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Timeline for CPUs

80’s: CPU and system same speed. Zero wait states.

1993: CPUs faster than the rest of the system. Rapid
raise of frequency.

Late 90’s to present: Multi-CPU systems, multi-core
CPUs.

CPUs are still improving, but going for higher frequency
Is not as obvious as before.
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Meanwhile, at the graphics dept
80’s: Hardware sprites. Push pixels with low-level code.
1993: Textured 3D games: Wolf3D, Doom.

Early 90’s: Professional 3D boards.

1996: 3dfx Voodoo1!

2001: Programmable shaders.

2006: G80, unified architecture. CUDA
2009: OpenCL.

2010: Fermi architecture

2012: Kepler architecture
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T T eees [ 2005

Memory Frequency (GHz) 40x
Bus Bandwidth (GB/sec) A0x

Hard Disk Size (GB) 400x
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T Teees [ 2005

Memory Frequency (GHz) 40x
Bus Bandwidth (GB/sec)

40x
Pixel Fill Rate (GPixels/sec) .0004 3.3 8250x
Vertex Rate (GVerts/sec) .0005 .35 700x
Graphics flops (GFlops/sec) .001 40000x
Graphics Bandwidth (GB/sec) 3 63x

Frame Buffer Size (MB) 2 128x
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How about 2005-20167

CPU Frequency (GHz)

Memory Frequency (GHz)

Bus Bandwidth (GB/sec)
Hard Disk Size (GB)

2016

1.18x 4.0 1.25x

X cores?

1.67X 3.2 2.67X
?

8000 [l

“‘{‘\““‘\““‘\““‘\

7.75X
20X
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- |05

- 2016
Bus Bandwidth (GB/sec) | 4 | = |REEN ?
Vertex Rate (GVerts/sec) 35 ? ?
Graphics flops (GFlops/sec) 62x 409x
Graphics Bandwidth (GB/sec) | 17x 27X

25(68)




- COMNg, =
K 4,
- ), ®
- -“
* - -
. -
“
N 4
£ T

Information Coding / Computer Graphics, ISY, LiTH

But is this a fair comparison?
Let us compare apples with apples:

GFLOPS for both!
GPU CPU
1995: 0.001 0.09
2005: 40 5.6
2011: 2488 91
2015: 7000 176
2016: 16380 400-700*

* Theoretical, 16 cores

(Various sources)
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How about economy: dollar per GFLOPS?

1961: 8.3 trillion

1984 42 million

1997: 42000 (CPU cluster)
2000: 836-1300

2007 52

2012: 0.73 (AMD 7970)
2013: 0.22 (PS4)

2015: 0.08 (Radeon R9 295)

(Wikipedia)
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Theoretical GFLOP/s T h e G F L o P S race
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Theoretical GB/s
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Another graph, including ATIVAMD

- Peak theoretical perfomance comparision between GPUs and CPUs
Y AMD took the lead in
Nvidia single precision
2500 - i while NVidia was
___— chasing for double
| with Fermi
2000 7

GFLOP/s
o
Q
<

1000 -

500 |- /// '
- — l _‘_r_'_——'_'_'_
120

SO = e |
60 80 100

0
20 40
Months since januari 2000

30(68)



Information Coding / Computer Graphics, ISY, LiTH

...up to today.

Peak-Double-Precision-Flops{GFLOPs)
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How is this possible?

Area use:

CPU

P S g g gE— g— E— g—

b——rod o —— -} } ]

S G S ) S by GRS —

D S I —

] B B B ] B Bl Bt

_—ll—)——— —y —y — ———— ——

b—l

P B Bl Bl B B B B

] B Bl B ] B Bl Bl

] Bl Bl Bl B Bl Bl B

(N [ SNNNNN [ GUN [ TNy SUS— —  — S—

But in particular: SIMD architecture
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Flynn's taxonomy

Single instruction, single data | Multiple instruction, single data
Old single-core systems Multiple for redundance
Single instruction, multiple data | Multiple instruction, multiple data

GPUs, vector processors Multi-core CPUs

Plus SIMT, single instruction, multiple threads
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SIMD

Single instruction, multiple data
Simplifies instruction handling. All cores get the same
Instruction.
Excellent for operations where one operation must be made on
many data elements.

Is that so common? Yes!
Data best in stored arrays.
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Data Oriented Programming

DOP optimizes for performance.
Data structures selected to fit the computations,
instead of the programmer!

Optimize for the end user instead for the programmer!

Popular in the game industry - why not elsewhere?
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SIMT - Single Instruction, Multiple Thread
A variant of SIMD.
Parallelism expressed as threads.
A programming model, but also demands that the hardware can
handle threads very fast.
Threads dependent - executed in a SIMD processor!

So, why does SIMT fit a graphics processor so well?
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Why did GPUs get so much performance?

Early problem with large amounts of data. (Complex geometry,
millions of output pixels.)

Graphics pipeline designed for parallelism!
Hiding memory latency by parallelism

Volume. 3D graphics boards central component in game
industry. Everybody wants one!

New games need new impressive features. Many important
advancements started as game features.
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Must process many pixels fast! C \ = \

Early GPUs could draw textured, shaded triangles much faster

than the CPU. i
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Must process many pixels fast! ﬂ

Early GPUs could draw textured, shaded triangles much faster
than the CPU.

Must do matrix multiplication and divisions fast. Q

Next generation could transform vertices and normalize
vectors.
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Must process many pixels fast! ﬂ

Early GPUs could draw textured, shaded triangles much faster
than the CPU.

Must do matrix multiplication and divisions fast. Q

Next generation could transform vertices and normalize
vectors.

Must have programmable parts.

This was added to make Phong shading and bump mapping.
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Must process many pixels fast! Q

Early GPUs could draw textured, shaded triangles much faster
than the CPU.

Must do matrix multiplication and divisions fast. Q

Next generation could transform vertices and normalize
vectors.

Must have programmable parts.
This was added to make Phong shading and bump mapping.
Must work in floating-point!

This was for light effects, HDR.
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So a GPU should

* process vertices, many in parallel, applying the same
transformations on each

- process pixels (fragments) in parallel, applying the
same color/light/texture calculations on each

SIMD friendly problem!

Less control, control many calculations instead of one
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A different kind of threads

SIMD threads, all run the same program
Group-wise, they execute in parallel, SIMD-style
Made for graphics operations: Shader threads calculate
one pixel or one vertex

CUDA/OpenCL threads may calculate anything, but
typically one part of the output - in order
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The main tasks in rendering graphics:

One thread per vertex
Same operations, same kernel, different data

Q=

One thread per pixel (fragment)
Same operations, same kernel, different data
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The 3D pipeline in the GPU

Low-level operations from vertices to pixel data

Primitives,
connectivity

Vertex coordinates Ve rtex Transformed P I‘i m itive Triangles etc
and normal vectors processor coordinates aSSGmbly

Clip, cull
Texture
Fragment {} {}
operations
/+color texture Fragment /pixe| coord Raster
Frame buffer [\ processor [\ conversion
operations
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