
Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

Lecture 13!
!

OpenCL!
!

GPU computing with GLSL!
!

OpenGL Compute shaders

1(87)

1(87)

Information Coding / Computer Graphics, ISY, LiTH

Lecture questions!
!

1) What kind of devices will OpenCL run on?!
!

2) What does an OpenCL work group
correspond to in CUDA?!

!
3) What geometry is typically used for shader-

based GPU computing?!
!

4) Are scatter or gather operations preferrable?
Why?

2(87)2(87)

Information Coding / Computer Graphics, ISY, LiTH

Lab 5!
!

• Reduction!
!

• Sorting using bitonic sort!
!

Later part (using shared memory) non-
mandatory but recommended.

3(87)3(87)

Information Coding / Computer Graphics, ISY, LiTH

Lab 6!
!

• OpenCL!
!

• Image filtering!
!

Lab material will be updated with an important
bug fix.

4(87)4(87)

Information Coding / Computer Graphics, ISY, LiTH

Just one more thing…!
!

Extensions to CUDA!
!

Libraries: cuFFT, cuBLAS...!
!

Thrust!
!

and others

5(87)5(87)

Information Coding / Computer Graphics, ISY, LiTH

Thrust!
!

Template library!
!

Templates for common operations!
!

Can simplify your code

6(87)6(87)

Information Coding / Computer Graphics, ISY, LiTH

7(87)7(87)

Information Coding / Computer Graphics, ISY, LiTH

Get pre-optimized
implementations for critical

standard operations!
!

Performance analysis!
!

Highly serial summation pararellized by
reduction - not a "GPU perfect" case!

8(87)8(87)

Information Coding / Computer Graphics, ISY, LiTH

Performance
analysis!

!
GPU code: Thrust as fast as
optimized CUDA code, but

simpler!!
!

CPU code: Don't touch
Thrust for this!!

!
(But this was 5 years back -

things do change.)

9(87)9(87)

Information Coding / Computer Graphics, ISY, LiTH

And that is just one alternative way to
access one particular API...!

!
So let's have a look at the alternative APIs as well!

10(87)10(87)

Information Coding / Computer Graphics, ISY, LiTH

Introduction to OpenCL!
!

Open Compute Language

11(87)11(87)

Information Coding / Computer Graphics, ISY, LiTH

12(87)12(87)

Information Coding / Computer Graphics, ISY, LiTH

• Motivation!
!

• Overview!
!

• Examples!
!

• Performance comparison

13(87)13(87)

Information Coding / Computer Graphics, ISY, LiTH

Origins of OpenCL!
!

Initiated by Apple!
!

Managed by Khronos group!
!

Many supporting parties!
!

Many providers

14(87)14(87)

Information Coding / Computer Graphics, ISY, LiTH

15(87)15(87)

Information Coding / Computer Graphics, ISY, LiTH

Why?!
!

• The market could not let CUDA rule the world!
!

• Support for other platforms!
!

• Open standard!
!

• Similarity with OpenGL!
!

For programming ”all” parallel architectures

16(87)16(87)

Information Coding / Computer Graphics, ISY, LiTH

Supported architectures (not complete!)
GPU!
!

Intel compatible CPUs!
!

ARM!
!

FPGA!
!

CELL!
!

Intel Xeon Phi!
!

Who decides? Any company making its own OpenCL
implementation!

17(87)17(87)

Information Coding / Computer Graphics, ISY, LiTH

”Open”?!
!

Means open specification!
!

Like OpenGL!
!

Many providers making their own
implementation!

!
There is not one OpenCL library.

18(87)18(87)

Information Coding / Computer Graphics, ISY, LiTH

No free lunch!
!

Model does not fit all architectures!
!

One size fits all - platform dependent
optimizations hard to do

19(87)19(87)

Information Coding / Computer Graphics, ISY, LiTH

OpenCL for GPU Computing!
!

Mostly similar to CUDA both in architecture and
performance!!

!
Messy setup - but you get used to it!

!
Kernels similar to CUDA!

!
Easier for NVidia to be first with new features

20(87)20(87)

Information Coding / Computer Graphics, ISY, LiTH

OpenCL vs CUDA terminology!
!

!OpenCL CUDA!
!!

! compute unit multiprocessor (SM)!
! work item thread!
!work group block!

! local memory shared memory!
!private memory registers!

!
!

And CUDA local memory =?!
OpenCL local memory (= CUDA shared memory)

21(87)21(87)

Information Coding / Computer Graphics, ISY, LiTH

Oh, that "local memory"...!
!

CUDA local memory = global memory accessible only by
one thread (like registers but slower)!

!
CUDA shared memory = OpenCL local memory =

memory local inside the SM, shared within block/work group!
!

Anyone else who thinks this makes sense?

22(87)22(87)

Information Coding / Computer Graphics, ISY, LiTH

OpenCL memory model

Been there, done that...

23(87)23(87)

Information Coding / Computer Graphics, ISY, LiTH

OpenCL execution model

Anyone who see ”blocks” and ”threads”?

24(87)24(87)

Information Coding / Computer Graphics, ISY, LiTH

Synchronization!
!

Kernels can synchronize within a work group:!
!

barrier(CLK_LOCAL_MEM_FENCE)!
!

No synchronization between work groups. (Do you
remember why?)!

!
Synchronizes memory access. You choose which kind of

memory access to synchronize (global, local).

25(87)25(87)

Information Coding / Computer Graphics, ISY, LiTH

Synchronization!
!

The host (CPU) can synchronize on global level:!
!

Available for:!
tasks (e.g. clEnqueueNDRangeKernel)!

Memory(e.g.clEnqueueReadBuffer)!
events (e.g. clWaitforEvents)!

26(87)26(87)

Information Coding / Computer Graphics, ISY, LiTH

Heterogenous!
!

Some differences from CUDA: Designed for
heterogenous systems!!

!
Several devices may be active at once!

!
You can specify which device to launch a task to!

!
Query devices and device characteristics!

!
!

Some overhead compared to CUDA, and the reward
is flexibility!

27(87)27(87)

Information Coding / Computer Graphics, ISY, LiTH

Language

Based on C99, but:
! No function pointers

! No pointers to pointers in function calls
 (=> no multi-dimensional arrays)

! No recursion
! No arrays with dynamical length

! No bitfields
! Also, no possibility to call a kernel from another kernel

Optional:
! Pointers with length <32 bit

! Writing support for 3D images
! Double and half types

! Atomic functions

28(87)28(87)

Information Coding / Computer Graphics, ISY, LiTH

On the positive side:

! Integrated functions for reading / writing 2D images and
reading 3D images

! Converting functions incl. explicit rounding and saturation
! math.h, all functions with different precisions
! Vector support (2-, 3- and 4-dimensional)

"

Available primitive datatypes:
! Bool,char,int,long,float,size_t,void,+unsigned versions

Mix of OpenCL and OpenGL possible

! Can share data structures and variables (without copying)
! API functions available

29(87)29(87)

Information Coding / Computer Graphics, ISY, LiTH

How about that setup?!
!

1) Get a list of platforms!
!

2) Choose a platform!
!

3) Get a list of devices!
!

4) Choose a device!
!

5) Create a context!
!

6) Load and compile kernel code

30(87)30(87)

Information Coding / Computer Graphics, ISY, LiTH

Then we can start working!
!

7) Allocate memory!
!

8) Copy data to device!
!

9) Run kernel!
!

10) Wait for kernel to complete!
!

11) Read data from device!
!

12) Free resources!

31(87)31(87)

Information Coding / Computer Graphics, ISY, LiTH

cl_platform_id platform;!
unsigned int no_plat;!
err = clGetPlatformIDs(1,&platform,&no_plat);!
!
// Where to run!
err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device_id, NULL);!
if (err != CL_SUCCESS) return -1;!
!
!
context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);!
if (!context) return -1;!
commands = clCreateCommandQueue(context, device_id, 0, &err);!
if (!commands) return -1;

1-5: Where to run
Simplified here - might fail!

Context

32(87)32(87)

Information Coding / Computer Graphics, ISY, LiTH

6: Kernel
!// What to run!
program =
clCreateProgramWithSource(context, 1,
(const char **) & KernelSource, NULL,
&err);!
if (!program) return -1;!
!
err = clBuildProgram(program, 0, NULL,
NULL, NULL, NULL);!
if (err != CL_SUCCESS) return -1;!
kernel = clCreateKernel(program, "hello",
&err);!
if (!kernel || err != CL_SUCCESS) return -1;

const char *KernelSource = "\n" \!
"__kernel void hello(\n" \!
" __global char* a, \n" \!
" __global char* b, \n" \!
" __global char* c, \n" \!
" const unsigned int count) \n" \!
"{ \n" \!
" int i = get_global_id(0); \n" \!
" if(i < count) \n" \!
" c[i] = a[i] + b[i]; \n" \!
"} \n" \!
"\n";

Most programs also load kernels from files

33(87)33(87)

Information Coding / Computer Graphics, ISY, LiTH

7-8: Get the data in there
!!
!// Create space for data and copy a and b to device (note that we could also use
clEnqueueWriteBuffer to upload)!
!input = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
sizeof(char) * DATA_SIZE, a, NULL);!
!input2 = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
sizeof(char) * DATA_SIZE, b, NULL);!
!output = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(char) * DATA_SIZE,
NULL, NULL);!
!if (!input || !output) return -1;!
!!
!// Send data!
!err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &input);!
!err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &input2);!
!err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &output);!
!err |= clSetKernelArg(kernel, 3, sizeof(unsigned int), &count);!
!if (err != CL_SUCCESS) return -1;

34(87)34(87)

Information Coding / Computer Graphics, ISY, LiTH

9-10: Run kernel, wait for
completion

// Run kernel!!
err = clEnqueueNDRangeKernel(commands, kernel, 1, NULL, &global,
&local, 0, NULL, NULL);!
!
if (err != CL_SUCCESS) return -1;!
!
clFinish(commands);

35(87)35(87)

Information Coding / Computer Graphics, ISY, LiTH

// Read result!
err = clEnqueueReadBuffer(commands, output, CL_TRUE, 0, sizeof(char) * count,
c, 0, NULL, NULL); !
if (err != CL_SUCCESS) return -1;!
!
//!Print result!
printf("%s\n", c);!
!
// Clean up!
clReleaseMemObject(input);!
clReleaseMemObject(output);!
clReleaseProgram(program);!
clReleaseKernel(kernel);!
clReleaseCommandQueue(commands);!
clReleaseContext(context);

11-12: Read back data, release

36(87)36(87)

Information Coding / Computer Graphics, ISY, LiTH

”Platform” vs ”device”!
!

Platform = an OpenCL implementation!
!

Device = a chip which the platform supports

37(87)37(87)

Information Coding / Computer Graphics, ISY, LiTH

Language freedom… sort of!
!

+ Very easy to call from any language! Anything that
can call into a C API can call OpenCL!!

!
- Kernel code is only C-style (although a specific
implementation may choose to support more).

38(87)38(87)

Information Coding / Computer Graphics, ISY, LiTH

Performance!
!

Investigations report remarkably small differences!
!

Our research on FFT so far has CUDA up to 2x faster!
!

Very hard to compare, due to multiple OpenCL
implementations!

!
Some report CUDA to be better on NVidia platforms...

some report a draw even there.!
!

Our experience: Usually very close!

39(87)39(87)

Information Coding / Computer Graphics, ISY, LiTH

Conclusions on OpenCL!
!

Don’t fear the complex setup phase! The rest is
similar to CUDA.!

!
Performance tend to be on par with CUDA or almost.!

!
Speciality: heterogenous systems!

40(87)40(87)

