g Information Coding / Computer Graphics, ISY, LiTH
4

Timeline for CPUs

80’s: CPU and system same speed. Zero wait states.

1993: CPUs faster than the rest of the system. Rapid
raise of frequency.

Late 90’s to present: Multi-CPU systems, multi-core
CPUs.

CPUs are still improving, but going for higher frequency
Is not as obvious as before.

20(68)

Information Coding / Computer Graphics, ISY, LiTH

Meanwhile, at the graphics dept
80’s: Hardware sprites. Push pixels with low-level code.
1993: Textured 3D games: Wolf3D, Doom.

Early 90’s: Professional 3D boards.

1996: 3dfx Voodoo1!

2001: Programmable shaders.

2006: G80, unified architecture. CUDA
2009: OpenCL.

2010: Fermi architecture

2012: Kepler architecture

21(68)

“g
| ‘% Information Coding / Computer Graphics, ISY, LiTH
%h\cl

T T eees [2005

Memory Frequency (GHz) 40x
Bus Bandwidth (GB/sec) A0x

Hard Disk Size (GB) 400x

22(68)

. COMNG

ry (‘g
| % Information Coding / Computer Graphics, ISY, LiTH
%h\cl

T Teees [2005

Memory Frequency (GHz) 40x
Bus Bandwidth (GB/sec)

40x
Pixel Fill Rate (GPixels/sec) .0004 3.3 8250x
Vertex Rate (GVerts/sec) .0005 .35 700x
Graphics flops (GFlops/sec) .001 40000x
Graphics Bandwidth (GB/sec) 3 63x

Frame Buffer Size (MB) 2 128x

23(68)

Information Coding / Computer Graphics, ISY, LiTH

How about 2005-20167

CPU Frequency (GHz)

Memory Frequency (GHz)

Bus Bandwidth (GB/sec)
Hard Disk Size (GB)

2016

1.18x 4.0 1.25x

X cores?

1.67X 3.2 2.67X
?

8000 [l

“‘{‘\““‘\““‘\““‘\

7.75X
20X

24(68)

,.%'

‘g Information Coding / Computer Graphics, ISY, LiTH
o

- |05

- 2016
Bus Bandwidth (GB/sec) | 4 | = |REEN ?
Vertex Rate (GVerts/sec) 35 ? ?
Graphics flops (GFlops/sec) 62x 409x
Graphics Bandwidth (GB/sec) | 17x 27X

25(68)

- COMNg, =
K 4,
-), ®
- -“
* - -
. -
“
N 4
£ T

Information Coding / Computer Graphics, ISY, LiTH

But is this a fair comparison?
Let us compare apples with apples:

GFLOPS for both!
GPU CPU
1995: 0.001 0.09
2005: 40 5.6
2011: 2488 91
2015: 7000 176
2016: 16380 400-700*

* Theoretical, 16 cores

(Various sources)

26(68)

12} Information Coding / Computer Graphics, ISY, LiTH

“
.....

How about economy: dollar per GFLOPS?

1961: 8.3 trillion

1984 42 million

1997: 42000 (CPU cluster)
2000: 836-1300

2007 52

2012: 0.73 (AMD 7970)
2013: 0.22 (PS4)

2015: 0.08 (Radeon R9 295)

(Wikipedia)

27(68)

Information Coding / Computer Graphics, ISY, LiTH

Theoretical GFLOP/s T h e G F L o P S race

5750
5500
5250
5000

4750
4500 wsp=|ntel CPU Double Precision GeForce GTXTIT

NVIDIA GPU Single Precision
est==NVIDIA GPU Double Precision

4250 exgmm|ntel CPU Single Precision

4000

3750

3500

3250

3000 seForce GT

2750

2500

2250

2000

1750 GeForce GTX 580 Tesla K40

1500 seForce GTX 480 Tesla K20X

1250 T

1000 o Testa M2090
750 sereres Lol Tesla €2050
500 GeForce 7800-GT Tesla C1060
250 _GeForce 6800 Ultra Harpertown

0 Pentium 4
Apr-01 Sep-02 Jan-04 May-05 Oct-06 Feb-08

lvy Bridge

Woodcrest

Bloomfield Westmere
Jul-09 Nov-10 Apr-12 Aug-13 Dec-14

28(68)

Information Coding / Computer Graphics, ISY, LiTH

Theoretical GB/s

360

GeForce 780 Ti
330
300 an@un (P Tesla K
270 ====GeForce GPU

Tesla K20X
240 - s Tesla GPU

The bandwidth :o
race 180 GeForce GTX 480

150 GeForce GTX 280

GeForce GTX 680
Tesla M2090

Tesla C2050

120
GeForce 83800 GTX
90 Tesla C1060)
GeForce 7800 GTX ., vy Bridge
60 Sandy Bridse
Bloomfield
GeForce 6800 GT

30

Prescott Woodcrest

GeForce FX 5900 Westmere

0 - Harnertown
Northwood ' J J J

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

29(68)

*‘ Information Coding / Computer Graphics, ISY, LiTH

Another graph, including ATIVAMD

- Peak theoretical perfomance comparision between GPUs and CPUs
Y AMD took the lead in
Nvidia single precision
2500 - i while NVidia was
___— chasing for double
| with Fermi
2000 7

GFLOP/s
o
Q
<

1000 -

500 |- /// '
- — l _‘_r_'_——'_'_'_
120

SO = e |
60 80 100

0
20 40
Months since januari 2000

30(68)

Information Coding / Computer Graphics, ISY, LiTH

...up to today.

Peak-Double-Precision-Flops{GFLOPs)

6000
*-GPU

5000 -cPU

4000
3000
2000
1000

0
2006 2008 2010 2012 2014 2016 2018

31(68)

L
=
—
VI!
2
0
O
L
Q.
©
—
O
-
)
+J
D)
Q.
&
O
O
N
O)
=
S
O
O
C
O
+
(qV)
&
—
®)
y—
<

How is this possible?

Area use:

CPU

P S g g gE— g— E— g—

b——rod o —— -} }]

S G S) S by GRS —

D S I —

] B B B] B Bl Bt

_—ll—)——— —y —y — ———— ——

b—l

P B Bl Bl B B B B

] B Bl B] B Bl Bl

] Bl Bl Bl B Bl Bl B

(N [SNNNNN [GUN [TNy SUS— — — S—

But in particular: SIMD architecture

32(68)

g Information Coding / Computer Graphics, ISY, LiTH
4

Flynn's taxonomy

Single instruction, single data | Multiple instruction, single data
Old single-core systems Multiple for redundance
Single instruction, multiple data | Multiple instruction, multiple data

GPUs, vector processors Multi-core CPUs

Plus SIMT, single instruction, multiple threads

33(68)

..........

‘-d'&: Information Coding / Computer Graphics, ISY, LiTH
e

SIMD

Single instruction, multiple data
Simplifies instruction handling. All cores get the same
Instruction.
Excellent for operations where one operation must be made on
many data elements.

Is that so common? Yes!
Data best in stored arrays.

34(68)

"d’ﬁi Information Coding / Computer Graphics, ISY, LiTH
44

Data Oriented Programming

DOP optimizes for performance.
Data structures selected to fit the computations,
instead of the programmer!

Optimize for the end user instead for the programmer!

Popular in the game industry - why not elsewhere?

35(68)

d Information Coding / Computer Graphics, ISY, LiTH
e

“
4,
»'\r; « B

SIMT - Single Instruction, Multiple Thread
A variant of SIMD.
Parallelism expressed as threads.
A programming model, but also demands that the hardware can
handle threads very fast.
Threads dependent - executed in a SIMD processor!

So, why does SIMT fit a graphics processor so well?

36(68)

g : Information Coding / Computer Graphics, ISY, LiTH
P/

Why did GPUs get so much performance?

Early problem with large amounts of data. (Complex geometry,
millions of output pixels.)

Graphics pipeline designed for parallelism!
Hiding memory latency by parallelism

Volume. 3D graphics boards central component in game
industry. Everybody wants one!

New games need new impressive features. Many important
advancements started as game features.

37(68)

Information Coding / Computer Graphics, ISY, LiTH

Must process many pixels fast! C \ = \

Early GPUs could draw textured, shaded triangles much faster

than the CPU. i

38(68)

...........

‘-dh: Information Coding / Computer Graphics, ISY, LiTH
s

Must process many pixels fast! ﬂ

Early GPUs could draw textured, shaded triangles much faster
than the CPU.

Must do matrix multiplication and divisions fast. Q

Next generation could transform vertices and normalize
vectors.

39(68)

Jj Information Coding / Computer Graphics, ISY, LiTH
P/

Must process many pixels fast! ﬂ

Early GPUs could draw textured, shaded triangles much faster
than the CPU.

Must do matrix multiplication and divisions fast. Q

Next generation could transform vertices and normalize
vectors.

Must have programmable parts.

This was added to make Phong shading and bump mapping.

40(68)

1;) Information Coding / Computer Graphics, ISY, LiTH
44

Must process many pixels fast! Q

Early GPUs could draw textured, shaded triangles much faster
than the CPU.

Must do matrix multiplication and divisions fast. Q

Next generation could transform vertices and normalize
vectors.

Must have programmable parts.
This was added to make Phong shading and bump mapping.
Must work in floating-point!

This was for light effects, HDR.

41(68)

d Information Coding / Computer Graphics, ISY, LiTH
e

So a GPU should

* process vertices, many in parallel, applying the same
transformations on each

- process pixels (fragments) in parallel, applying the
same color/light/texture calculations on each

SIMD friendly problem!

Less control, control many calculations instead of one

42(68)

d Information Coding / Computer Graphics, ISY, LiTH
e

A different kind of threads

SIMD threads, all run the same program
Group-wise, they execute in parallel, SIMD-style
Made for graphics operations: Shader threads calculate
one pixel or one vertex

CUDA/OpenCL threads may calculate anything, but
typically one part of the output - in order

43(68)

ﬁ Information Coding / Computer Graphics, ISY, LiTH

The main tasks in rendering graphics:

One thread per vertex
Same operations, same kernel, different data

Q=

One thread per pixel (fragment)
Same operations, same kernel, different data

44(68)

Information Coding / Computer Graphics, ISY, LiTH

The 3D pipeline in the GPU

Low-level operations from vertices to pixel data

Primitives,
connectivity

Vertex coordinates Ve rtex Transformed P I‘i m itive Triangles etc
and normal vectors processor coordinates aSSGmbly

Clip, cull
Texture
Fragment {} {}
operations
/+color texture Fragment /pixe| coord Raster
Frame buffer [\ processor [\ conversion
operations

45(68)

