer go up

• The memory architecture is insufficient

• Attempts to parallelize have failed

15(80)15(80)

Information Coding / Computer Graphics, ISY, LiTH

Power wall
13% higher frequency = 73% more (almost double)

double power consumption!

16(80)16(80)

Information Coding / Computer Graphics, ISY, LiTH

Power wall
Reverse reasoning: Lower frequency a little, win much

power.

Replace one high-frequency CPU with two slightly slower
- for the same cost!

Works nicely for two CPUs.

Intel promises 80 cores in a few years

BUT

this will run into the ”memory wall”

17(80)17(80)

Information Coding / Computer Graphics, ISY, LiTH

Memory wall
Already, the memory is slower than the CPU.

With more and more CPUs fighting for accessing the
same RAM and caches, efficiency will degrade!

Memory bandwidth helps - if we can get it.

18(80)18(80)

Information Coding / Computer Graphics, ISY, LiTH

ILP wall
Instruction level parallelism

Writing parallel code is complicated.

Many problems are sequential by nature - or traditionally
expressed as such.

19(80)19(80)

Information Coding / Computer Graphics, ISY, LiTH

ILP wall
Instruction level parallelism

Writing parallel code is complicated.

Many problems are sequential by nature - or traditionally
expressed as such.

Solutions:

• Explore algorithms in search of parallel solutions

• Learn how to code in parallel

• New programming paradigms, not optimizing for the
programmer but for the computer!

20(80)20(80)

Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

Timeline for CPUs
80’s: CPU and system same speed. Zero wait states.

1993: CPUs faster than the rest of the system. Rapid
raise of frequency.

Late 90’s to present: Multi-CPU systems, multi-core
CPUs.

CPUs are still improving, but going for higher frequency
is not as obvious as before.

21(80)

21(80)

Information Coding / Computer Graphics, ISY, LiTH

Meanwhile, at the graphics dept
80’s: Hardware sprites. Push pixels with low-level code.

1993: Textured 3D games: Wolf3D, Doom.

Early 90’s: Professional 3D boards.

1996: 3dfx Voodoo1!

2001: Programmable shaders.

2006: G80, unified architecture. CUDA.

2009: OpenCL.

2010: Fermi architecture

2012-2021: Kepler, Maxwell, Pascal, Turing, Ampère...

22(80)22(80)

Information Coding / Computer Graphics, ISY, LiTH

32x

40x

40x

400x

23(80)23(80)

Information Coding / Computer Graphics, ISY, LiTH

32x

40x

40x

400x

8250x

700x

40000x

63x

128x

24(80)24(80)

Information Coding / Computer Graphics, ISY, LiTH

How about 2005-2019?

1.18x

1.67x

7.75x

20x

x cores?

2019

5.0
4.27

128

16000

1.56x

3.56x

32x

80x

25(80)25(80)

Information Coding / Computer Graphics, ISY, LiTH

18x

?

62x

17x

12x

1.18x

1.67x

7.75x

20x

x cores?

2019

5.0
4.27

128

16000

170

?
16312*

672

24000

51x

?

408x

35x

94x

1.56x

3.56x

32x

80x

* single precision

26(80)26(80)

Information Coding / Computer Graphics, ISY, LiTH

How about 2021?
GPU (NVidia 3080Ti):

Pixel rate 186.5 GPixel/s (a bit up)
Graphics FLOP: 34 TFLOPS (double from 2019)
10240 cores!

CPU (AMD Threadripper 3990X):

256-1.5 TFLOPS
64 cores!

27(80)27(80)

Information Coding / Computer Graphics, ISY, LiTH

But is this a fair comparison?
Let us compare apples with apples:

GFLOPS for both!

GPU CPU
1995: 0.001 0.09
2005: 40 5.6
2011: 2488 91
2015: 7000 176
2016: 16380 400-700*
2021: 34000 1500

(Various sources)

* Theoretical, 16 cores

Gets complicated here:
CUDA vs tensor cores

28(80)28(80)

Information Coding / Computer Graphics, ISY, LiTH

1961: 8.3 trillion
1984: 42 million
1997: 42000 (CPU cluster)
2000: 836-1300
2007: 52
2012: 0.73 (AMD 7970)
2013: 0.22 (PS4)
2015: 0.08 (Radeon R9 295)
2021: 0.03 (probably 3080Ti?)

How about economy: dollar per GFLOPS?

(Wikipedia)

29(80)29(80)

Information Coding / Computer Graphics, ISY, LiTH

The GFLOPS race

30(80)30(80)

Information Coding / Computer Graphics, ISY, LiTH

AMD took the lead in
single precision
while NVidia was

chasing for double
with Fermi

Another graph, including ATI/AMD

31(80)31(80)

Information Coding / Computer Graphics, ISY, LiTH

...up to today.

32(80)32(80)

Information Coding / Computer Graphics, ISY, LiTH

But in particular: SIMD architecture

How is this possible?

Area use:

33(80)33(80)

Information Coding / Computer Graphics, ISY, LiTH

Flynn's taxonomy
SISD

Single instruction, single data
Old single-core systems

SIMD
Single instruction, multiple data

GPUs, vector processors

MISD
Multiple instruction, single data

Multiple for redundance

MIMD
Multiple instruction, multiple data

Multi-core CPUs

SIMT, single instruction, multiple threads ≈ SIMD

34(80)34(80)

Information Coding / Computer Graphics, ISY, LiTH

SIMD
Single instruction, multiple data

Simplifies instruction handling. All cores get the same
instruction.

Excellent for operations where one operation must be made on
many data elements.

Is that so common? Yes!
Data best in stored arrays.

35(80)35(80)

Information Coding / Computer Graphics, ISY, LiTH

Data Oriented Programming
DOP optimizes for performance.

Data structures selected to fit the computations,
instead of the programmer!

Optimize for the end user instead for the programmer!

Popular in the game industry - why not elsewhere?

36(80)36(80)

Information Coding / Computer Graphics, ISY, LiTH

SIMT - Single Instruction, Multiple Thread
A variant of SIMD.

Parallelism expressed as threads.
A programming model, but also demands that the hardware can

handle threads very fast.
Threads dependent - executed in a SIMD processor!

So, why does SIMT fit a graphics processor so well?

37(80)37(80)

Information Coding / Computer Graphics, ISY, LiTH

Is this important?

- Extra hardware needed
- Different programming

- Only benefits big problems with good
parallellization possibilities

but

+ Great for all image processing problems
+ Good for many other problems (sorting, FFT...)

+ Key component in the current deep learning
revolution!

38(80)38(80)

Information Coding / Computer Graphics, ISY, LiTH

Deep learning

Learning systems based on very large neural
networks.

Good problem for GPUs!

Remarkable results! Big trend in computer vision and
other fields.

GPUs opened the door!

39(80)39(80)

Information Coding / Computer Graphics, ISY, LiTH

Why did GPUs get so much performance?
Early problem with large amounts of data. (Complex geometry,

millions of output pixels.)

Graphics pipeline designed for parallelism!

Hiding memory latency by parallelism

Volume. 3D graphics boards central component in game
industry. Everybody wants one!

New games need new impressive features. Many important
advancements started as game features.

40(80)40(80)

Information Coding / Computer Graphics, ISY, LiTH

Must process many pixels fast!

Early GPUs could draw textured, shaded triangles much faster
than the CPU.

41(80)41(80)

Information Coding / Computer Graphics, ISY, LiTH

Must process many pixels fast!

Early GPUs could draw textured, shaded triangles much faster
than the CPU.

Must do matrix multiplication and divisions fast.

Next generation could transform vertices and normalize
vectors.

42(80)42(80)

Information Coding / Computer Graphics, ISY, LiTH

Must process many pixels fast!

Early GPUs could draw textured, shaded triangles much faster
than the CPU.

Must do matrix multiplication and divisions fast.

Next generation could transform vertices and normalize
vectors.

Must have programmable parts.

This was added to make Phong shading and bump mapping.

43(80)43(80)

Information Coding / Computer Graphics, ISY, LiTH

Must process many pixels fast!

Early GPUs could draw textured, shaded triangles much faster
than the CPU.

Must do matrix multiplication and divisions fast.

Next generation could transform vertices and normalize
vectors.

Must have programmable parts.

This was added to make Phong shading and bump mapping.

Must work in floating-point!

This was for light effects, HDR.

44(80)44(80)

Information Coding / Computer Graphics, ISY, LiTH

So a GPU should
• process vertices, many in parallel, applying the same

transformations on each

• process pixels (fragments) in parallel, applying the
same color/light/texture calculations on each

SIMD friendly problem!

Less control, control many calculations instead of one

45(80)45(80)

Information Coding / Computer Graphics, ISY, LiTH

A different kind of threads
SIMD threads, all run the same program

Group-wise, they execute in parallel, SIMD-style

Made for graphics operations: Shader threads calculate
one pixel or one vertex

CUDA/OpenCL threads may calculate anything, but
typically one part of the output - in order

46(80)46(80)

Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

A look at the GPU architecture
Back to the timeline, big changes:

Pre-G80: Separate vertex and fragment processors.

Hard-wired for graphics. Load balance problems.

G80: Unified architecture. More suited for GPGPU. Higher
performance due to better load balancing.

G92: Similar to G80, more cores, more cores per group.

GT100: Much more double precision

TU102: Tensor & RT cores

(Similar track for AMD)

47(80)

47(80)

Information Coding / Computer Graphics, ISY, LiTH

7800: High-end GPU before G80
Vertex processors

Fragment
processors

Framebuffer
operations

48(80)48(80)

Information Coding / Computer Graphics, ISY, LiTH

G80

Hardware formerly
between vertex and

fragment processors

Unified
processors!

Framebuffer
operations

49(80)49(80)

Information Coding / Computer Graphics, ISY, LiTH

Unified processorsSeparate vertex and fragment
processors

G80: A question of load balance!

Vertex
problem (e.g.

complex
geometry)

Fragment
problem (e.g.

advanced
rendering)

Fragment Shader

Fragment Shader

50(80)50(80)

Information Coding / Computer Graphics, ISY, LiTH

G80 processor hierarchy

8 top-level groups
of TPCs

SM = Streaming
Multiprocessor

SM is a group of 8
SIMD cores

51(80)51(80)

Information Coding / Computer Graphics, ISY, LiTH

GT200

Similar but with a
bit more of
everything

Many updates are
just this:

52(80)52(80)

Information Coding / Computer Graphics, ISY, LiTH

G80 vs GT200 in numbers:

8 cores per SM 10 cores per SM
2 SMs per cluster 3 SMs per cluster

8 clusters 10 clusters

8 was not a magic number - more cores per SM

53(80)53(80)

Information Coding / Computer Graphics, ISY, LiTH

Vital components

Texture processor cluster: 2 or 3
SMs and a texturing unit

A texturing unit will provide
texturing access with automatic

interpolation - vital component for
graphics

54(80)54(80)

Information Coding / Computer Graphics, ISY, LiTH

Vital components

SM: 8 cores

but also

SFU: Special functions unit

Shared memory

Register memory in each core

Instruction handling/thread
management

55(80)55(80)

Information Coding / Computer Graphics, ISY, LiTH

How much architecture details do we need
to know?

Shaders: The architecture is mostly invisible

Cuda/OpenCL: Less so, but number of cores
more or less ignored - as long as we provide

more parallelism in our algorithm than the
architecture has!

Memory usage is specified by the programming
languages. More about that later.

56(80)56(80)

Information Coding / Computer Graphics, ISY, LiTH

2010: Fermi (GT100)

16 SMs

32 cores per SM

Important change:

Much area for L2
cache!

57(80)57(80)

Information Coding / Computer Graphics, ISY, LiTH

More on Fermi
4x performance for double (64-bit FP)

More silicon space for cache! More like a CPU.

CGPU = Computing Graphics Processing Unit

=> NVidia aims for GPGPU with Fermi!

58(80)58(80)

Information Coding / Computer Graphics, ISY, LiTH

2012: Kepler (GK104, GK110)
2014: Maxwell (GM107, GM204)

Back to graphics focus, strikes back against AMD.
Fewer SMs, double performance lagging behind.

AMD taking the lead in GPU computing with the R9 series!

59(80)59(80)

Information Coding / Computer Graphics, ISY, LiTH

2016: Pascal (GP102-107)
Good double performance is back!

60(80)60(80)

Information Coding / Computer Graphics, ISY, LiTH

2018: Turing
2020: Ampère

Big change towards specialized parts

• Tensor cores
• RT cores

• Focus on raytracing and learning

61(80)61(80)

Information Coding / Computer Graphics, ISY, LiTH

Turing vs G80
G80 = unification, only one kind

of cores = better use of hardware

Turing = separation, three kinds
of cores... meaning what?

Contradiction! Will this last?

62(80)62(80)

Information Coding / Computer Graphics, ISY, LiTH

General purpose hardware

Special purpose hardware

Questionable usability for
general purpose computations

Our focus!

63(80)63(80)

Information Coding / Computer Graphics, ISY, LiTH

Related parallelization efforts
IBM Cell (next generation canceled!)

Intel Larabee (”put on ice” - dead)

GPUs are the clear winners so far!

64(80)64(80)

Information Coding / Computer Graphics, ISY, LiTH

But never count out Intel...

how about the more recent Xeon Phi?
(Follow-up on Larabee)

65(80)65(80)

Information Coding / Computer Graphics, ISY, LiTH

How does it compare?

66(80)66(80)

Information Coding / Computer Graphics, ISY, LiTH

Important!

The GPU still wins! (Even over other SIMD!)

Test: Does it compete?

67(80)67(80)

Information Coding / Computer Graphics, ISY, LiTH

Conclusion comparison
SB - Xeon Phi - GPU

Even the CPU performed pretty well.
All use SIMD (at least partially) for best performance!

All require you to code in parallel!

68(80)68(80)

Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

And this brought us to:

GPGPU/GPU Computing

General Purpose computation on Graphics Processing Units

Mark Harris, 2002

Perform demanding calculations on the GPU instead of the CPU!

At first, appeared to be a wild idea, but is now a very serious
technology! Results were highly varied in the early years, but the

GPU advantage has grown bigger and bigger.

69(80)

69(80)

Information Coding / Computer Graphics, ISY, LiTH

Key components starting the GPGPU trend
High processing power in parallel

Programmability: Introduction of shader programs, much more
flexible, programmable for any problem.

Floating-point buffers: Vital! Initially with poor precision. 32-bit
floating-point decent... but not really impressive.

70(80)70(80)

Information Coding / Computer Graphics, ISY, LiTH

GPGPU approaches
• Using fixed pipeline graphics

• Shader programs

• CUDA

• OpenCL

• Compute shaders

71(80)71(80)

Information Coding / Computer Graphics, ISY, LiTH

Fixed pipeline GPGPU
Reformulate a problem to something that can be done by

standard graphics operations.

Limited success 1999/2000. Not of any practical interest!

Example: Jörgen Ahlberg, face tracking

72(80)72(80)

Information Coding / Computer Graphics, ISY, LiTH

Fragment (pixel) shader based GPGPU
Portable! All GPUs can use shaders, no need for extra software,

run using standard software/drivers.

All modern shader languages (GLSL, Cg, HLSL) are similar and
easy to program in.

Requires a re-mapping of data to textures.

Very good results already in 2005: 8x speedups overall reported!

73(80)73(80)

Information Coding / Computer Graphics, ISY, LiTH

CUDA-based GPGPU
Only works on NVidia hardware.

Requires extra software - which isn’t very elegant.

Nice integration of CPU and GPU code in the same program.

Excellent results! 100x speedups are common - before
optimizing! Even low-end GPUs give significant boosts.

74(80)74(80)

Information Coding / Computer Graphics, ISY, LiTH

OpenCL-based GPGPU
Works on various hardware - not only GPUs.

Developed by Khronos Group, pushed by Apple.

Harder to get started, software looks pretty much like
programming shaders.

75(80)75(80)

Information Coding / Computer Graphics, ISY, LiTH

OpenGL Compute shaders
Built into OpenGL

Similar to OpenCL

Good portability

Direct Compute Compute shaders
Built into DirectX

Similar to OpenCL

MS only

76(80)76(80)

Information Coding / Computer Graphics, ISY, LiTH

Vulkan
The "new OpenGL", arrived 2016.

"Bleeding edge".

Future main generic GPU platform for
both graphics and computing?

Same compute shaders as OpenGL.

Metal
Apples "Vulkan".

Apple has deprecated everything
else - including OpenCL

"Metal Performance Shaders".

Apple only.

77(80)77(80)

Information Coding / Computer Graphics, ISY, LiTH

Use the source, Luke!
Four trivial examples:

Hello World! for CUDA

Hello World! for OpenCL

Hello World for GLSL

Hello World for Compute Shaders

78(80)78(80)

Information Coding / Computer Graphics, ISY, LiTH

In Olympen
GTX1080

Pascal GPUs!

In Asgård
GTX2060

Turing GPUs!

Pretty fresh and good performance.

79(80)79(80)

Information Coding / Computer Graphics, ISY, LiTH

That’s all, folks!

Next time: Introduction to CUDA

80(80)80(80)

