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Timeline for CPUs!
!

80’s: CPU and system same speed. Zero wait states.!
!

1993: CPUs faster than the rest of the system. Rapid 
raise of frequency.!

!
Late 90’s to present: Multi-CPU systems, multi-core 

CPUs.!
!

CPUs are still improving, but going for higher frequency 
is not as obvious as before.
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Meanwhile, at the graphics dept!
!

80’s: Hardware sprites. Push pixels with low-level code.!
!

1993: Textured 3D games: Wolf3D, Doom.!
!

Early 90’s: Professional 3D boards.!
!

1996: 3dfx Voodoo1!!
!

2001: Programmable shaders.!
!

2006: G80, unified architecture. CUDA.!
!

2009: OpenCL.!
!

2010: Fermi architecture!
!

2012-2018: Kepler, Maxwell, Pascal, Turing...
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How about 2005-2016?
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But is this a fair comparison?!
Let us compare apples with apples:!

GFLOPS for both!

! GPU !CPU!
1995: !0.001 !0.09!
2005: !40 !5.6!
2011: !2488 !91!
2015: !7000 !176!
2016: !16380 !400-700*!
2017: !110000** !4000** !

(Various sources)

* Theoretical, 16 cores!
** Claimed by NVidia, Titan V!
*** Theoretical peak performance

Gets complicated here:!
CUDA vs tensor cores
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1961: !8.3 trillion!
1984: !42 million!!
1997: !42000 (CPU cluster)!
2000: !836-1300!
2007: !52!
2012: !0.73 (AMD 7970)!
2013: !0.22 (PS4)!
2015: !0.08 (Radeon R9 295)

How about economy: dollar per GFLOPS?

(Wikipedia)
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The GFLOPS race
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The bandwidth 
race
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AMD took the lead in 
single precision 
while NVidia was 

chasing for double 
with Fermi

Another graph, including ATI/AMD
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...up to today (well, 2016).
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But in particular: SIMD architecture

How is this possible?!
!

Area use:
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Flynn's taxonomy
SISD!

Single instruction, single data!
Old single-core systems

SIMD!
Single instruction, multiple data!

GPUs, vector processors

MISD!
Multiple instruction, single data!

Multiple for redundance

MIMD!
Multiple instruction, multiple data!

Multi-core CPUs

Plus SIMT, single instruction, multiple threads
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SIMD!
Single instruction, multiple data!

Simplifies instruction handling. All cores get the same 
instruction.!

Excellent for operations where one operation must be made on 
many data elements.!

!
Is that so common? Yes!!

Data best in stored arrays.
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Data Oriented Programming!
DOP optimizes for performance.!

Data structures selected to fit the computations,!
instead of the programmer!!

!
Optimize for the end user instead for the programmer!!

!
Popular in the game industry - why not elsewhere?
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SIMT - Single Instruction, Multiple Thread!
A variant of SIMD.!

Parallelism expressed as threads.!
A programming model, but also demands that the hardware can 

handle threads very fast.!
Threads dependent - executed in a SIMD processor!!

!
So, why does SIMT fit a graphics processor so well?
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Is this important?!
!

- Extra hardware needed!
- Different programming!

- Only benefits big problems with good parallization 
possibilities!

!
but!
!

+ Great for all image processing problems!
+ Good for many other problems (sorting, FFT...)!

+ Key component in the current deep learning 
revolution!
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Deep learning!
!

Learning systems based on very large neural 
networks.!

!
Good problem for GPUs!!

!
Remarkable results! Big trend in computer vision and 

other fields.!
!

GPUs opened the door!

41(81)41(81)



Information Coding / Computer Graphics, ISY, LiTH

Why did GPUs get so much performance?!
!

Early problem with large amounts of data. (Complex geometry, 
millions of output pixels.)!

!
Graphics pipeline designed for parallelism!!

!
Hiding memory latency by parallelism!

!
Volume. 3D graphics boards central component in game 

industry. Everybody wants one!!
!

New games need new impressive features. Many important 
advancements started as game features.
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Must process many pixels fast!!
!

Early GPUs could draw textured, shaded triangles much faster 
than the CPU.
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Must process many pixels fast!!
!

Early GPUs could draw textured, shaded triangles much faster 
than the CPU.!

!
Must do matrix multiplication and divisions fast.!

!
Next generation could transform vertices and normalize 

vectors.
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Must process many pixels fast!!
!

Early GPUs could draw textured, shaded triangles much faster 
than the CPU.!

!
Must do matrix multiplication and divisions fast.!

!
Next generation could transform vertices and normalize 

vectors.!
!

Must have programmable parts.!
!

This was added to make Phong shading and bump mapping.
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Must process many pixels fast!!
!

Early GPUs could draw textured, shaded triangles much faster 
than the CPU.!

!
Must do matrix multiplication and divisions fast.!

!
Next generation could transform vertices and normalize 

vectors.!
!

Must have programmable parts.!
!

This was added to make Phong shading and bump mapping.!
!

Must work in floating-point!!
!

This was for light effects, HDR.
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So a GPU should!
!

• process vertices, many in parallel, applying the same 
transformations on each!

!
• process pixels (fragments) in parallel, applying the 

same color/light/texture calculations on each!
!

SIMD friendly problem!!
!

Less control, control many calculations instead of one
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A different kind of threads!
!

SIMD threads, all run the same program!
!

Group-wise, they execute in parallel, SIMD-style!
!
!

Made for graphics operations: Shader threads calculate 
one pixel or one vertex!

!
CUDA/OpenCL threads may calculate anything, but 

typically one part of the output - in order
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