*]d”‘; Information Coding / Computer Graphics, ISY, LiTH
44

“
4,
)h\t; .

Lecture 13
OpenCL
GPU computing with GLSL

OpenGL Compute shaders

1(87)

12} Information Coding / Computer Graphics, ISY, LiTH

“
.....

Lecture questions
1) What kind of devices will OpenCL run on?

2) What does an OpenCL work group
correspond to in CUDA?

3) What geometry is typically used for shader-
based GPU computing?

4) Are scatter or gather operations preferrable?
Why?

2(87)

Information Coding / Computer Graphics, ISY, LiTH

Lab 5

* Reduction
- Sorting using bitonic sort

Later part (using shared memory) non-
mandatory but recommended.

3(87)

\\\\\\\\

Information Coding / Computer Graphics, ISY, LiTH

Lab 6
* OpenCL
- Image filtering

Lab material will be updated with an important
bug fix.

4(87)

...........

‘-d%: Information Coding / Computer Graphics, ISY, LiTH
% v"‘}

Just one more thing...
Extensions to CUDA
Libraries: cuFFT, cuBLAS...
Thrust

and others

5(87)

. COMNG

s’&" “g
I % Information Coding / Computer Graphics, ISY, LiTH
g

“

Thrust

Template library

Templates for common operations

Can simplify your code

Data Structures Algorithms

e thrust: :device_vector e thrust::sort
e thrust::host _vector e thrust::reduce
e thrust::device ptr e thrust::exclusive scan

* Etc. * Eftc.

6(87)

Information Coding / Computer Graphics, ISY, LiTH

#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/generate.h>
#include <thrust/sort.h>

#include <thrust/copy.h>

#include <cstdlib>

int main(void)

// generate 32M random numbers on the host
thrust::host_vector<int> h_vec(32 << 20);
thrust: :generate(h_vec.begin(). h_vec.end(). rand);

// transfer data to the device
thrust: :device_vector<int> d_vec = h_vec;

// sort data on the device (846M keys per second on GeForce GTX 480)
thrust::sort(d_vec.begin(). d_vec.end()):;

// transfer data back to host
thrust: :copy(d_vec.begin(). d_vec.end(). h_vec.begin()):

return 0;

7(87)

Information Coding / Computer Graphics, ISY, LiTH

Get pre-optimized
implementations for critical
standard operations

Performance analysis

Highly serial summation pararellized by
reduction - not a "GPU perfect"” case!

8(87)

g

.'& . \.
3

- (_0”‘&_‘ =

Information Coding / Computer Graphics, ISY, LiTH

Performance
analysis
0.40
GPU code: Thrust as fast as E 030
optimized CUDA code, but E
simpler! .
0.10
CPU code: Don't touch
Thrust for this! 000 1 2 4 8 16 32
‘WGPUTime | 00062 | 00081 0.0131 0.0221 0.0406 | 0.0763
‘mCPUTime 00055 | 00107 | 00216 | 00432 00864 | 0.1721
(BUt this was 5 years back - mGPUthrust 0.0057 | 0.008l 0.0137 | 00226 | 00405 | 00782
“CPUthust 01564 | 03114 | 0.6271 12450 | 24941 | 4.9853
things do change.) mCPU" | 01277 | 02576 | 0.5140 10236 | 20534 | 4.0991

9(87)

d Information Coding / Computer Graphics, ISY, LiTH
=

And that is just one alternative way to
access one particular API...

So let's have a look at the alternative APIs as well!

10(87)

Information Coding / Computer Graphics, ISY, LiTH

Introduction to OpenCL

Open Compute Language

..‘

11(87)

Information Coding / Computer Graphics, ISY, LiTH

 Motivation
* Overview
- Examples

* Performance comparison

13(87)

Information Coding / Computer Graphics, ISY, LiTH

Origins of OpenCL
Initiated by Apple
Managed by Khronos group
Many supporting parties

Many providers

14(87)

Information Coding / Computer Graphics, ISY, LiTH

P ABB ¢ aceodcs AVEon BIZIR L'\‘ @ DAUR Nntix 4l ARC Mrcsor
B oo Autodesk: (meaTmi o] (3 o ,JL& Woodephhy @Zconerans
()== CREATIVE DAIMLER 000 DeLL digia om=_ X1DOLBY. @ &

-

AMD:1 ‘ ARM KHR ON oS ERICSSON Z :“freescale
mx @ GroOouvr QANDKlA @

2 ES2TE. Over 100 companies creating

p ﬁ Gg authoring and acceleration standards . N MVIDIA.
@IP RE LS Board of Promoters QSun Weldas
B Uity @ e EB Giuila” GOOGlE v cnemeor Hanfia §f.... DBrcor N

HUONE in oras wm o> k ‘ LG matrox @ M@ﬁcron

uﬂonoqpem e GNDS NEC "&%. "N Oy Panasonic S05<
Quacomww 11, .. .‘{enesas sasten o SIEMENS ;}:\:

W SND = SctBkc @ ‘ﬁ . Svmbian TAm @y, TR
TosHiBA 0 i LT o @ s EEEEE 9

YAMAHA

15(87)

Information Coding / Computer Graphics, ISY, LiTH

Why?

 The market could not let CUDA rule the world

- Support for other platforms
- Open standard
- Similarity with OpenGL

For programming "all” parallel architectures

16(87)

jj Information Coding / Computer Graphics, ISY, LiTH
P/

“
4
L

Supported architectures (not complete!)

GPU
Intel compatible CPUs
ARM
FPGA
CELL
Intel Xeon Phi

Who decides? Any company making its own OpenCL
implementation!

17(87)

d Information Coding / Computer Graphics, ISY, LiTH
Y, v‘j

"Open”?
Means open specification
Like OpenGL

Many providers making their own
implementation

There is not one OpenCL library.

18(87)

Information Coding / Computer Graphics, ISY, LiTH

No free lunch
Model does not fit all architectures

One size fits all - platform dependent
optimizations hard to do

19(87)

Information Coding / Computer Graphics, ISY, LiTH

OpenCL for GPU Computing

Mostly similar to CUDA both in architecture and
performance!

Messy setup - but you get used to it
Kernels similar to CUDA

Easier for NVidia to be first with new features

20(87)

d Information Coding / Computer Graphics, ISY, LiTH
P/

“
4,
Mo e

OpenCL vs CUDA terminology

OpenCL CUDA
compute unit multiprocessor (SM)
work item thread
work group block
local memory shared memory
private memory reqgisters

And CUDA local memory =7
OpenCL local memory (= CUDA shared memory)

21(87)

Information Coding / Computer Graphics, ISY, LiTH

Oh, that "local memory"...

CUDA local memory = global memory accessible only by
one thread (like registers but slower)

CUDA shared memory = OpenCL local memory =
memory local inside the SM, shared within block/work group

Anyone else who thinks this makes sense?

B q'/f.
N00000000!

22(87)

Information Coding / Computer Graphics, ISY, LiTH

OpenCL memory model

Private Privale
Memory Memory

Private Private
Memory Memory

Work lkem 1 Work tem M VWork Hem 1 Work Item M

Compute Ul 1 Computs Unit N

Local Memory [l Local Memory
Global { Constanl Memaory Dala Cache

Compute Device

Global Memory

Compute Device Memory

Been there, done that...

23(87)

Information Coding / Computer Graphics, ISY, LiTH

OpenCL execution model

WOrk-group size Sx
rl: ad
Work-group (wy ,) 1
work-item work-item
L f.'l. ') 5,’9/' e " Sl"l ‘y Sy'.‘/
s, crn"J'J. s, (/-"S‘-' 2
r . L : : work-group size Sy
: 14
! work-item work-item
NDRange sze Gy e Sty vy S8y (wy Syoty.my 808)
/ «03S /
!
1

NDRange sze G,

Anyone who see "blocks” and "threads™?

24(87)

. COMNG
.."" 1‘4’

- -
~ -~
. - -
. l .

-
!
4

g o

Information Coding / Computer Graphics, ISY, LiTH

Synchronization
Kernels can synchronize within a work group:
barrier (CLK LOCAL MEM FENCE)

No synchronization between work groups. (Do you
remember why?)

Synchronizes memory access. You choose which kind of

memory access to synchronize (global, local).

25(87)

~-d’&; Information Coding / Computer Graphics, ISY, LiTH
2

"l
4
g o

Synchronization
The host (CPU) can synchronize on global level:

Available for:
tasks (e.g. clEnqueueNDRangeKernel)
Memory(e.g.clEnqueueReadBufter)
events (e.g. clWaitforEvents)

26(87)

Information Coding / Computer Graphics, ISY, LiTH

Heterogenous

Some differences from CUDA: Designed for
heterogenous systems!

Several devices may be active at once
You can specify which device to launch a task to
Query devices and device characteristics

Some overhead compared to CUDA, and the reward
is flexibility!

27(87)

g Information Coding / Computer Graphics, ISY, LiTH
e

Language

Based on C99, but:
7 No function pointers
7 No pointers to pointers in function calls
(=> no multi-dimensional arrays)
7 No recursion
7 No arrays with dynamical length
7 No bitfields
7 Also, no possibility to call a kernel from another kernel
Optional:
1 Pointers with length <32 bit
1 Writing support for 3D images
7 Double and half types
1 Atomic functions

28(87)

g Information Coding / Computer Graphics, ISY, LiTH
e

On the positive side:

0 Integrated functions for reading / writing 2D images and
reading 3D images
7 Converting functions incl. explicit rounding and saturation
7 math.h, all functions with different precisions
3 Vector support (2-, 3- and 4-dimensional)

Available primitive datatypes:
1 Bool,char,int,long,float,size t,void,+unsigned versions

Mix of OpenCL and OpenGL possible
1 Can share data structures and variables (without copying)
0 APl functions available

29(87)

g Information Coding / Computer Graphics, ISY, LiTH
N

How about that setup?
1) Get a list of platforms
2) Choose a platform
3) Get a list of devices
4) Choose a device
5) Create a context

6) Load and compile kernel code

30(87)

Information Coding / Computer Graphics, ISY, LiTH

Then we can start working
7) Allocate memory
8) Copy data to device
9) Run kernel
10) Wait for kernel to complete
11) Read data from device

12) Free resources

31(87)

Information Coding / Computer Graphics, ISY, LiTH

1-5: Where to run
Simplified here - might fail!

cl_platform_id platform; -
unsigned int no_plat;
err = clGetPlatformIDs(1,&platform,&no_plat);

// Where to run
err = clGetDevicelDs(platform, CL_DEVICE_TYPE_GPU, 1, &device_id, NULL);
if (err 1= CL_SUCCESS) return -1;

- Context

context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);

if (Ilcontext) return -1;

commands = clCreateCommandQueue(context, device_id, 0, &err);
if (lcommands) return -1;

32(87)

d Information Coding / Computer Graphics, ISY, LiTH
P/

6: Kernel
// What to run const char *KernelSource = "\n" \
program = "__kernel void hello(\n"\
clCreateProgramWithSource(context, 1, " _ global char* a, \n" \
(const char **) & KernelSource, NULL, " _ global char* b, \n"\
&err); " _ global char* c, \n" \
if (Iprogram) return -1; " const unsigned int count) \n"\
err = clBuildProgram(program, O, NULL, ..{ int i = get_global \%(B); \n" \
NULL, NULL, NULL), . I I.I:(I < Count) \n" \
if (err |= CL_SUCCESS) return '1, I C[l] _ a[l] + b[l] \n" \
kernel = clCreateKernel(program, "hello", " B \n" \
&err); M-

if (lkernel Il err 1= CL_SUCCESS) return -1;

Most programs also load kernels from files

33(87)

g : Information Coding / Computer Graphics, ISY, LiTH
4

7-8: Get the data in there

// Create space for data and copy a and b to device (note that we could also use
clEnqueueWriteBuffer to upload)

input = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
sizeof(char) * DATA_SIZE, a, NULL);

input2 = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
sizeof(char) * DATA_SIZE, b, NULL);

output = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(char) * DATA_SIZE,
NULL, NULL);

if (linput Il loutput) return -1;

// Send data

err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &input);

err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &input2);

err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &output);
err |= clSetKernelArg(kernel, 3, sizeof(unsigned int), &count);
if (err I= CL_SUCCESS) return -1;

34(87)

—

d Information Coding / Computer Graphics, ISY, LiTH
"o

9-10: Run kernel, wait for
completion

// Run kernel!

err = clEnqueueNDRangeKernel(commands, kernel, 1, NULL, &global,
&local, O, NULL, NULL);

if (err I= CL_SUCCESS) return -1;

clFinish(commands);

35(87)

Information Coding / Computer Graphics, ISY, LiTH

11-12: Read back data, release

// Read result

err = clEnqueueReadBuffer(commands, output, CL_TRUE, O, sizeof(char) * count,
c, 0, NULL, NULL);

if (err I= CL_SUCCESS) return -1;

// Print result
printf("%s\n", c);

// Clean up

clReleaseMemObiject(input);
clReleaseMemObiject(output);
clReleaseProgram(program);
clReleaseKernel(kernel);
clReleaseCommandQueue(commands);
clReleaseContext(context);

36(87)

"gh: Information Coding / Computer Graphics, ISY, LiTH
<4

“
4
)"\7.' . W

“Platform” vs “device”
Platform = an OpenCL implementation

Device = a chip which the platform supports

37(87)

Information Coding / Computer Graphics, ISY, LiTH

Language freedom... sort of

+ Very easy to call from any language! Anything that
can call into a C API can call OpenCL!

- Kernel code is only C-style (although a specific
implementation may choose to support more).

38(87)

Information Coding / Computer Graphics, ISY, LiTH

Performance
Investigations report remarkably small differences
Our research on FFT so far has CUDA up to 2x faster

Very hard to compare, due to multiple OpenCL
implementations

Some report CUDA to be better on NVidia platforms...
some report a draw even there.

Our experience: Usually very close!

39(87)

g Information Coding / Computer Graphics, ISY, LiTH
e

“
41),'“. "~

Conclusions on OpenCL

Don’t fear the complex setup phase! The rest is
similar to CUDA.

Performance tend to be on par with CUDA or almost.

Speciality: heterogenous systems!

40(87)

