
Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

Lecture 11

More CUDA

1(75)

1(75)

Information Coding / Computer Graphics, ISY, LiTH

In this episode...
• Error checking

• Query device capabilities

• CUDA events

• More on CUDA memory:

Coalescing, Constant memory, Texture memory...

2(75)2(75)

Information Coding / Computer Graphics, ISY, LiTH

Lab 4
This week!

”Mandelbrot revisited” part, to follow up lab 1.

3(75)3(75)

Information Coding / Computer Graphics, ISY, LiTH

The story so far...
• CUDA and its language extensions

• The CUDA architecture

• Intro to memory

• Matrix multiplication example, using
shared memory

4(75)4(75)

Information Coding / Computer Graphics, ISY, LiTH

CUDA and its language extensions
Kernel invocation myKernel<<<>>>()

__global__ __device__ __host__

cudaMalloc(), cudaMemcpy()

threadIdx, blockIdx, blockDim, gridDim

Using nvcc

5(75)5(75)

Information Coding / Computer Graphics, ISY, LiTH

The CUDA architecture
Blocks and threads

Grid-block-thread hierarchy

Indexing data with thread/block numbers

6(75)6(75)

Information Coding / Computer Graphics, ISY, LiTH

Intro to memory
global memory

shared memory

constant memory

local memory

texture memory/texture units

7(75)7(75)

Information Coding / Computer Graphics, ISY, LiTH

Matrix multiplication example, using
shared memory

Huge speedup - my GPU went from questionable
performance to clearly faster than CPU!

8(75)8(75)

Information Coding / Computer Graphics, ISY, LiTH

Over to today’s episode:

9(75)9(75)

Information Coding / Computer Graphics, ISY, LiTH

Lecture questions:
1. Why can using constant memory improve

performance?

2. What is CUDA Events used for?

3. What does coalescing mean and what should
we do to get a speedup from coalescing?

4. Why can we not synchronize between blocks?

10(75)10(75)

Information Coding / Computer Graphics, ISY, LiTH

Error checking
• Functions returns error codes (but

kernel launch does not)

• cudaGetLastError()

• cudaPeekLastError()

11(75)11(75)

Information Coding / Computer Graphics, ISY, LiTH

Asynchronous error
checking

Asynchronous errors can not be returned
by the function call!

Call cudaDeviceSynchronize() and check
the latest error code.

12(75)12(75)

Information Coding / Computer Graphics, ISY, LiTH

More synchronization
No, synchronization isn't that simple.

__syncthreads()

cudaDeviceSynchronize()

cudaStreamSynchronize()

13(75)13(75)

Information Coding / Computer Graphics, ISY, LiTH

More synchronization
__syncthreads() is used inside a kernel.

Stop thread until all threads in the block reach
the location!

cudaDeviceSynchronize() is used from the host.
Wait until all current kernels finish.

cudaStreamSynchronize() waits until all kernels
in a stream finish.

No synchronization between blocks!

14(75)14(75)

Information Coding / Computer Graphics, ISY, LiTH

Why no synchronization
between blocks?

Queue of blocks, one SM at a
time.

More blocks than SMs!

Blocks SMs

15(75)15(75)

Information Coding / Computer Graphics, ISY, LiTH

Query devices
You can’t trust all devices to have the same

- or even similar - properties.

New boards may have totally different
properties.

Query CUDA for a list of features using
cudaGetDeviceProperties()

16(75)16(75)

Information Coding / Computer Graphics, ISY, LiTH

Example query result (9400M)
---- Information for GeForce 9400M ----

Compute capability: 1.1
Total global memory (VRAM): 259712 kB

Total constant Mem: 64 kB
Number of SMs: 2

Shared mem per SM: 16 kB
Registers per SM: 8192
Threads in warp: 32

Max threads per block: 512
Max thread dimensions: (512, 512, 64)
Max grid dimensions: (65535, 65535, 1)

17(75)17(75)

Information Coding / Computer Graphics, ISY, LiTH

Example query result 2 (GT 750M)
---- Information for GeForce GT 750M ----

Compute capability: 3.0
Total global memory/VRAM: 2096704 kB

Total constant Mem: 64 kB
Number of Streaming Multiprocessors (SM): 2

Shared mem per SM: 48 kB
Registers per SM: 65536

Threads in warp: 32
Max threads per block: 1024

Max thread dimensions: (1024, 1024, 64)
Max grid dimensions: (2147483647, 65535, 65535)

18(75)18(75)

Information Coding / Computer Graphics, ISY, LiTH

What is important?
Compute capability - can this board at all work with

our program?

Amount of shared memory - make sure we fit.

Max threads, max dimensions - make sure we fit.

Threads in warp: If you optimize on warp level.

Number of SMs: Lower bound for blocks

19(75)19(75)

Information Coding / Computer Graphics, ISY, LiTH

Compute capability
Essentially CUDA/architecture version number.

1.0: Original release.
1.1: Mapped memory, atomic operations.

1.3: Double support.
2.0: Fermi.
3.0: Kepler.

5.0: Maxwell.
6.0: Pascal.
7.5: Turing.
8.6 Ampère.

Olympen

Asgård

20(75)20(75)

Information Coding / Computer Graphics, ISY, LiTH

21(75)21(75)

Information Coding / Computer Graphics, ISY, LiTH

1 "6	
764$%"6#	
 7	
9�$6"6#$��
�

��
�	
�(�4�95	
?4"4��6�9#��

���	
04�7	
?"659#9 �	
7� 4$�

*�'�	
36�# "	
5 "6#

22(75)22(75)

Information Coding / Computer Graphics, ISY, LiTH

14'D6���

���

���

.�

��	
�

�

�	: �

�

�

���	

24#54��

����

���

.�

��	
�

�

�	:�

�

�

���	

3%"9�8�

*�
�

���

.�

���	�

�

�	:�

�

�

���	

23(75)23(75)

Information Coding / Computer Graphics, ISY, LiTH

24(75)24(75)

Information Coding / Computer Graphics, ISY, LiTH

���

���

�

�

�

�
���

�

�

�

�

�

�

��:

25(75)25(75)

Information Coding / Computer Graphics, ISY, LiTH

Do I care about Compute
capability?

While learning CUDA - not much. Stick to the
basics, it works on all.

But if you write professional CUDA code, of
course.

26(75)26(75)

Information Coding / Computer Graphics, ISY, LiTH

CUDA Events
Timing!

Two ways of timing CUDA programs:

• CPU timer. Synchronize at start and end.

• CUDA Events. Synchronize at end.

Synchronize? Because CUDA runs
asynchronously.

27(75)27(75)

Information Coding / Computer Graphics, ISY, LiTH

CUDA Events API
cudaEventCreate - initialize an event variable

cudaEventRecord - place a marker in the queue

cudaEventSynchronize - wait until all markers
have received values

cudaEventElapsedTime - get the time difference
between two events

28(75)28(75)

Information Coding / Computer Graphics, ISY, LiTH

CUDA memory
Coalescing

Constant memory

Texture memory

Pinned memory

29(75)

29(75)

Information Coding / Computer Graphics, ISY, LiTH

We already know…
• Global memory is slow.

• Shared memory is fast and can be used as
”manual cache”

• There were some other kinds of memory...

30(75)30(75)

Information Coding / Computer Graphics, ISY, LiTH

Coalescing
Always access global memory ”in order”

If threads access global memory in order of thread
numbers, performance will be improved!

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Thread

RAM

Good!

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Thread

RAM

Bad!

31(75)31(75)

Information Coding / Computer Graphics, ISY, LiTH

WTF?
How can performance depend on what order I
access my data??? Isn’t it ”random access”?

Yes... You can access in any order you want,
but ordered access helps the GPU to read

more data in one access!

Why? Because the GPU can get much data in
a single transaction, and neighbor threads

are tested for accessing the same area!

32(75)32(75)

Information Coding / Computer Graphics, ISY, LiTH

Coalescing
Example: Assume that we can get 4 data

items per transaction.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Thread

RAM

Good!

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Thread

RAM

Bad!

One access One access
Eight separate accesses

33(75)33(75)

Information Coding / Computer Graphics, ISY, LiTH

Coalescing on Fermi & later
Effect reduced by caches - but not removed.

Coalescing is still needed for maximum
performance.

"Perhaps the single most important performance
consideration... is coalescing of global memory
accesses." (CUDA C Best Practices Guide 2018)

34(75)34(75)

Information Coding / Computer Graphics, ISY, LiTH

Accelerating by coalescing
Pure memory transfers can be 10x faster by taking

advantage of memory coalescing!

Example: Matrix transpose

No computations!

Only memory accesses.

35(75)35(75)

Information Coding / Computer Graphics, ISY, LiTH

__global__ void transpose_naive(float *odata, float* idata, int width, int height)
{
 unsigned int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
 unsigned int yIndex = blockDim.y * blockIdx.y + threadIdx.y;

 if (xIndex < width && yIndex < height)
 {
 unsigned int index_in = xIndex + width * yIndex;
 unsigned int index_out = yIndex + height * xIndex;
 odata[index_out] = idata[index_in];
 }
}

Matrix transpose
Naive implementation

How can this be bad?

36(75)36(75)

Information Coding / Computer Graphics, ISY, LiTH

Matrix transpose
Coalescing problems

Row-by-row and column-by-column.
Column accesses non-coalesced!

37(75)37(75)

Information Coding / Computer Graphics, ISY, LiTH

Matrix transpose
Coalescing solution

Read from global memory
to shared memory

In order from global, any
order to shared

Write to global memory

In order write to global,
any order from shared

38(75)38(75)

Information Coding / Computer Graphics, ISY, LiTH

__global__ void transpose(float *odata, float *idata, int width, int height)
{
__shared__ float block[BLOCK_DIM][BLOCK_DIM+1];

// read the matrix tile into shared memory
unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x;
unsigned int yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y;
if((xIndex < width) && (yIndex < height))
{
unsigned int index_in = yIndex * width + xIndex;
block[threadIdx.y][threadIdx.x] = idata[index_in];

}

__syncthreads();

// write the transposed matrix tile to global memory
xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;
yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y;
if((xIndex < height) && (yIndex < width))
{
unsigned int index_out = yIndex * height + xIndex;
odata[index_out] = block[threadIdx.x][threadIdx.y];

}
}

Better CUDA matrix transpose kernel

Shared memory for temporary storage

Read data to temporary buffer

Write data to global memory

39(75)39(75)

Information Coding / Computer Graphics, ISY, LiTH

Coalescing rules of thumb
• The data block should start on a multiple of 64

• It should be accessed in order (by thread number)

• It is allowed to have threads skipping their item

• Data should be in blocks of 4, 8 or 16 bytes

40(75)40(75)

Information Coding / Computer Graphics, ISY, LiTH

Shared memory
Split into multiple memory banks (32). Fastest if you

access different banks with each thread

Interleaved, 32 bits chunks

Thus: Address in 32-bit steps between threads for
best performance

Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7
Address space

41(75)41(75)

Information Coding / Computer Graphics, ISY, LiTH

How can I get that?
Introduce a padding, an offset to make the memory

accesses hit different banks

In steps of 8

In steps of 9

42(75)42(75)

Information Coding / Computer Graphics, ISY, LiTH

Constant memory
Sounds boring... but has its uses.

Read-only (for kernels)

__constant__ modifier

Use for input data, obviously

43(75)43(75)

Information Coding / Computer Graphics, ISY, LiTH

44(75)44(75)

Information Coding / Computer Graphics, ISY, LiTH

Benefits of constant memory
• No cudaMemcpy needed! Just use it from kernel,

write from CPU!

• For data read by all threads, significantly faster
than global memory!

• Read-only memory is easy to cache.

45(75)45(75)

Information Coding / Computer Graphics, ISY, LiTH

Why faster access? When?
All (or many) threads reading the same data

simultaneously.

One read can be broadcast to all ”nearby” threads.

Nearby? All threads in same ”half-warp” (16 threads)

But no help if threads are reading different data!

46(75)46(75)

Information Coding / Computer Graphics, ISY, LiTH

Example of using constant memory: Ray-caster
Two demos, "Cuda by example" and "Attack in packs"

With and without using __const__

47(75)47(75)

Information Coding / Computer Graphics, ISY, LiTH

Ray-caster example
Every thread renders one pixel

Loop through all spheres, find closest with intersection

Write result to an image buffer.

Image buffer displayed with OpenGL.

Non-const: Uploads sphere array by cudaMemcpy()

Const: Declares array __const__, uses directly from kernel.
(Slightly simpler code!)

48(75)48(75)

Information Coding / Computer Graphics, ISY, LiTH

Ray-caster example
Resulting time:

Without using const: 13.9 ms

With const: 10.6 ms

Significant difference - for something that
simplified the code!

49(75)49(75)

Information Coding / Computer Graphics, ISY, LiTH

Constant memory conclusions
Relatively fast memory access - for the case when

all threads read the same memory!

Some advantage for code complexity.

NOT something we use for everything.

50(75)50(75)

Information Coding / Computer Graphics, ISY, LiTH

G80 processor
hierarchy

Texture memory/ Texture units
Using texture units to access memory

51(75)51(75)

Information Coding / Computer Graphics, ISY, LiTH

Texture memory/ Texture units
Texture memory, yet another kind of memory (or

memory access method)

But didn’t we hide the graphics heritage...?

Access global memory through the texturing
units. Lets CUDA take advantage of the strong

points with texturing units.

52(75)52(75)

Information Coding / Computer Graphics, ISY, LiTH

Texture memory features
Read-only (writable using "surface objects").

Cached! Can be fast if data access patterns are good.

Texture filtering, linear interpolation.

Edge handling.

Especially good for handling 4 floats at a time (float4).

cudaBindTextureToArray() binds data to a texture unit.

53(75)53(75)

Information Coding / Computer Graphics, ISY, LiTH

Texture memory for graphics
Texture data mostly for rendering textures

One texel used by 4 neighbor pixels (when not exact
integer coordinates)

Designed for spatial locality

54(75)54(75)

Information Coding / Computer Graphics, ISY, LiTH

Varying access patterns - but
neighbors are still neighbors!

55(75)55(75)

Information Coding / Computer Graphics, ISY, LiTH

Spatial locality for other things than
textures

Image filters of local nature

Physics simulations with local updates, transfer of
heat, liquids, pressure...

Big jumps, no gain!

56(75)56(75)

Information Coding / Computer Graphics, ISY, LiTH

Using texture memory in CUDA
Allocate with cudaMalloc

Bind to texture unit using cudaBindTexture2D()

Read from data using tex2D()

Drawback: Just like in OpenGL, messy to keep
track of which texture unit/texture reference is

which data.

57(75)57(75)

Information Coding / Computer Graphics, ISY, LiTH

0 1 2-1

0

1

2

-1
0 1 2-1

0

1

2

-1
1

Clamp and repeat

Texture access needs no boundary checks!

58(75)58(75)

Information Coding / Computer Graphics, ISY, LiTH

Clamp and repeat
You are used

to this
Now you can

get this or this

1 2

3 4

ERROR ERROR ERROR ERROR

ERROR ERROR ERROR ERROR

ERROR

ERROR

ERROR

ERROR

1 2

3 4

1 2

3 4

3 4

1 2

2

4

4

2

1

3

3

1

1

1

1

3

33

2

2

2

4

4 4

59(75)59(75)

Information Coding / Computer Graphics, ISY, LiTH

Interpolation
Computation tricks when optimizing

Texture access provides hardware accelerated
linear interpolation!

Access texture data on non-integer coordinates
and the texture hardware will do linear

interpolation automatically!

Can be used for many calculations, e.g. filters.

60(75)60(75)

Information Coding / Computer Graphics, ISY, LiTH

Interpolation

Texture accesses and calculations hardware
accelerated!

a b x
B∆a + A∆b

=
A B

∆a = |a-x| ∆b = |b-x|

61(75)61(75)

Information Coding / Computer Graphics, ISY, LiTH

Hardware interpolation too good to be
true...

The interpolation trick sounds kind of useful (for some
cases)... but isn’t as useful as it seems.

Why? It is meant for interpolating between texels,
visually. Small errors is not a problem then! May have

low precision, like 10 steps.

Not as fun then...

62(75)62(75)

Information Coding / Computer Graphics, ISY, LiTH

Demo using texture memory
Heat transfer demo

63(75)63(75)

Information Coding / Computer Graphics, ISY, LiTH

Demo using texture memory
Heat transfer demo

Makes local operations modelling heat dissipation

64(75)64(75)

Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

CUDA-OpenGL Interoperability
Visualize results with OpenGL

CUDA kernel OpenGL
visualization

65(75)

65(75)

Information Coding / Computer Graphics, ISY, LiTH

CUDA and graphics
Simplest way: Pass output from CUDA, typically to an OpenGL texture.

Example: Julia set, Lab 4 Mandelbrot, ray caster...

Good for visualizing results. Better methods exist, without having to
move data to CPU and back.

66(75)66(75)

Information Coding / Computer Graphics, ISY, LiTH

CUDA-OpenGL Interoperability
• Integrate for better performance!

• Possible to visualize without leaving GPU

An output which is not the CPU

67(75)67(75)

Information Coding / Computer Graphics, ISY, LiTH

CUDA
kernel

OpenGL
visuali-
zation

CPU

GPU

No visuali-
zation

CUDA
kernel

CPU

GPU

Simple
visualization

OpenGL
visuali-
zation

CUDA
kernel

CPU

GPU

Visualization with
OpenGL

interoperability

68(75)68(75)

Information Coding / Computer Graphics, ISY, LiTH

Steps for interoperability
• Decide what data CUDA will process

• Allocate with OpenGL

• Register with CUDA

• Map buffer to get CUDA pointer

• Pass pointer to CUDA kernel

• Release pointer

• Use result in OpenGL graphics

69(75)69(75)

Information Coding / Computer Graphics, ISY, LiTH

glGenBuffers(1, &positionsVBO);
glBindBuffer(GL_ARRAY_BUFFER, positionsVBO);
unsigned int size = NUM_VERTS * 4 * sizeof(float);
glBufferData(GL_ARRAY_BUFFER, size, NULL, GL_DYNAMIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);

cudaGraphicsGLRegisterBuffer(&positionsVBO_CUDA, positionsVBO,
cudaGraphicsMapFlagsWriteDiscard);

• Allocate with OpenGL

• Register with CUDA

70(75)70(75)

Information Coding / Computer Graphics, ISY, LiTH

cudaGraphicsMapResources(1, &positionsVBO_CUDA, 0);
size_t num_bytes;
cudaGraphicsResourceGetMappedPointer((void**)&positions, &num_bytes,
positionsVBO_CUDA);printError(NULL, err);

// Execute kernel
dim3 dimBlock(16, 1, 1);
dim3 dimGrid(NUM_VERTS / dimBlock.x, 1, 1);
createVertices<<<dimGrid, dimBlock>>>(positions, anim, NUM_VERTS);

// Unmap buffer object
cudaGraphicsUnmapResources(1, &positionsVBO_CUDA, 0);

• Map buffer to get CUDA pointer

• Pass pointer to CUDA kernel

• Release pointer

71(75)71(75)

Information Coding / Computer Graphics, ISY, LiTH

// CUDA vertex kernel
__global__ void createVertices(float4* positions, float time, unsigned int num)
{
unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;

positions[x].w = 1.0;
positions[x].z = 0.0;
positions[x].x = 0.5*sin(kVarv * (time + x * 2 * 3.14 / num)) * x/num;
positions[x].y = 0.5*cos(kVarv * (time + x * 2 * 3.14 / num)) * x/num;
}

Simple CUDA kernel for
producing vertices for graphics

72(75)72(75)

Information Coding / Computer Graphics, ISY, LiTH

Simple examples:

Just vertices - but you can draw surfaces, compute
textures, use any OpenGL effects (light, materials)

73(75)73(75)

Information Coding / Computer Graphics, ISY, LiTH

But should we use CUDA for OpenGL?
Great for visualizing

Faster than going over CPU

Slower than plain OpenGL for graphics!

and OpenGL has CUDA-like functionality built-in!
(Compute Shaders.) (Later lecture)

74(75)74(75)

Information Coding / Computer Graphics, ISY, LiTH

Conclusions
CUDA can be coupled closer to OpenGL than the

simple way we have done before!

Moving data back and forth is wastefui, there is
performance to gain!

Some interesting alternatives exist as well.

75(75)75(75)

