

Lecture 10

Introduction to CUDA

Ingemar Ragnemalm Information Coding, ISY

Information Coding / Computer Graphics, ISY, LiTH

Laborations

Lab 4-6 are ready, no changes planned *but* last minute changes may occur.

The "lab questions" are vital! Answers *must* be written down before we can examine you!

Thus - no lab reports needed.

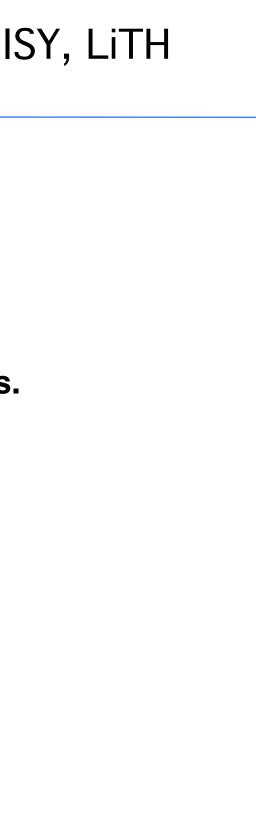
Lecture material

Lecture material available on the web, new and last year's.

The old local course page is obsolete but is linked to

http://computer-graphics.se/TDDD56

The lecture material is linked from the "Lectures" page.

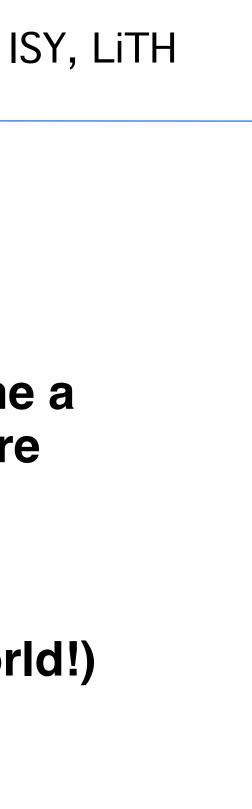


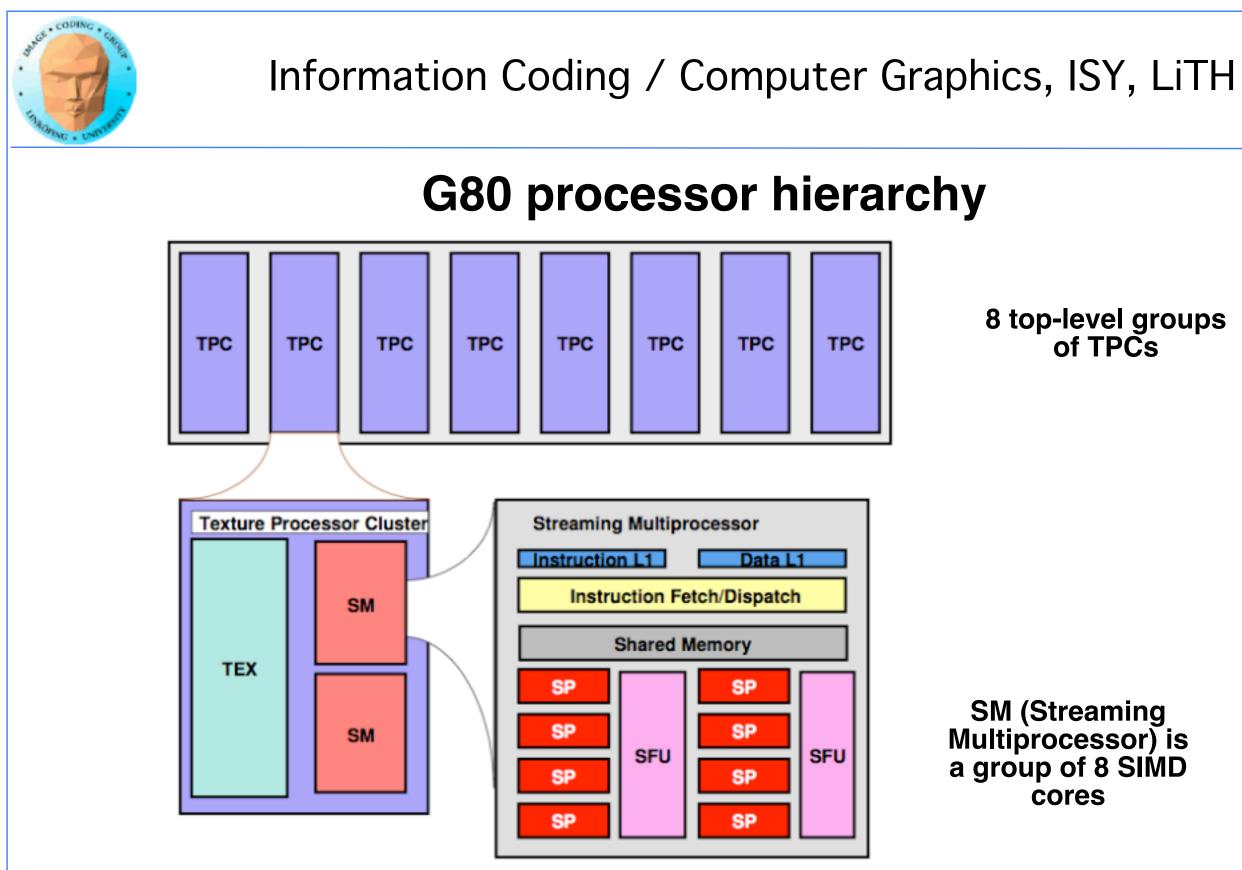
Previous lecture:

GPU development - why did it become a general purpose parallel architecture

GPU architecture

A quick look at GPU coding (Hello World!)





8 top-level groups of TPCs

Information Coding / Computer Graphics, ISY, LiTH

This lecture:

CUDA

Programming model and language

Introduction to memory spaces and memory access

Shared memory

Matrix multiplication example

Lecture questions:

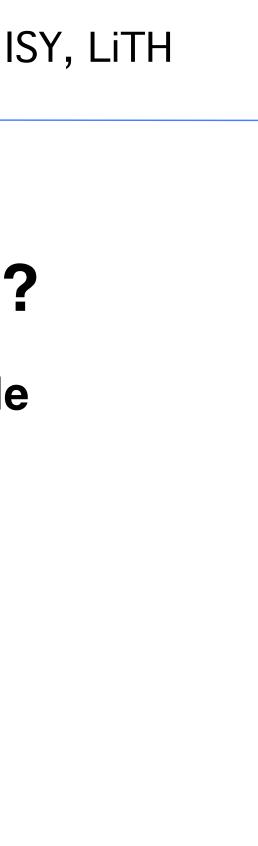
- 1. What concept in CUDA corresponds to a SM (streaming multiprocessor) in the architecture?
 - 2. How does matrix multiplication benefit from using shared memory?
 - 3. When do you typically need to synchronize threads?

Why do we focus on CUDA?

Easiest start! Compact and comfortable code.

Drawback: NVidia only.

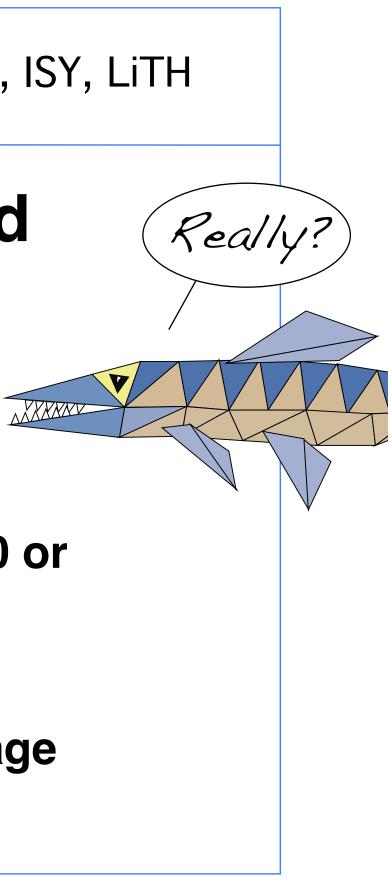
We do not forget the alternatives! We return to them later.



Information Coding / Computer Graphics, ISY, LiTH

CUDA = Compute Unified Device Architecture

Developed by NVidia



Only available on NVidia boards, G80 or better GPU architecture

Designed to hide the graphics heritage and add control and flexibility

Computing model:

1. Upload data to GPU

2. Execute kernel

3. Download result

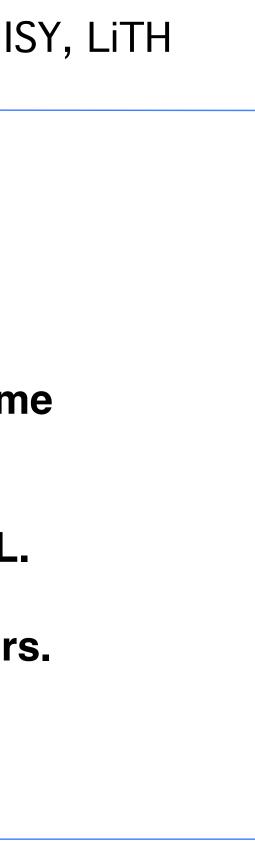
Similar to shader-based solutions and **OpenCL**

Integrated source

Source of host and kernel code in the same source file!

Major difference to shaders and OpenCL.

Kernel code identified by special modifiers.



About CUDA

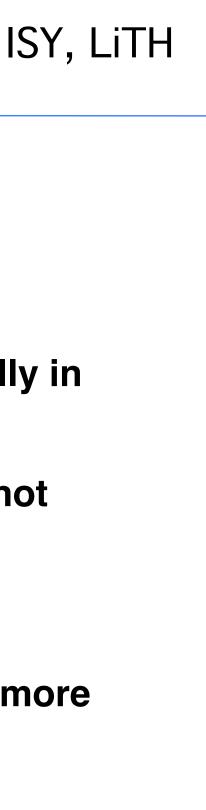
Architecture and C extension

Spawn a large number of threads, to be ran virtually in parallel

Just like in graphics! Fragments/computations not quite executed in parallel.

A bunch at a time - a *warp*.

Looks much more like an ordinary C program! No more "data stored as pixels" - just arrays!



Simple CUDA example

A working, compilable example

#include <stdio.h>

float *cd;

const int N = 16; const int blocksize = 16;

```
__global__
void simple(float *c)
{
c[threadIdx.x] = threadIdx.x;
}
int main()
int i;
float *c = new float[N];
```

const int size = N*sizeof(float);

```
cudaMalloc( (void**)&cd, size );
dim3 dimBlock( blocksize, 1 );
dim3 dimGrid( 1, 1 );
simple<<<dimGrid, dimBlock>>>(cd);
cudaMemcpy( c, cd, size, cudaMemcpyDeviceToHost );
cudaFree( cd );
```

```
for (i = 0; i < N; i++)
 printf("%f ", c[i]);
printf("\n");
delete[] c;
 printf("done\n");
return EXIT_SUCCESS;
}
```

```
13(58)
```


Simple CUDA example

A working, compilable example

```
#include <stdio.h>
                                             cudaMalloc( (void**)&cd, size );
                                             dim3 dimBlock( blocksize, 1 );
const int N = 16;
                                             dim3 dimGrid( 1, 1 );
const int blocksize = 16;
                                             simple<<<dimGrid, dimBlock>>>(cd);
                                             cudaMemcpy( c, cd, size, cudaMemcpyDeviceToHost );
               Kernel
__global__
                                             cudaFree( cd );
void simple(float *c)
                                             for (i = 0; i < N; i++)
{
                                              printf("%f ", c[i]);
 c[threadIdx.x] = threadIdx.x;
                    thread identifier
                                             printf("\n");
}
                                             delete[] c;
int main()
                                             printf("done\n");
                                             return EXIT_SUCCESS;
{
 int i;
float *c = new float[N];
 float *cd;
 const int size = N*sizeof(float);
```

Allocate GPU memory

1 block, 16 threads Call kernel Read back data

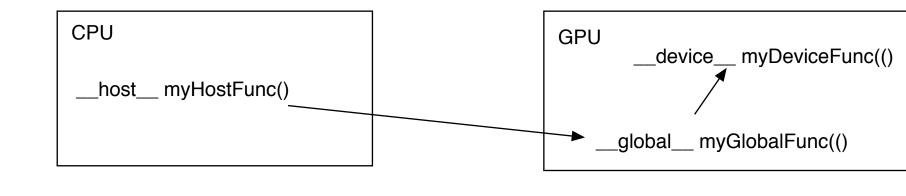
Modifiers for code

Three modifiers are provided to specify how code should be used:

__global__ executes on the GPU, invoked from the CPU. This is the entry point of the kernel.

_device__ is local to the GPU

__host__ is CPU code (superfluous).



Memory management

cudaMalloc(ptr, datasize) cudaFree(ptr)

Similar to CPU memory management, but done by the **CPU to allocate on the GPU**

cudaMemCpy(dest, src, datasize, arg)

arg = cudaMemcpyDeviceToHost or cudaMemcpyHostToDevice

Kernel execution

simple<<<griddim, blockdim>>>(...)

grid = blocks, block = threads

Built-in variables for kernel:

threadIdx and blockIdx *blockDim* and *gridDim*

(Note that no prefix is used, like GLSL does.)

Compiling Cuda

nvcc

nvcc is nvidia's tool, /usr/local/cuda/bin/nvcc

Source files suffixed .cu

Command-line for the simple example:

nvcc simple.cu -o simple

(Command-line options exist for libraries etc)

Compiling Cuda for larger applications

nvcc and gcc in co-operation

nvcc for .cu files

gcc for .c/.cpp etc

Mixing languages possible.

Final linking must include C++ runtime libs.

Example: One C file, one CU file

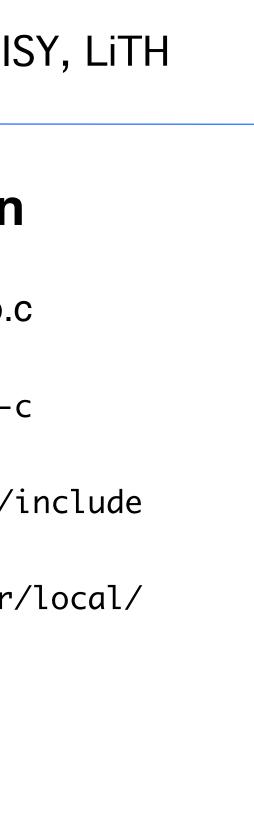
Example of multi-unit compilation

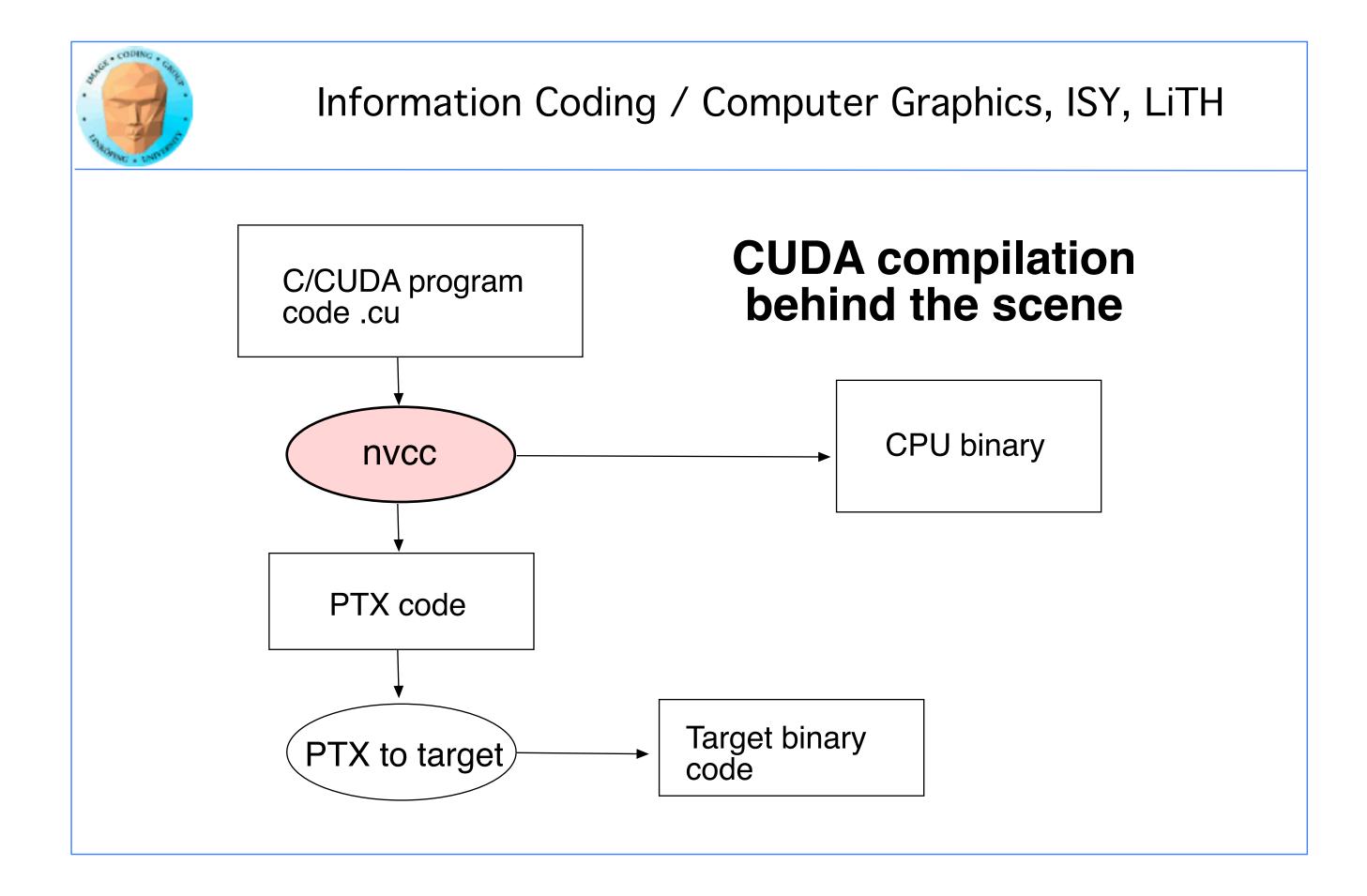
Source files: cudademokernel.cu and cudademo.c

nvcc cudademokernel.cu -o cudademokernel.o -c

gcc -c cudademo.c -o cudademo.o -I/usr/local/cuda/include

Link with g++ to include C++ runtime





Executing a Cuda program

Must set environment variable to find Cuda runtime.

export DYLD_LIBRARY_PATH=/usr/local/cuda/lib:\$DYLD_LIBRARY_PATH

Then run as usual:

./simple

A problem when executing without a shell!

Launch with execve()

Information Coding / Computer Graphics, ISY, LiTH

Computing with CUDA

Organization and access

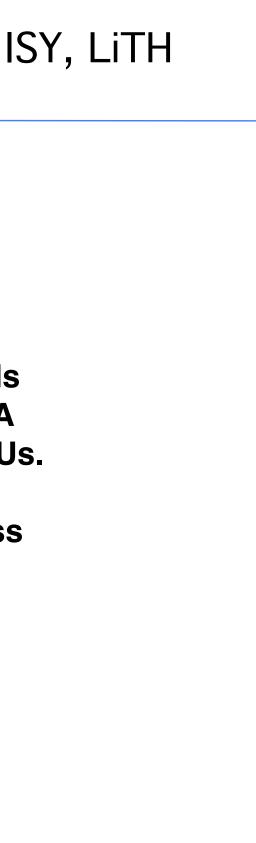
Blocks, threads...

Information Coding / Computer Graphics, ISY, LiTH

Warps

A warp is the minimum number of data items/threads that will actually be processed in parallel by a CUDA capable device. This number varies with different GPUs.

We usually don't care about warps but rather discuss threads and blocks.



Processing organization

1 warp = 32 threads

1 kernel - 1 grid

1 grid - many blocks

1 block - 1 SM

1 block - many threads

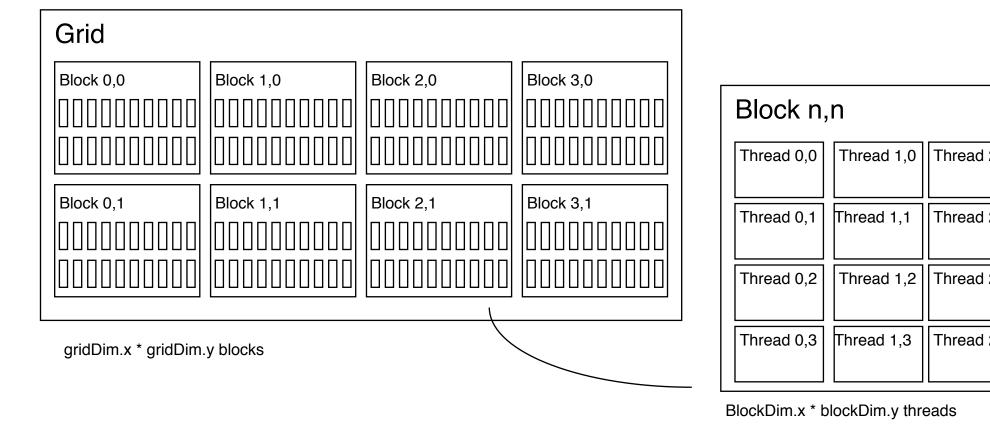
Use many threads and many blocks! > 200 blocks recommended.

Thread # multiple of 32

Information Coding / Computer Graphics,

Distributing computing over thread and blocks

Hierarcical model



ISY, LiTH		
IS		
I 2,0	Thread 3,0	
l 2,1	Thread 3,1	
12,2	Thread 3,2	
I 2,3	Thread 3,3	
		_

Indexing data with thread/block IDs

Calculate index by blockldx, blockDim, threadIdx

Another simple example, calculate square of every element, device part:

```
// Kernel that executes on the CUDA device
__global___ void square_array(float *a, int N)
{
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx<N) a[idx] = a[idx] * a[idx];
}</pre>
```


Host part of square example

Set block size and grid size

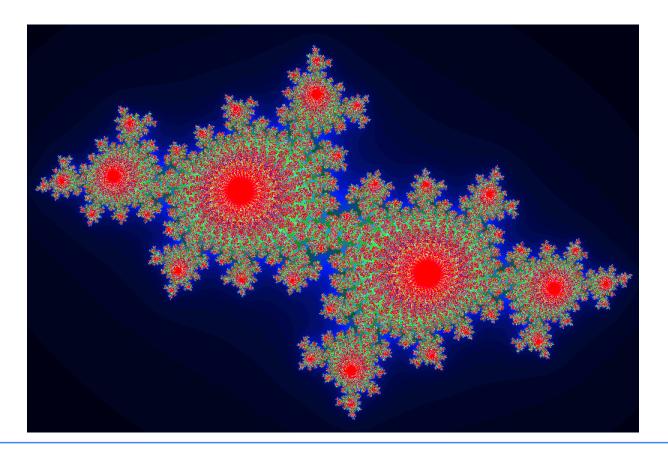
```
// main routine that executes on the host
int main(int argc, char *argv[])
{
 float *a_h, *a_d; // Pointer to host and device arrays
 const int N = 10; // Number of elements in arrays
 size_t size = N * sizeof(float);
 a_h = (float *)malloc(size);
 cudaMalloc((void **) &a_d, size); // Allocate array on device
// Initialize host array and copy it to CUDA device
 for (int i=0; i<N; i++) a_h[i] = (float)i;
 cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);
// Do calculation on device:
 int block_size = 4;
 int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);
 square_array <<< n_blocks, block_size >>> (a_d, N);
// Retrieve result from device and store it in host array
 cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
// Print results and cleanup
 for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]);</pre>
 free(a_h); cudaFree(a_d);
```

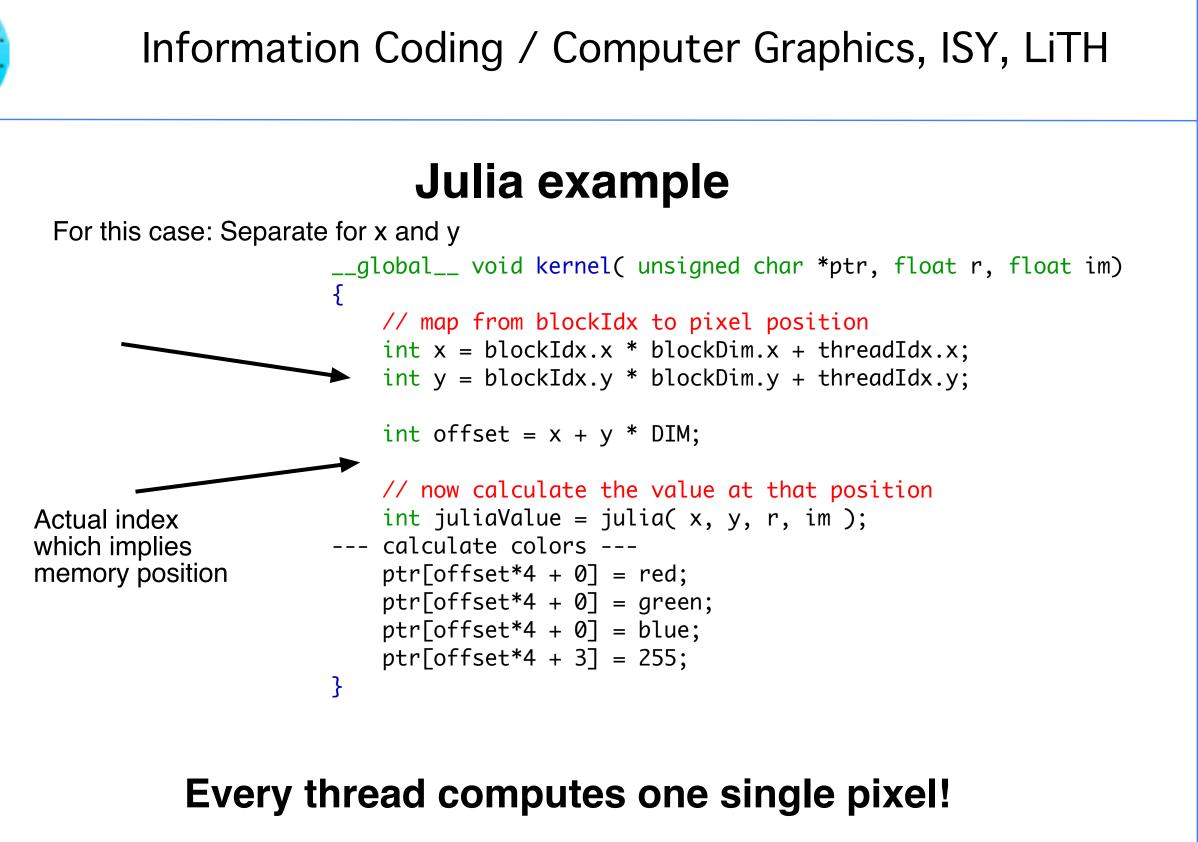

Information Coding / Computer Graphics, ISY, LiTH

Julia example

Bigger problem, addressing calculation must be 2D

• Simple OpenGL output (similar to the labs)





Julia conclusions

Many blocks, many treads in each block. Make sure everything is in use.

Index by thread and block.

Exceptional speedup - trivially parallellizable problem!

Load balancing? No problem. Why?

Conclusion about indexing

Every thread does its own calculation for indexing memory!

blockldx, blockDim, threadldx

1, 2 or 3 dimensions

Usually 2 dimensions

Memory access

Vital for performance!

Memory types

Coalescing

Example of using shared memory

Memory types

Global

Shared

Constant (read only)

Texture cache (read only)

Local

Registers

Care about these when optimizing - not to begin with

Global memory

400-600 cycles latency!

Shared memory fast temporary storage

Coalesce memory access!

Continuous Aligned on power of 2 boundary Addressing follows thread numbering

Use shared memory for reorganizing data for coalescing!

Using shared memory to reduce number of global memory accesses

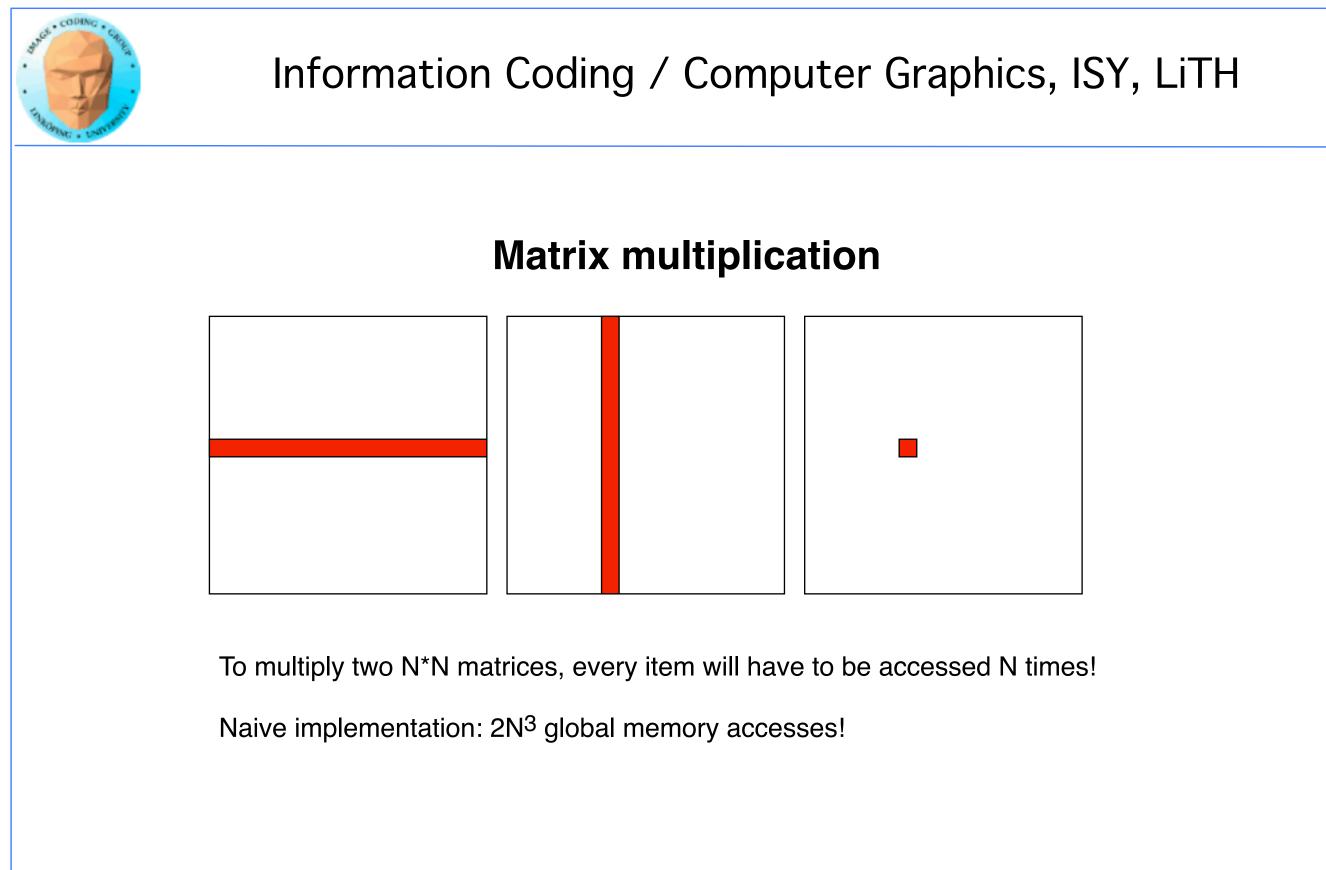
Read blocks of data to shared memory

Process

Write back as needed

Shared memory as "manual cache"

Example: Matrix multiplication

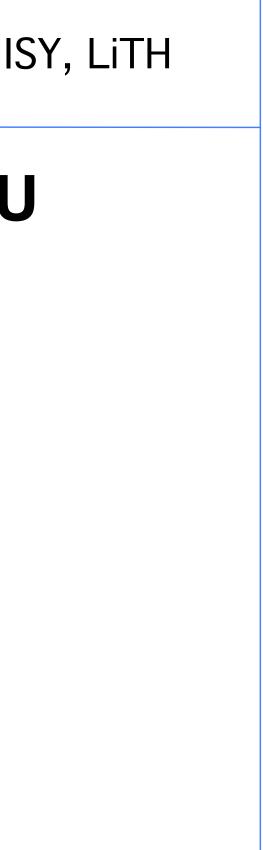


Matrix multiplication on CPU

Simple triple "for" loop

```
void MatrixMultCPU(float *a, float *b, float *c, int theSize)
{
    int sum, i, j, k;

    // For every destination element
    for(i = 0; i < theSize; i++)
    for(j = 0; j < theSize; j++)
    {
      sum = 0;
      // Sum along a row in a and a column in b
      for(k = 0; k < theSize; k++)
      sum = sum + (a[i*theSize + k]*b[k*theSize + j]);
      c[i*theSize + j] = sum;
    }
}</pre>
```



Naive GPU version

Replace outer loops by thread indices

```
__global__ void MatrixMultNaive(float *a, float *b, float *c, int
theSize)
{
int sum, i, j, k;
 i = blockIdx.x * blockDim.x + threadIdx.x;
 j = blockIdx.y * blockDim.y + threadIdx.y;
 // For every destination element
sum = 0;
 // Sum along a row in a and a column in b
 for(k = 0; k < \text{theSize}; k++)
  sum = sum + (a[i*theSize + k]*b[k*theSize + j]);
 c[i*theSize + j] = sum;
}
```


Naive GPU version inefficient

Every thread makes 2N global memory accesses!

Can be significantly reduced using shared memory

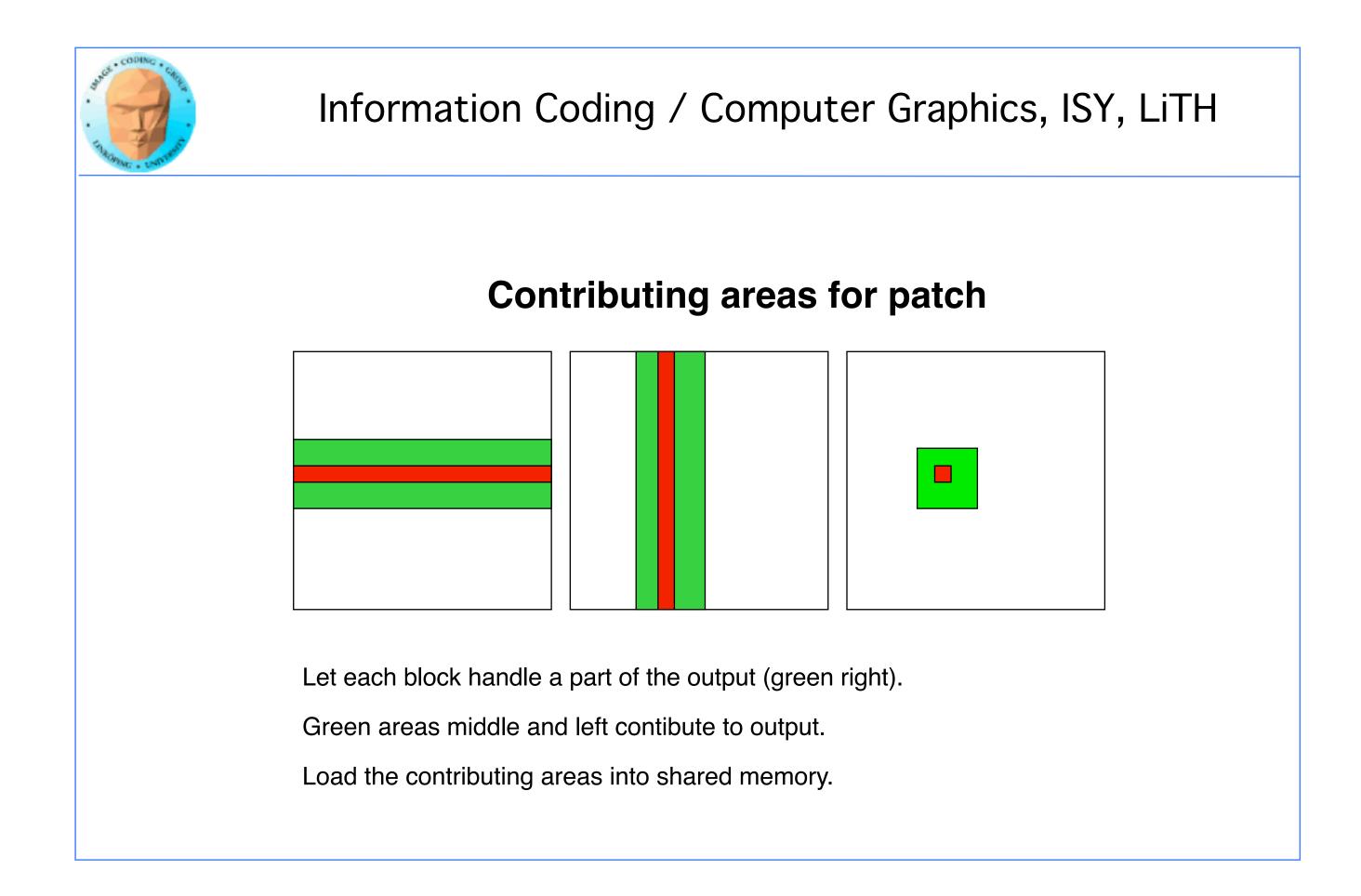
Optimized GPU version

Data is split into patches.

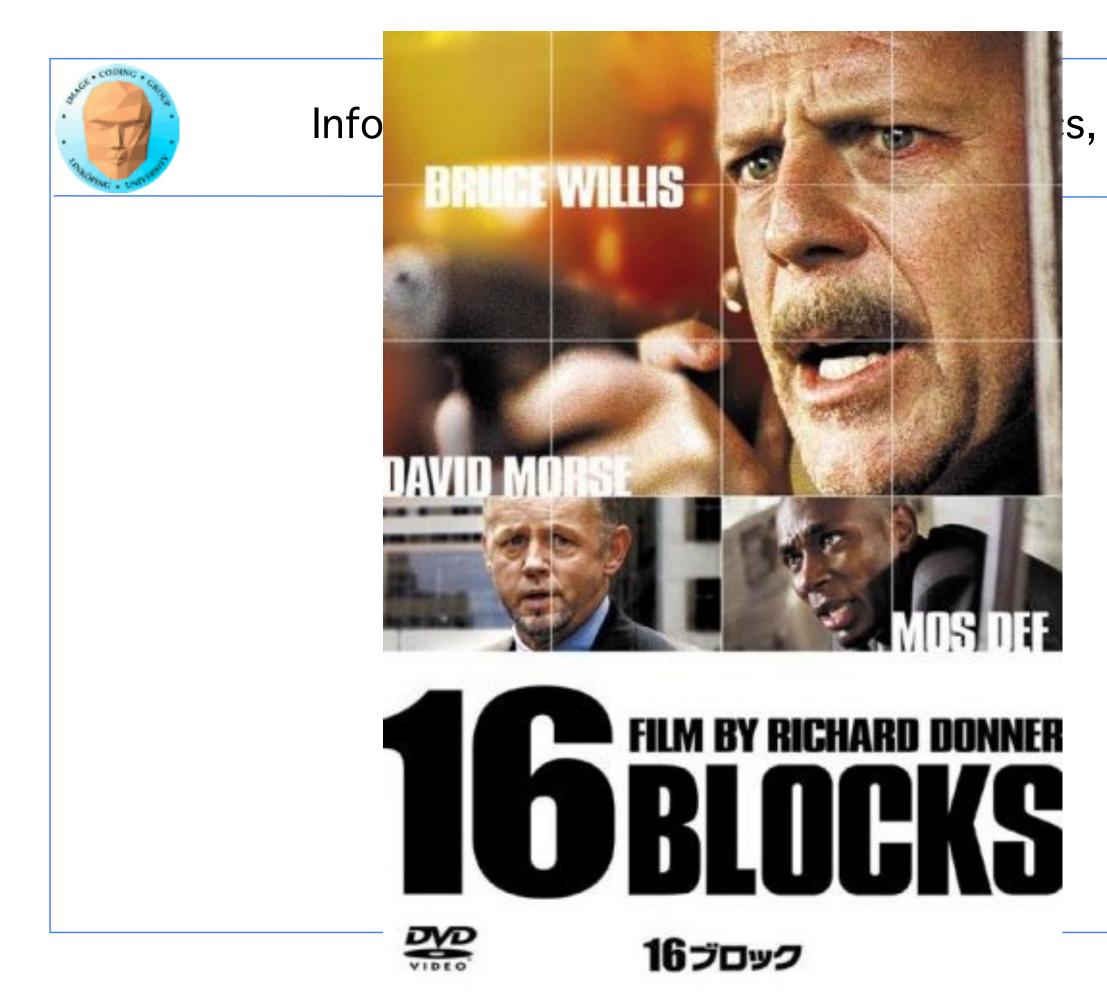
Every element accesses data in all the patches in the same row for A, column for B

Each output patch is mapped to one block.

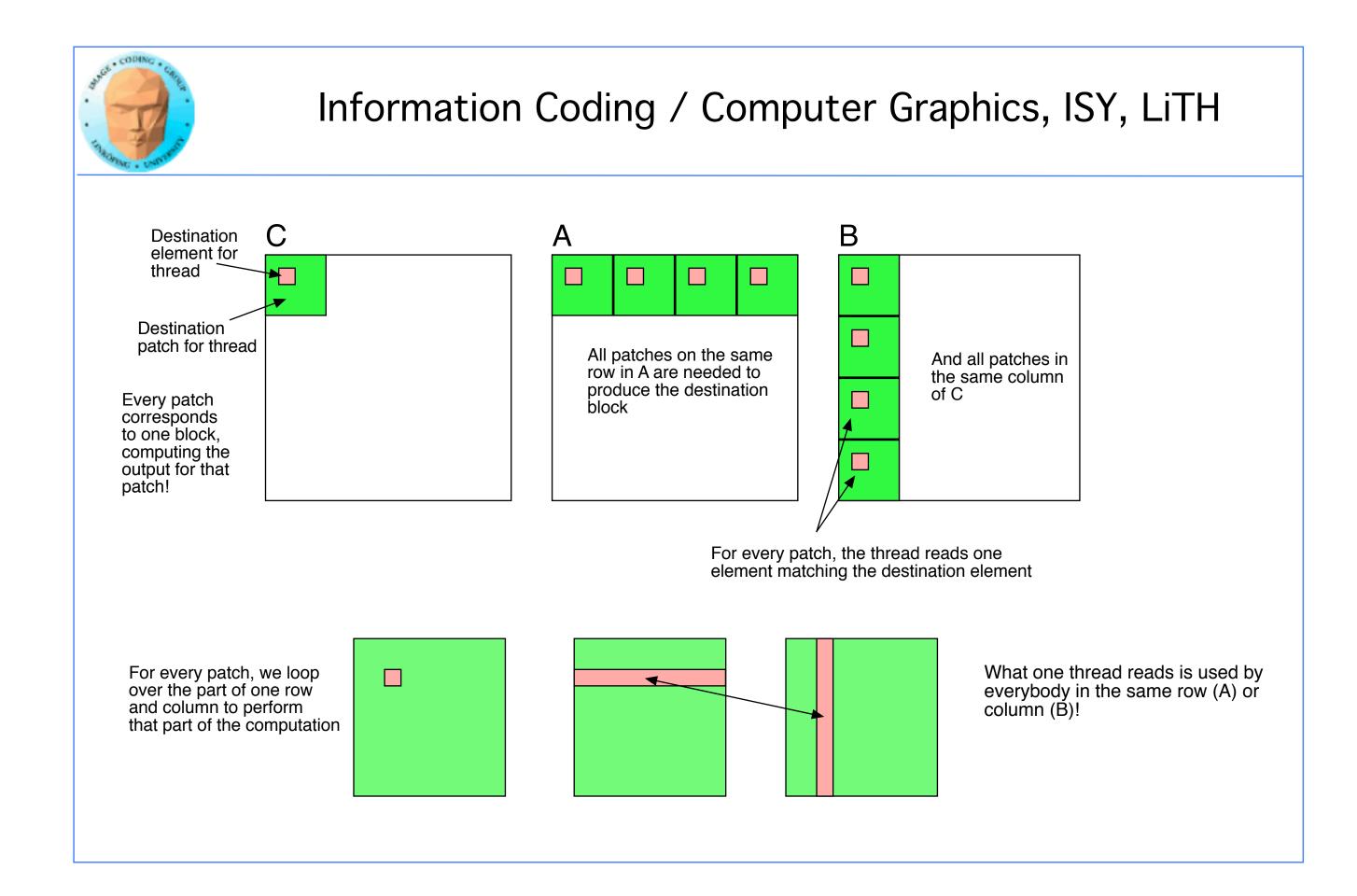
For every such block: Every thread reads *one* element to shared memory Then loop over the appropriate row and column for the block

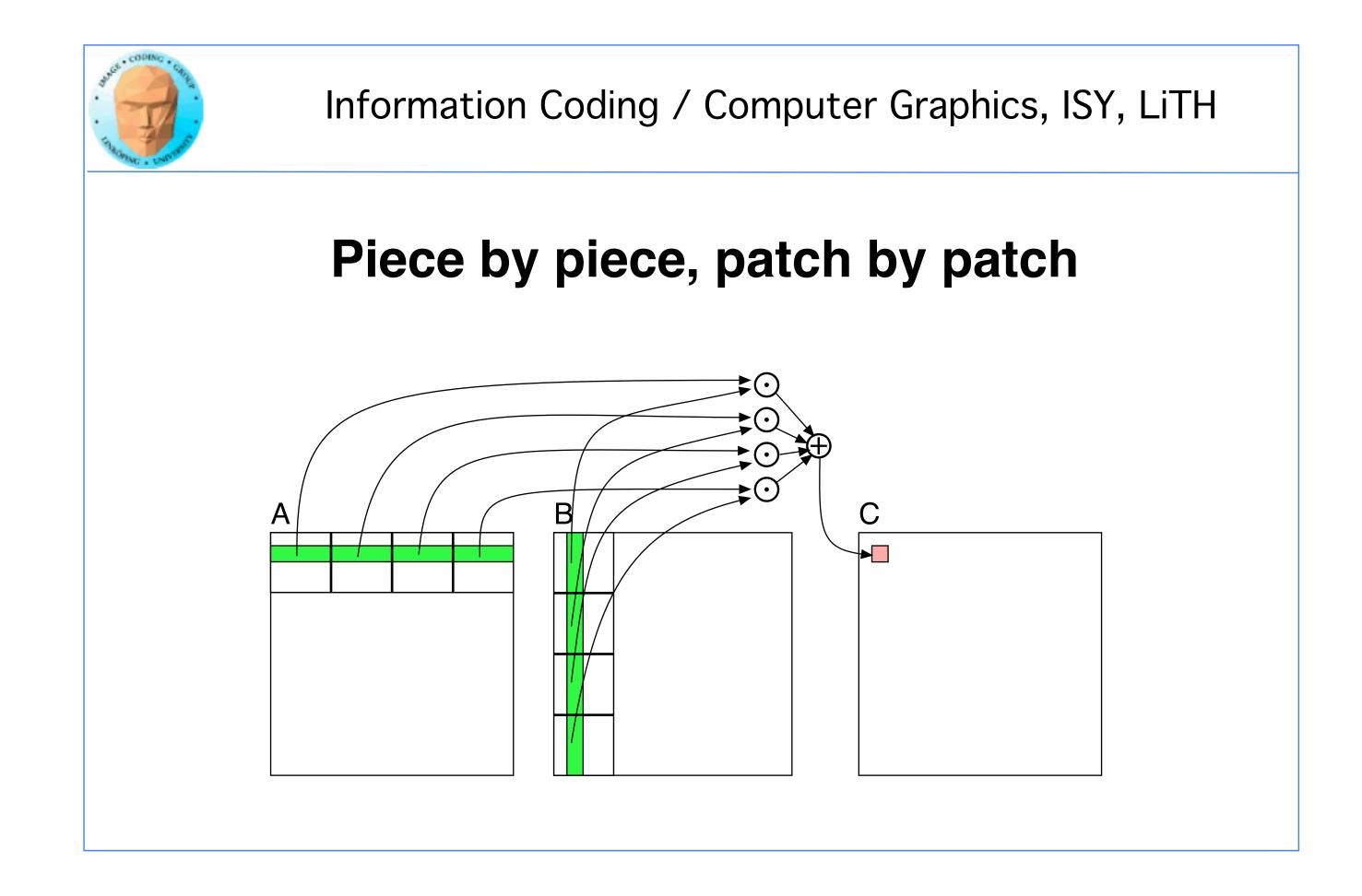


Example: 16 blocks



s, ISY, LiTH





Optimized GPU version

Loop over patches (1D)

Allocate shared memory

Copy one element to shared memory

Loop over row/column in patch, compute, accumulate result for one element

Write result to global memory

```
__global__ void MatrixMultOptimized( float* A, float* B, float* C, int theSize)
int k, b, gx, gy, gi, bx, by, gia, gib, li;
// Global index for thread
 gx = blockIdx.x * blockDim.x + threadIdx.x;
qy = blockIdx.y * blockDim.y + threadIdx.y;
qi = qy^* the Size + qx;
// Local index for thread
li = threadIdx.y*blockDim.y + threadIdx.x;
```

```
float sum = 0.0;
// for all source blocks
for (b = 0; b < \text{gridDim.x}; b++) // We assume that gridDimx and y are equal
ł
 __shared__ float As[BLOCKSIZE*BLOCKSIZE];
 __shared__ float Bs[BLOCKSIZE*BLOCKSIZE];
 bx = blockDim.x*b + threadIdx.x; // modified x for A
 by = blockDim.y*b + threadIdx.y; // modified y for B
 gia = gy*theSize+bx; // resulting global index into A
 gib = by*theSize+qx; // resulting global index into B
 As[li] = A[gia];
 Bs[li] = B[qib];
   ____syncthreads(); // Synchronize to make sure all data is loaded
 // Loop in block
 for (k = 0; k < blockDim.x; k++)
  sum += As[threadIdx.y*blockDim.x + k] * Bs[k*blockDim.x + threadIdx.x];
 ___syncthreads(); // Synch again so nobody starts loading data before all finish
C[gi] = sum;
```


5-10 times faster? So what did I do?

- Decent number of threads and blocks
- Use shared memory for temporary storage
- All threads read ONE item, but use many!
 - Synchronize
- Even more for CPU compared to single-thread CPU :)

Modified computing model:

Upload data to global GPU memory

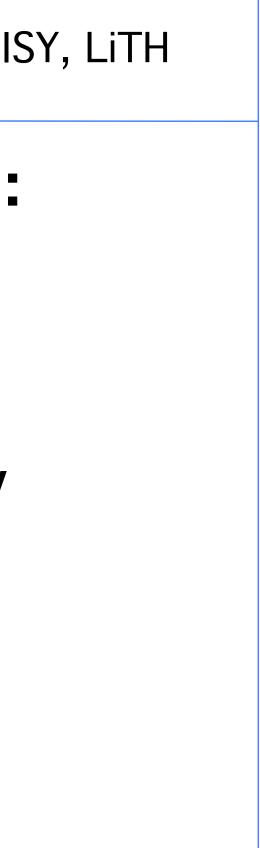
For a number of parts, do:

Upload partial data to shared memory

Process partial data

Write partial data to global memory

Download result to host



Synchronization

As soon as you do something where one part of a computation depends on a result from another thread, you must synchronize!

_syncthreads()

Typical implementation:

- Read to shared memory
 - __syncthreads()
- Process shared memory
 - __synchthreads()
- Write result to global memory

Synchronization

Really wonderfully simple - everybody are doing the same thing anyway!

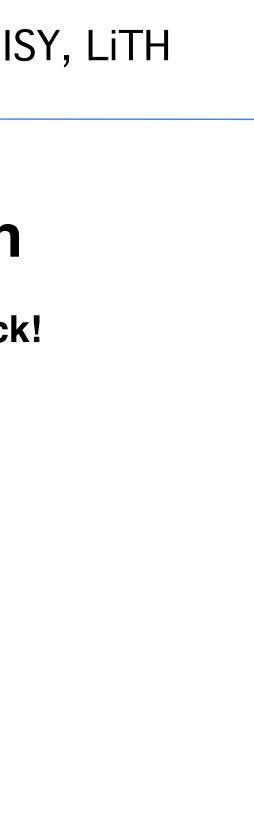
Synchronization simply means "wait until everybody are done with this part"

Deadlocks can still occur!

Limitation of synchronization

Synchronization can only be done within a block! No synchronization between blocks!

Why is this a necessary limitation?



Limitation of synchronization

Synchronization can only be done within a block! No synchronization between blocks!

Why is this a necessary limitation?

Because all blocks are not active at the same time! Blocks are queued until an SM is free!

Limitation of synchronization

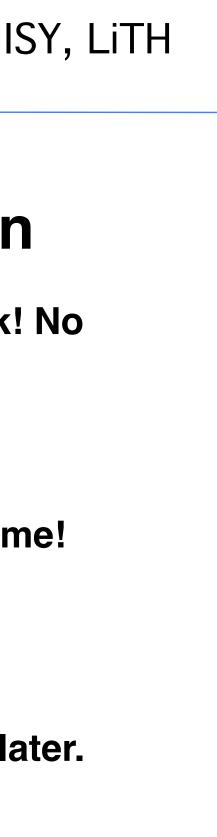
Synchronization can only be done within a block! No synchronization between blocks!

Why is this a necessary limitation?

Because all blocks are not active at the same time! Blocks are queued until an SM is free!

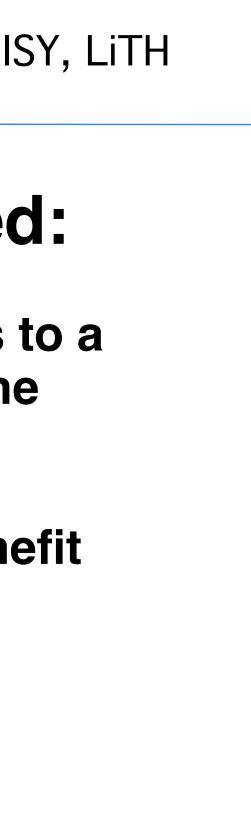
But I must synchronize globally!

Answer: Run multiple kernel runs! More on this later.



Lecture questions revisited:

- 1. What concept in CUDA corresponds to a SM (streaming multiprocessor) in the architecture?
 - 2. How does matrix multiplication benefit from using shared memory?
 - 3. When do you typically need to synchronize threads?



Summary:

- Make threads and blocks to make the hardware occupied
 - Access data depending on thread/block number
 - Memory accesses are expensive!
 - Shared memory is fast
 - Make threads within a block cooperate
 - Synchronize

