...........

‘-g'*‘: Information Coding / Computer Graphics, ISY, LiTH
z," V‘j

CUDA memory
Coalescing
Constant memory
Texture memory

Pinned memory

26(86)

Information Coding / Computer Graphics, ISY, LiTH

CUDA memory
We already know...

- Global memory is slow.

- Shared memory is fast and can be used as

’manual cache”

* There were some other kinds of memory...

27(86)

d Information Coding / Computer Graphics, ISY, LiTH
4

I’l
4,
g

Coalescing
Always access global memory "in order”

If threads access global memory in order of thread
numbers, performance will be improved!

Thread | { | 2 |3 (4|5 |6 |78 Thread | 1 |2 | 3[4 | 5|6 |78
I O A e
RAM 112345678 RAM 123456]|7]|8

28(86)

Information Coding / Computer Graphics, ISY, LiTH

WTF?

How can performance depend on what order |
access my data??? Isn’t it “random access™?

Yes... YOUu can access in any order you want,
but ordered access helps the GPU to read
more data in one access!

Why? Because the GPU can get much data in
a single transaction, and neighbor threads
are tested for accessing the same area!

29(86)

d Information Coding / Computer Graphics, ISY, LiTH
o P

Coalescing

Example: Assume that we can get 4 data
items per transaction.

One access One access
Eight separate accesses

Thread Thread 1 2 3 4 5 6 7 8

—

+“—— W
<+ O
<+ 0O
<+
<+ 00

RAM 11 1213 |4|5]|6|7|8|] BAM |41 2|34]|5]|6]|7]|S8

30(86)

1?} Information Coding / Computer Graphics, ISY, LiTH

“
‘w,“' .

Coalescing on Fermi & later
Effect reduced by caches - but not removed.

Coalescing is still needed for maximum
performance.

"Perhaps the single most important performance
consideration... is coalescing of global memory
accesses." (CUDA C Best Practices Guide 2016)

31(86)

Information Coding / Computer Graphics, ISY, LiTH

Accelerating by coalescing

Pure memory transfers can be 10x faster by taking
advantage of memory coalescing!

Example: Matrix transpose
No computations!

Only memory accesses.

32(86)

Information Coding / Computer Graphics, ISY, LiTH

Matrix transpose

Naive implementation

__global__ void transpose_naive(float *odata, float* idata, int width, int height)

{

unsigned int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
unsigned int yIndex = blockDim.y * blockIdx.y + threadIdx.y;

1f (xIndex < width &% yIndex < height)
{

unsigned int index_in = xIndex + width * yIndex;
unsigned int index_out = yIndex + height * xIndex;
odata[index_out] = idata[index_in];

How can this be bad?

33(86)

Information Coding / Computer Graphics, ISY, LiTH

Matrix transpose

Coalescing problems

Row-by-row and column-by-column.
Column accesses non-coalesced!

34(86)

Information Coding / Computer Graphics, ISY, LiTH

Matrix transpose

Coalescing solution

r " il "

Read from global memory Write to global memory
to shared memory
In order write to global,
In order from global, any any order from shared
order to shared

35(86)

Information Coding / Computer Graphics, ISY, LiTH

Better CUDA matrix transpose kernel

__global__ void transpose(float *odata, float *idata, int width, int height)

{
__shared__ float block[BLOCK_DIM][BLOCK_DIM+1];

Shared memory for temporary storage
// read the matrix tile into shared memory

unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x;
unsigned int yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y;
1f((xIndex < width) && (yIndex < height))

{

unsigned int index_in = yIndex * width + xIndex;
block[threadIdx.y][threadIdx.x] = idata[index_in];

}

Read data to temporary buffer

__syncthreads();

// write the transposed matrix tile to global memory
xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;
yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y;
1f((xIndex < height) &% (yIndex < width))
{ Write data to tglobal memory
unsigned int index_out = yIndex * height + xIndex;
odata[index_out] = block[threadIdx.x][threadIdx.y];
}
by

36(86)

g Information Coding / Computer Graphics, ISY, LiTH
24

Coalescing rules of thumb
- The data block should start on a multiple of 64
- It should be accessed in order (by thread number)
- It is allowed to have threads skipping their item

- Data should be in blocks of 4, 8 or 16 bytes

37(86)

g Information Coding / Computer Graphics, ISY, LiTH
e

g
4,
g o

Shared memory

Split into multiple memory banks (32). Fastest if you
access different banks with each thread

Interleaved, 32 bits chunks

Thus: Address in 32-bit steps between threads for

best performance

BankO Bank1 Bank2 Bank3 Bank4 Bank5 Bank6 Bank7
Address space —>

38(86)

\\\\\\\\\

Information Coding / Computer Graphics, ISY, LiTH

Constant memory
Sounds boring... but has its uses.
Read-only (for kernels)
__constant__ modifier

Use for input data, obviously

39(86)

GPU Grid

Block (0, 0) Block (1, 0)

|

Thread (0,0) Thread (1,0) Thread (0, 0) Thread (1, 0)

I L A 4 I vy I Yy I L A 4
48 48 A1 48

CPU

40(86)

Information Coding / Computer Graphics, ISY, LiTH

Benefits of constant memory

* No cudaMemcpy needed! Just use it from kernel,

write from CPU!

 For data read by all threads, significantly faster

than global memory!

- Read-only memory is easy to cache.

41(86)

g Information Coding / Computer Graphics, ISY, LiTH
44

Why faster access? When?
All threads reading the same data.
One read can be broadcast to all ’nearby” threads.
Nearby? All threads in same "half-warp” (16 threads)

But no help if threads are reading different data!

42(86)

d Information Coding / Computer Graphics, ISY, LiTH
<4

’ll
4,
o

Example of using constant memory: Ray-caster
Demo from "CUDA by example”

With and without using _ const___

43(86)

. COMNG
s (3
" o %

s -’

- -
. »
. -

’l

|
.« VP

Information Coding / Computer Graphics, ISY, LiTH

Ray-caster example
Every thread renders one pixel
Loop through all spheres, find closest with intersection
Write result to an image buffer.
Image buffer displayed with OpenGL.
Non-const: Uploads sphere array by cudaMemcpy()

Const: Declares array _ _const__, uses directly from kernel.
(Slightly simpler code!)

44(86)

Information Coding / Computer Graphics, ISY, LiTH

Ray-caster example
Resulting time:
Without using const: 13.9 ms
With const: 10.6 ms

Significant difference - for something that
simplified the code!

45(86)

Information Coding / Computer Graphics, ISY, LiTH

Constant memory conclusions

Relatively fast memory access - for the case when
all threads read the same memory!

Some advantage for code complexity.

NOT something we use for everything.

46(86)

« COMNG
A
o
N f
o =
. -
. .
-
l“%
NG .

Information Coding / Computer Graphics, ISY, LiTH

Texture memory/ Texture units

Using texture units to access memory

TPC TPC TPC TPC TPC TPC TPC TPC
Texture Processor Clusteé Streaming Multiprocessor
I ' 7 [Datall
sM] Instruction Fetch/Dispatch
Shared Memory
TEX
SM
SFU SFU

G80 processor
hierarchy

47(86)

Information Coding / Computer Graphics, ISY, LiTH

Texture memory/ Texture units

Texture memory, yet another kind of memory (or
memory access method)

But didn’t we hide the graphics heritage...?
Access global memory though the texturing units.

Lets CUDA take advantage of the strong points
with texturing units.

48(86)

% Information Coding / Computer Graphics, ISY, LiTH

“
"%“, :

Texture memory features
Read-only (writable using "surface objects").
Cached! Can be fast if data access patterns are good.
Texture filtering, linear interpolation.

Edge handling.

Especially good for handling 4 floats at a time (float4).

cudaBindTextureToArray() binds data to a texture unit.

49(86)

Information Coding / Computer Graphics, ISY, LiTH

Texture memory for graphics
Texture data mostly for rendering textures

One texel used by 4 neigbor pixels (when not exact
integer coordinates)

Designed for spatial locality

50(86)

Information Coding / Computer Graphics, ISY, LiTH

Varying access patterns - but
neighbors are still neighbors!

51(86)

12} Information Coding / Computer Graphics, ISY, LiTH

Spatial locality for other things than
textures

Image filters of local nature

Physics simulations with local updates, transfer of
heat, liquids, pressure...

Big jJumps, no gain!

52(86)

Information Coding / Computer Graphics, ISY, LiTH

Using texture memory in CUDA
Allocate with cudaMalloc
Bind to texture unit using cudaBindTexture2D()
Read from data using tex2D()
Drawback: Just like in OpenGL, messy to keep

track of which texture unit/texture reference is
which data.

53(86)

Information Coding / Computer Graphics, ISY, LiTH

Clamp and repeat

2&%;&4»:@7» 2 “.
N7 D 1.\

—_— /_

’ / { /\ 0 /\ /\»

¥ N Ok * * % 0 ‘

N NPAN AN 1 ‘
40 1 2 1 0 1 0

Texture access needs no boundary checks!

54(86)

—~——

- COMNg .,
5
“: ‘4’

] 2
~ -
. -

>
. .
-
1
4

g .

Information Coding / Computer Graphics, ISY, LiTH

Clamp and repeat

You are used Now you can

to this get this or this
ERROR|ERROR|ERROR|ERROR 4 3 4 1 1 ? ?
ERROR| 1 2 |ERROR 2 1 2 1 1 2 2
ERROR 3 4 |ERROR 4 3 4 3 3 4 4
ERROR|ERROR|ERROR/ERROR ? 1 ? 3 3 4 4

55(86)

12} Information Coding / Computer Graphics, ISY, LiTH

Interpolation
Computation tricks when optimizing

Texture access provides hardware accelerated
linear interpolation!

Access texture data on non-integer coordinates
and the texture hardware will do linear
interpolation automatically!

Can be used for many calculations, e.g. filters.

56(86)

—~—

o COMNG .,
3
\\: .4’

q ¥
~ -
. -

»
. .
“
|
4,

e o

Information Coding / Computer Graphics, ISY, LiTH

Interpolation

Aa =la-xI Ab =

+—p4—>

|b-x|

}

d

b

X

BAa + AAb

Texture accesses and calculations hardware

accelerated!

57(86)

g} Information Coding / Computer Graphics, ISY, LiTH

)
Yoy, .

Hardware interpolation too good to be
frue...

The interpolation trick sounds kind of useful (for some
cases)... but isn’t as useful as it seems.

Why? It is ment for interpolating between texels,
visually. Small errors is not a problem then! May have
low precision, like 10 steps.

///////////// Not as fun then...

58(86)

o COMNG

Information Coding / Computer Graphics, ISY, LiTH

Demo using texture memory

Heat transfer demo

59(86)

Jj Information Coding / Computer Graphics, ISY, LiTH
<4

"l
4,
)"\t; « VP

Demo using texture memory
Heat transfer demo

Makes local operations modelling heat dissipation

60(86)

‘% Information Coding / Computer Graphics, ISY, LiTH
-

That’s all folks!

Next: Sorting on the GPU.

61(86)

