
Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

Timeline for CPUs!
!

80’s: CPU and system same speed. Zero wait states.!
!

1993: CPUs faster than the rest of the system. Rapid
raise of frequency.!

!
Late 90’s to present: Multi-CPU systems, multi-core

CPUs.!
!

CPUs are still improving, but going for higher frequency
is not as obvious as before.

23(81)

23(81)

Information Coding / Computer Graphics, ISY, LiTH

Meanwhile, at the graphics dept!
!

80’s: Hardware sprites. Push pixels with low-level code.!
!

1993: Textured 3D games: Wolf3D, Doom.!
!

Early 90’s: Professional 3D boards.!
!

1996: 3dfx Voodoo1!!
!

2001: Programmable shaders.!
!

2006: G80, unified architecture. CUDA.!
!

2009: OpenCL.!
!

2010: Fermi architecture!
!

2012-2018: Kepler, Maxwell, Pascal, Turing...

24(81)24(81)

Information Coding / Computer Graphics, ISY, LiTH

32x

40x

40x

400x

25(81)25(81)

Information Coding / Computer Graphics, ISY, LiTH

32x

40x

40x

400x

8250x

700x

40000x

63x

128x

26(81)26(81)

Information Coding / Computer Graphics, ISY, LiTH

How about 2005-2016?

1.18x

1.67x

7.75x

20x

x cores?

2016

4.0
3.2
?

8000

1.25x

2.67x

?

40x

27(81)27(81)

Information Coding / Computer Graphics, ISY, LiTH

18x

?

62x

17x

12x

1.18x

1.67x

7.75x

20x

x cores?

2016

4.0
3.2
?

8000

128

?
16380
512

8000

38x

?

409x

27x

31x

1.25x

2.67x

?

40x

28(81)28(81)

Information Coding / Computer Graphics, ISY, LiTH

But is this a fair comparison?!
Let us compare apples with apples:!

GFLOPS for both!

! GPU !CPU!
1995: !0.001 !0.09!
2005: !40 !5.6!
2011: !2488 !91!
2015: !7000 !176!
2016: !16380 !400-700*!
2017: !110000** !4000** !

(Various sources)

* Theoretical, 16 cores!
** Claimed by NVidia, Titan V!
*** Theoretical peak performance

Gets complicated here:!
CUDA vs tensor cores

29(81)29(81)

Information Coding / Computer Graphics, ISY, LiTH

1961: !8.3 trillion!
1984: !42 million!!
1997: !42000 (CPU cluster)!
2000: !836-1300!
2007: !52!
2012: !0.73 (AMD 7970)!
2013: !0.22 (PS4)!
2015: !0.08 (Radeon R9 295)

How about economy: dollar per GFLOPS?

(Wikipedia)

30(81)30(81)

Information Coding / Computer Graphics, ISY, LiTH

The GFLOPS race

31(81)31(81)

Information Coding / Computer Graphics, ISY, LiTH

The bandwidth
race

32(81)32(81)

Information Coding / Computer Graphics, ISY, LiTH

AMD took the lead in
single precision
while NVidia was

chasing for double
with Fermi

Another graph, including ATI/AMD

33(81)33(81)

Information Coding / Computer Graphics, ISY, LiTH

...up to today (well, 2016).

34(81)34(81)

Information Coding / Computer Graphics, ISY, LiTH

But in particular: SIMD architecture

How is this possible?!
!

Area use:

35(81)35(81)

Information Coding / Computer Graphics, ISY, LiTH

Flynn's taxonomy
SISD!

Single instruction, single data!
Old single-core systems

SIMD!
Single instruction, multiple data!

GPUs, vector processors

MISD!
Multiple instruction, single data!

Multiple for redundance

MIMD!
Multiple instruction, multiple data!

Multi-core CPUs

Plus SIMT, single instruction, multiple threads

36(81)36(81)

Information Coding / Computer Graphics, ISY, LiTH

SIMD!
Single instruction, multiple data!

Simplifies instruction handling. All cores get the same
instruction.!

Excellent for operations where one operation must be made on
many data elements.!

!
Is that so common? Yes!!

Data best in stored arrays.

37(81)37(81)

Information Coding / Computer Graphics, ISY, LiTH

Data Oriented Programming!
DOP optimizes for performance.!

Data structures selected to fit the computations,!
instead of the programmer!!

!
Optimize for the end user instead for the programmer!!

!
Popular in the game industry - why not elsewhere?

38(81)38(81)

Information Coding / Computer Graphics, ISY, LiTH

SIMT - Single Instruction, Multiple Thread!
A variant of SIMD.!

Parallelism expressed as threads.!
A programming model, but also demands that the hardware can

handle threads very fast.!
Threads dependent - executed in a SIMD processor!!

!
So, why does SIMT fit a graphics processor so well?

39(81)39(81)

Information Coding / Computer Graphics, ISY, LiTH

Is this important?!
!

- Extra hardware needed!
- Different programming!

- Only benefits big problems with good parallization
possibilities!

!
but!
!

+ Great for all image processing problems!
+ Good for many other problems (sorting, FFT...)!

+ Key component in the current deep learning
revolution!

40(81)40(81)

Information Coding / Computer Graphics, ISY, LiTH

Deep learning!
!

Learning systems based on very large neural
networks.!

!
Good problem for GPUs!!

!
Remarkable results! Big trend in computer vision and

other fields.!
!

GPUs opened the door!

41(81)41(81)

Information Coding / Computer Graphics, ISY, LiTH

Why did GPUs get so much performance?!
!

Early problem with large amounts of data. (Complex geometry,
millions of output pixels.)!

!
Graphics pipeline designed for parallelism!!

!
Hiding memory latency by parallelism!

!
Volume. 3D graphics boards central component in game

industry. Everybody wants one!!
!

New games need new impressive features. Many important
advancements started as game features.

42(81)42(81)

Information Coding / Computer Graphics, ISY, LiTH

Must process many pixels fast!!
!

Early GPUs could draw textured, shaded triangles much faster
than the CPU.

43(81)43(81)

Information Coding / Computer Graphics, ISY, LiTH

Must process many pixels fast!!
!

Early GPUs could draw textured, shaded triangles much faster
than the CPU.!

!
Must do matrix multiplication and divisions fast.!

!
Next generation could transform vertices and normalize

vectors.

44(81)44(81)

Information Coding / Computer Graphics, ISY, LiTH

Must process many pixels fast!!
!

Early GPUs could draw textured, shaded triangles much faster
than the CPU.!

!
Must do matrix multiplication and divisions fast.!

!
Next generation could transform vertices and normalize

vectors.!
!

Must have programmable parts.!
!

This was added to make Phong shading and bump mapping.

45(81)45(81)

Information Coding / Computer Graphics, ISY, LiTH

Must process many pixels fast!!
!

Early GPUs could draw textured, shaded triangles much faster
than the CPU.!

!
Must do matrix multiplication and divisions fast.!

!
Next generation could transform vertices and normalize

vectors.!
!

Must have programmable parts.!
!

This was added to make Phong shading and bump mapping.!
!

Must work in floating-point!!
!

This was for light effects, HDR.

46(81)46(81)

Information Coding / Computer Graphics, ISY, LiTH

So a GPU should!
!

• process vertices, many in parallel, applying the same
transformations on each!

!
• process pixels (fragments) in parallel, applying the

same color/light/texture calculations on each!
!

SIMD friendly problem!!
!

Less control, control many calculations instead of one

47(81)47(81)

Information Coding / Computer Graphics, ISY, LiTH

A different kind of threads!
!

SIMD threads, all run the same program!
!

Group-wise, they execute in parallel, SIMD-style!
!
!

Made for graphics operations: Shader threads calculate
one pixel or one vertex!

!
CUDA/OpenCL threads may calculate anything, but

typically one part of the output - in order

48(81)48(81)

