
Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

GPU Computing with fragment shaders!
!

”Classic GPGPU”!
!

Use graphics shaders for general-purpose
computing.!

!
Adapt your data and computing to fit the graphics

pipeline.!
!

Hot until CUDA arrived, now overshadowed by CUDA
and OpenCL.

41(87)

41(87)

Information Coding / Computer Graphics, ISY, LiTH

Why is classic GPGPU interesting?!
!

• Highly suited to all problems dealing with images,
computer vision, image coding etc!

!
• Parallelization ”comes natural”, you can’t avoid it and

good speedups are likely. Fewer pitfalls.!
!

• Highly optimized (for graphics performance).!
!

• Compatibility is vastly superior!!
!

• Very much easier to install!

42(87)42(87)

Information Coding / Computer Graphics, ISY, LiTH

So what is not so good?!
!

• Must map data to image data!
!

• Computing controlled by pixels in output image!
!

• No shared memory access!
!

However: OpenGL 4 adds much flexibility, moves closer to
CUDA and (especially) OpenCL. Writable textures, atomics,

synchronization...

43(87)43(87)

Information Coding / Computer Graphics, ISY, LiTH

The OpenGL pipeline

Vertex!
processorVertex coordinates!

and normal vectors
Primitive!
assembly

Primitives,!
connectivity

Triangles etc

Raster!
conversion

Clip, cull

Fragment!
processor Pixel coord

Fragment!
operations!
!
Frame buffer!
operations

+color, texture

Texture

Transformed!
coordinates

44(87)44(87)

Information Coding / Computer Graphics, ISY, LiTH

Vertex!
processor

Vertex coordinates!
and normal vectors

Transformed!
coordinates

Primitive!
assembly

Primitives,!
connectivity

Triangles etc

Raster!
conversion

Clip, cull

Fragment!
processor Pixel coord

Fragment!
operations!
!
Frame buffer!
operations

+color, texture

Texture

Out of these, three are
programmable!

45(87)45(87)

Information Coding / Computer Graphics, ISY, LiTH

Vertex!
processor

Vertex coordinates!
and normal vectors

Transformed!
coordinates

Primitive!
assembly

Primitives,!
connectivity

Triangles etc

Raster!
conversion

Clip, cull

Fragment!
processor Pixel coord

Fragment!
operations!
!
Frame buffer!
operations

+color, texture

Texture

But only one creates easily
accessible output data!

46(87)46(87)

Information Coding / Computer Graphics, ISY, LiTH

Model

World-to-view

coordinates
World

coordinates
View

coordinates
Projected
coordinates

Device
coordinates

TwRwRvTvPSdTd

transformation
Model-to-world
transformationProjection

transformation
Device
transformation

Typical OpenGL situation!
!

• Complex geometry!
• Many transformations!
• Perspective projection!

• Lighting and material calculations!
for the surfaces!

• Many texture accesses for interpolation and
supersampling

47(87)47(87)

Information Coding / Computer Graphics, ISY, LiTH

Typical GPU Computing with fragment shaders!
(also used in filtering in graphics):!

!
• Render to a single rectangle covering the entire

image buffer.!
• Use FBOs for effective feedback!

• Floating-point buffers!
• Ping-ponging, many pass with different shaders

Render image 1:1 Output

shader

48(87)48(87)

Information Coding / Computer Graphics, ISY, LiTH

Computing model!
!

• Array of input data = texture!
• Array of output data = resulting frame buffer!

• Computation kernel = shader!
• Computation = rendering!

• Feedback = switch between FBO’s or copy
frame buffer to texture

49(87)49(87)

Information Coding / Computer Graphics, ISY, LiTH

Computation = rendering!
!

Typical situation:!
!

• Texture and frame buffer same size!
• Render the polygon over the entire frame buffer

Texture Frame buffer

shader

50(87)50(87)

Information Coding / Computer Graphics, ISY, LiTH

Kernel = shader
Shaders are read and compiled to one or more program objects. A GPGPU application

can use several shaders in conjunction!!
!

Activate desired shader as needed using glUseProgram();!
!

The fragment shader performs the computation:!
!

uniform sampler2D texUnit;	
in vec2 texCoord;	

out vec4 fragColor;	
	

void main(void)	
{	

 vec4 texVal = texture(texUnit, texCoord);	
 fragColor = sqrt(texVal);	

}

51(87)51(87)

Information Coding / Computer Graphics, ISY, LiTH

Render a single polygon!
!

• Texture and frame buffer same size!
• Render polygon over entire frame buffer!

!
GLfloat quadVertices[] = { -1.0f, -1.0f, 0.0f,!

!!!!!!!!!!-1.0f, 1.0f, 0.0f,!

!!!!!!!!!!1.0f, 1.0f, 0.0f,!

!!!!!!!!!!1.0f, -1.0f, 0.0f};!

GLuint quadIndices[] = {0, 1, 2, 0, 2, 3};

(1, 1)

(-1, -1)

52(87)52(87)

Information Coding / Computer Graphics, ISY, LiTH

Program structure:!
!

• Set up OpenGL!
• Upload data to texture!

• Load shaders from file and compile!
• Draw quad on screen (of off screen) using OpenGL!
• Data is computed by the fragment shader, per pixel!

• Output can be downloaded as image data!
!

Examples…

53(87)53(87)

Information Coding / Computer Graphics, ISY, LiTH

Feedback!
!

We must be able to pass output from one operation
as input of the next!!

!
Solution: Render to texture, ”framebuffer objects”,

create a texture used as input for a later stage

54(87)54(87)

Information Coding / Computer Graphics, ISY, LiTH

“Ping-pong”-ing

Using “framebuffer objects” the!
output image can be a texture

Input data is a number of textures.!
Limited by the number of texturing!
units available.

The kernel reads from one or more texture, writes into the frame buffer

55(87)55(87)

Information Coding / Computer Graphics, ISY, LiTH

Filtering, convolution!
!

Common problem, highly suited for shaders.!
!

All kinds of linear filters:!
!

• Low-pass filtering (smoothing)!
• Gradient, embossing!

!
Must be done by gather operations, not

scatter!

56(87)56(87)

Information Coding / Computer Graphics, ISY, LiTH

high pass filter!
!

#version 150!
!

out vec4 outColor;!
!

in vec2 texCoord;!
uniform sampler2D tex;!

!
void main(void)!

{!
 float h, v;!

 const float offset = 1.0/512.0;!
!

 vec4 c = texture(tex, texCoord);!
 vec4 r = texture(tex, texCoord + vec2(offset,! 0.0));!
 vec4 l = texture(tex, texCoord + vec2(-offset,! 0.0));!

 vec4 u = texture(tex, texCoord + vec2(0.0, offset));!
 vec4 d = texture(tex, texCoord + vec2(0.0,-offset));!

 outColor = (-4.0*c + r + l + u + d);!
}

1 -4 1

More graphics!
heritage: Index!
data by steps of!
1/size, not 1!

1

1

57(87)57(87)

Information Coding / Computer Graphics, ISY, LiTH

Scatter vs gather!

Shaders give output for one pixel -> gather only!

Scatter Gather

58(87)58(87)

Information Coding / Computer Graphics, ISY, LiTH

How about CUDA/OpenCL?!
!

Scatter vs gather: You usually prefer gather. Less
synchronization! (Remember, synchronization comes for a cost!)!

!

Separable filters: Optimization just as valid for all techniques!
(But particularly common in shaders, for images.)

59(87)59(87)

Information Coding / Computer Graphics, ISY, LiTH

Reduction, sorting!
!

Same methods as I have mentioned before.!
!

Bitonic sort suitable.!
!

Reduction by tree structure.!
!
!

In the past: Fixed utput per thread. This is getting less fixed.!
!

• Write to texture possible.!
• Synchronization supported.

60(87)60(87)

Information Coding / Computer Graphics, ISY, LiTH

Conclusions:!
!

• Shader-based GPGPU is not dead, it is just not hyped!
!

Superior compatibility and ease of installation makes it highly
interesting for the forseeable future. Especially suitable for all

image-related problems.!
!

• How to do GPGPU with shaders!
!

FBOs, Ping-ponging, algorithms, special considerations.!
!
!

But stay tuned for Compute Shaders to change things...

61(87)61(87)

