
Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

Lecture 11!
!

More CUDA

1(86)

1(86)

Information Coding / Computer Graphics, ISY, LiTH

In this episode...!
!

• Error checking!
!

• Query device capabilities!
!

• CUDA events!
!

• More on CUDA memory:!
!

Coalescing, Constant memory, Texture memory...!
!

• OpenGL integration!
!

• Reduction (intro)

2(86)2(86)

Information Coding / Computer Graphics, ISY, LiTH

Lab 4!
!

Starts monday! Tested and ready! (There were
installation problems in Southfork, now

resolved.)!
!

”Mandelbrot revisited” part, to follow up lab 1.

3(86)3(86)

Information Coding / Computer Graphics, ISY, LiTH

The story so far...!
!

• CUDA and its language extensions!
!

• The CUDA architecture!
!

• Intro to memory!
!

• Matrix multiplication example, using
shared memory

4(86)4(86)

Information Coding / Computer Graphics, ISY, LiTH

CUDA and its language extensions!
!

Kernel invocation myKernel<<<>>>()!
!

__global__ __device__ __host__!
!

cudaMalloc(), cudaMemcpy()!
!

threadIdx, blockIdx, blockDim, gridDim!
!

Using nvcc

5(86)5(86)

Information Coding / Computer Graphics, ISY, LiTH

The CUDA architecture!
!

Blocks and threads!
!

Grid-block-thread hierarchy!
!

Indexing data with thread/block numbers

6(86)6(86)

Information Coding / Computer Graphics, ISY, LiTH

Intro to memory!
!

global memory!
!

shared memory!
!

constant memory!
!

local memory!
!

texture memory/texture units

7(86)7(86)

Information Coding / Computer Graphics, ISY, LiTH

Matrix multiplication example, using
shared memory

Huge speedup - my GPU went from questionable
performance to clearly faster than CPU!

8(86)8(86)

Information Coding / Computer Graphics, ISY, LiTH

Over to today’s episode:

9(86)9(86)

Information Coding / Computer Graphics, ISY, LiTH

Lecture questions:!
!

1. Why can using constant memory improve
performance?!

!
2. What is CUDA Events used for?!

!
3. What does coalescing mean and what should

we do to get a speedup from coalescing?!
!

4. How can you efficiently calculate the maximum
of a dataset in parallel?

10(86)10(86)

Information Coding / Computer Graphics, ISY, LiTH

Error checking!
!

• Functions returns error codes (but
kernel launch does not)!

!
• cudaGetLastError()!

!
• cudaPeekLastError()

11(86)11(86)

Information Coding / Computer Graphics, ISY, LiTH

Asynchronous error
checking!

!
Asynchronous errors can not be returned

by the function call!!
!

Call cudaDeviceSynchronize() and check
its returned error code.

12(86)12(86)

Information Coding / Computer Graphics, ISY, LiTH

More synchronization!
!

No, synchronization isn't that simple.!
!

__syncthreads()!
!

cudaDeviceSynchronize()!
!

cudaStreamSynchronize()

13(86)13(86)

Information Coding / Computer Graphics, ISY, LiTH

More synchronization!
!

__syncthreads() is used inside a kernel.!
Stop thread until all threds reach the location!!

!
cudaDeviceSynchronize() is used from the host.

Wait until all current kernels finish.!
!

cudaStreamSynchronize() waits until all kernels
in a stream finish.!

!
No synchronization between blocks!

14(86)14(86)

Information Coding / Computer Graphics, ISY, LiTH

Query devices!
!

You can’t trust all devices to have the
same - or even similar - data.!

!
New boards may have totally different

data.!
!

Query CUDA for a list of features using
cudaGetDeviceProperties()

15(86)15(86)

Information Coding / Computer Graphics, ISY, LiTH

Example query result (9400M)!
!

---- Information for GeForce 9400M ----	
Compute capability: 1.1	

Total global memory (VRAM): 259712 kB	
Total constant Mem: 64 kB	

Number of SMs: 2	
Shared mem per SM: 16 kB	
Registers per SM: 8192	
Threads in warp: 32	

Max threads per block: 512	
Max thread dimensions: (512, 512, 64)	
Max grid dimensions: (65535, 65535, 1)

16(86)16(86)

Information Coding / Computer Graphics, ISY, LiTH

Example query result 2 (GT 650M)	
	

---- Information for GeForce GT 650M ----	
Compute capability: 3.0	

Total global memory/VRAM: 523968 kB	
Total constant Mem: 64 kB	

Number of Streaming Multiprocessors (SM): 2	
Shared mem per SM: 48 kB	
Registers per SM: 65536	

Threads in warp: 32	
Max threads per block: 1024	

Max thread dimensions: (1024, 1024, 64)	
Max grid dimensions: (2147483647, 65535, 65535)

17(86)17(86)

Information Coding / Computer Graphics, ISY, LiTH

What is important?!
!

Compute capability - can this board at all work with
our program?	

	
Amount of shared memory - make sure we fit.	

	
Max threads, max dimensions - make sure we fit.	

	
Threads in warp: A lower bound for performance.	

	
Number of SMs: Lower bound for blocks

18(86)18(86)

Information Coding / Computer Graphics, ISY, LiTH

Compute capability!
!

Essentially CUDA/architecture version
number.!

!
1.0: Original release.!

1.1: Mapped memory, atomic operations.!
1.3: Double support.!

2.0: Fermi.!
3.0: Kepler.!

5.0: Maxwell.!
6.0: Pascal.

19(86)19(86)

Information Coding / Computer Graphics, ISY, LiTH

20(86)20(86)

Information Coding / Computer Graphics, ISY, LiTH

21(86)21(86)

Information Coding / Computer Graphics, ISY, LiTH

22(86)22(86)

Information Coding / Computer Graphics, ISY, LiTH

Do I care about Compute
capability?!

!
While learning CUDA - not much. Stick to the

basics, it works on all.!
!

But if you write professional CUDA code, of
course.

23(86)23(86)

Information Coding / Computer Graphics, ISY, LiTH

CUDA Events!
!

Timing!!
!

Two ways of timing CUDA programs:!
!

• CPU timer. Synchronize at start and end.!
!

• CUDA Events. Synchronize at end.!
!

Synchronize? Because CUDA runs
asynchronously.

24(86)24(86)

Information Coding / Computer Graphics, ISY, LiTH

CUDA Events API!
!

cudaEventCreate - initialize an event variable!
!

cudaEventRecord - place a marker in the queue!
!

cudaEventSynchronize - wait until all markers
have received values!

!
cudaEventElapsedTime - get the time difference

between two events

25(86)25(86)

