
Information Coding / Computer Graphics, ISY, LiTH

CUDA memory!
!

Coalescing!
!

Constant memory!
!

Texture memory!
!

Pinned memory

26(86)

26(86)

Information Coding / Computer Graphics, ISY, LiTH

CUDA memory!
!

We already know...!
!

• Global memory is slow.!
!

• Shared memory is fast and can be used as
”manual cache”!

!
• There were some other kinds of memory...

27(86)27(86)

Information Coding / Computer Graphics, ISY, LiTH

Coalescing!
!

Always access global memory ”in order”!
!

If threads access global memory in order of thread
numbers, performance will be improved!

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Thread

RAM

Good!

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Thread

RAM

Bad!

28(86)28(86)

Information Coding / Computer Graphics, ISY, LiTH

WTF?!
!

How can performance depend on what order I
access my data??? Isn’t it ”random access”?!

!
Yes... You can access in any order you want,

but ordered access helps the GPU to read
more data in one access!!

!
Why? Because the GPU can get much data in

a single transaction, and neighbor threads
are tested for accessing the same area!

29(86)29(86)

Information Coding / Computer Graphics, ISY, LiTH

Coalescing!
!

Example: Assume that we can get 4 data
items per transaction.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Thread

RAM

Good!

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Thread

RAM

Bad!

One access One access
Eight separate accesses

30(86)30(86)

Information Coding / Computer Graphics, ISY, LiTH

Coalescing on Fermi & later!
!

Effect reduced by caches - but not removed. !
!

Coalescing is still needed for maximum
performance.!

!
"Perhaps the single most important performance
consideration... is coalescing of global memory
accesses." (CUDA C Best Practices Guide 2016)

31(86)31(86)

Information Coding / Computer Graphics, ISY, LiTH

Accelerating by coalescing!
!

Pure memory transfers can be 10x faster by taking
advantage of memory coalescing!!

!
Example: Matrix transpose!

!
No computations!!

!
Only memory accesses.

32(86)32(86)

Information Coding / Computer Graphics, ISY, LiTH

__global__ void transpose_naive(float *odata, float* idata, int width, int height)	
{	
 unsigned int xIndex = blockDim.x * blockIdx.x + threadIdx.x;	
 unsigned int yIndex = blockDim.y * blockIdx.y + threadIdx.y;	
 	
 if (xIndex < width && yIndex < height)	
 {	
 unsigned int index_in = xIndex + width * yIndex;	
 unsigned int index_out = yIndex + height * xIndex;	
 odata[index_out] = idata[index_in]; 	
 }	
}

Matrix transpose!
!

Naive implementation

How can this be bad?

33(86)33(86)

Information Coding / Computer Graphics, ISY, LiTH

Matrix transpose!
!

Coalescing problems

Row-by-row and column-by-column.!
Column accesses non-coalesced!

34(86)34(86)

Information Coding / Computer Graphics, ISY, LiTH

Matrix transpose!
!

Coalescing solution

Read from global memory
to shared memory!

!
In order from global, any

order to shared

Write to global memory!
!

In order write to global,
any order from shared

35(86)35(86)

Information Coding / Computer Graphics, ISY, LiTH

__global__ void transpose(float *odata, float *idata, int width, int height)	
{	
	__shared__ float block[BLOCK_DIM][BLOCK_DIM+1];	
		
	// read the matrix tile into shared memory	
	unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x;	
	unsigned int yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y;	
	if((xIndex < width) && (yIndex < height))	
	{	
		unsigned int index_in = yIndex * width + xIndex;	
		block[threadIdx.y][threadIdx.x] = idata[index_in];	
	}	
	
	__syncthreads();	
	
	// write the transposed matrix tile to global memory	
	xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;	
	yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y;	
	if((xIndex < height) && (yIndex < width))	
	{	
		unsigned int index_out = yIndex * height + xIndex;	
		odata[index_out] = block[threadIdx.x][threadIdx.y];	
	}	
}

Better CUDA matrix transpose kernel

Shared memory for temporary storage

Read data to temporary buffer

Write data to tglobal memory

36(86)36(86)

Information Coding / Computer Graphics, ISY, LiTH

Coalescing rules of thumb!
!

• The data block should start on a multiple of 64!
!

• It should be accessed in order (by thread number)!
!

• It is allowed to have threads skipping their item!
!

• Data should be in blocks of 4, 8 or 16 bytes

37(86)37(86)

Information Coding / Computer Graphics, ISY, LiTH

Shared memory!
!

Split into multiple memory banks (32). Fastest if you
access different banks with each thread!

!
Interleaved, 32 bits chunks!

!
Thus: Address in 32-bit steps between threads for

best performance
Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7

Address space

38(86)38(86)

Information Coding / Computer Graphics, ISY, LiTH

Constant memory!
!

Sounds boring... but has its uses.!
!

Read-only (for kernels)!
!

__constant__ modifier!
!

Use for input data, obviously

39(86)39(86)

Information Coding / Computer Graphics, ISY, LiTH

40(86)40(86)

Information Coding / Computer Graphics, ISY, LiTH

Benefits of constant memory!
!

• No cudaMemcpy needed! Just use it from kernel,
write from CPU!!

!
• For data read by all threads, significantly faster

than global memory!!
!

• Read-only memory is easy to cache.

41(86)41(86)

Information Coding / Computer Graphics, ISY, LiTH

Why faster access? When?!
!

All threads reading the same data.!
!

One read can be broadcast to all ”nearby” threads.!
!

Nearby? All threads in same ”half-warp” (16 threads)!
!

But no help if threads are reading different data!

42(86)42(86)

Information Coding / Computer Graphics, ISY, LiTH

Example of using constant memory: Ray-caster!
!

Demo from ”CUDA by example”!
!

With and without using __const__

43(86)43(86)

Information Coding / Computer Graphics, ISY, LiTH

Ray-caster example!
!

Every thread renders one pixel!
!

Loop through all spheres, find closest with intersection!
!

Write result to an image buffer.!
!

Image buffer displayed with OpenGL.!
!

Non-const: Uploads sphere array by cudaMemcpy()!
!

Const: Declares array __const__, uses directly from kernel.
(Slightly simpler code!)

44(86)44(86)

Information Coding / Computer Graphics, ISY, LiTH

Ray-caster example!
!

Resulting time:!
!

Without using const: 13.9 ms!
!

With const: 10.6 ms!
!

Significant difference - for something that
simplified the code!

45(86)45(86)

Information Coding / Computer Graphics, ISY, LiTH

Constant memory conclusions!
!

Relatively fast memory access - for the case when
all threads read the same memory!!

!
Some advantage for code complexity.!

!
NOT something we use for everything.

46(86)46(86)

Information Coding / Computer Graphics, ISY, LiTH

G80 processor!
hierarchy

Texture memory/ Texture units!
!

Using texture units to access memory

47(86)47(86)

Information Coding / Computer Graphics, ISY, LiTH

Texture memory/ Texture units!
!

Texture memory, yet another kind of memory (or
memory access method)!

!
But didn’t we hide the graphics heritage...?!

!
Access global memory though the texturing units.

Lets CUDA take advantage of the strong points
with texturing units.

48(86)48(86)

Information Coding / Computer Graphics, ISY, LiTH

Texture memory features!
!

Read-only (writable using "surface objects").!
!

Cached! Can be fast if data access patterns are good.!
!

Texture filtering, linear interpolation.!
!

Edge handling.!
!

Especially good for handling 4 floats at a time (float4).!
!

cudaBindTextureToArray() binds data to a texture unit.

49(86)49(86)

Information Coding / Computer Graphics, ISY, LiTH

Texture memory for graphics!
!

Texture data mostly for rendering textures!
!

One texel used by 4 neigbor pixels (when not exact
integer coordinates)!

!
Designed for spatial locality

50(86)50(86)

Information Coding / Computer Graphics, ISY, LiTH

Varying access patterns - but
neighbors are still neighbors!

51(86)51(86)

Information Coding / Computer Graphics, ISY, LiTH

Spatial locality for other things than
textures!

!
Image filters of local nature!

!
Physics simulations with local updates, transfer of

heat, liquids, pressure...!
!

Big jumps, no gain!

52(86)52(86)

Information Coding / Computer Graphics, ISY, LiTH

Using texture memory in CUDA!
!

Allocate with cudaMalloc!
!

Bind to texture unit using cudaBindTexture2D()!
!

Read from data using tex2D()!
!

Drawback: Just like in OpenGL, messy to keep
track of which texture unit/texture reference is

which data.

53(86)53(86)

Information Coding / Computer Graphics, ISY, LiTH

0 1 2-1

0

1

2

-1
0 1 2-1

0

1

2

-1
1

Clamp and repeat

Texture access needs no boundary checks!

54(86)54(86)

Information Coding / Computer Graphics, ISY, LiTH

Clamp and repeat
You are used!

!to this
Now you can!

!get this or this

1 2

3 4

ERROR ERROR ERROR ERROR

ERROR ERROR ERROR ERROR

ERROR

ERROR

ERROR

ERROR

1 2

3 4

1 2

3 4

3 4

1 2

2

4

4

2

1

3

3

1

1

1

1

3

33

2

2

2

4

4 4

55(86)55(86)

Information Coding / Computer Graphics, ISY, LiTH

Interpolation!
!

Computation tricks when optimizing!
!

Texture access provides hardware accelerated
linear interpolation!!

!
Access texture data on non-integer coordinates

and the texture hardware will do linear
interpolation automatically!!

!
Can be used for many calculations, e.g. filters.

56(86)56(86)

Information Coding / Computer Graphics, ISY, LiTH

Interpolation

Texture accesses and calculations hardware
accelerated!

a b x
B∆a + A∆b

=
A B

∆a = |a-x| ∆b = |b-x|

57(86)57(86)

Information Coding / Computer Graphics, ISY, LiTH

Hardware interpolation too good to be
true...!

!
The interpolation trick sounds kind of useful (for some

cases)... but isn’t as useful as it seems.!
!

Why? It is ment for interpolating between texels,
visually. Small errors is not a problem then! May have

low precision, like 10 steps.!
!

Not as fun then...

58(86)58(86)

Information Coding / Computer Graphics, ISY, LiTH

Demo using texture memory!
!

Heat transfer demo

59(86)59(86)

Information Coding / Computer Graphics, ISY, LiTH

Demo using texture memory!
!

Heat transfer demo!
!

Makes local operations modelling heat dissipation

60(86)60(86)

Information Coding / Computer Graphics, ISY, LiTH

That’s all folks!!
!
!

Next: Sorting on the GPU.

61(86)61(86)

