|||||||

Information Coding / Computer Graphics, ISY, LiTH

Lecture 11

More CUDA

1(86)

Information Coding / Computer Graphics, ISY, LiTH

In this episode...
* Error checking
- Query device capabilities
- CUDA events
* More on CUDA memory:
Coalescing, Constant memory, Texture memory...
- OpenGL integration

- Reduction (intro)

2(86)

Information Coding / Computer Graphics, ISY, LiTH

Lab 4

Starts monday! Tested and ready! (There were
installation problems in Southfork, now
resolved.)

”Mandelbrot revisited” part, to follow up lab 1.

OO0 Mandelbrot explorer (CPU)

3(86)

Jj Information Coding / Computer Graphics, ISY, LiTH
N

The story so far...
- CUDA and its language extensions
- The CUDA architecture
* Intro to memory

- Matrix multiplication example, using
shared memory

4(86)

Information Coding / Computer Graphics, ISY, LiTH

CUDA and its language extensions
Kernel invocation myKernel<<<>>>()
__global__ _ device_ _ host__
cudaMalloc(), cudaMemcpy()
threadldx, blockldx, blockDim, gridDim

Using nvcc

5(86)

Information Coding / Computer Graphics, ISY, LiTH

The CUDA architecture

Blocks and threads
Grid-block-thread hierarchy

Indexing data with thread/block numbers

6(86)

d Information Coding / Computer Graphics, ISY, LiTH
z," v‘j

Intro to memory
global memory
shared memory

constant memory
local memory

texture memory/texture units

7(86)

Information Coding / Computer Graphics, ISY, LiTH

Matrix multiplication example, using
shared memory

L] I N R A

) Of O o

Huge speedup - my GPU went from questionable
performance to clearly faster than CPU!

8(86)

Information Coding / Computer Graphics, ISY, LiTH

Over to today’s episode:

9(86)

12} Information Coding / Computer Graphics, ISY, LiTH

“
%%%%%

Lecture questions:

1. Why can using constant memory improve
performance?

2. What is CUDA Events used for?

3. What does coalescing mean and what should
we do to get a speedup from coalescing?

4. How can you efficiently calculate the maximum
of a dataset in parallel?

10(86)

Information Coding / Computer Graphics, ISY, LiTH

Error checking

- Functions returns error codes (but

kernel launch does not)
- cudaGetLastError()

- cudaPeekLastError()

11(86)

Information Coding / Computer Graphics, ISY, LiTH

Asynchronous error
checking

Asynchronous errors can not be returned
by the function call!

Call cudaDeviceSynchronize() and check
its returned error code.

12(86)

Information Coding / Computer Graphics, ISY, LiTH

More synchronization
No, synchronization isn't that simple.
__syncthreads()
cudaDeviceSynchronize()

cudaStreamSynchronize()

13(86)

12} Information Coding / Computer Graphics, ISY, LiTH

More synchronization

__syncthreads() is used inside a kernel.
Stop thread until all threds reach the location!

cudaDeviceSynchronize() is used from the host.
Wait until all current kernels finish.

cudaStreamSynchronize() waits until all kernels
in a stream finish.

No synchronization between blocks!

14(86)

Information Coding / Computer Graphics, ISY, LiTH

Query devices

You can’t trust all devices to have the
same - or even similar - data.

New boards may have totally different
data.

Query CUDA for a list of features using
cudaGetDeviceProperties()

15(86)

Information Coding / Computer Graphics, ISY, LiTH

Example query result (9400M)

---- Information for GeForce 9400M ----
Compute capability: 1.1
Total global memory (VRAM): 259712 kB
Total constant Mem: 64 kB
Number of SMs: 2
Shared mem per SM: 16 kB
Registers per SM: 8192
Threads in warp: 32
Max threads per block: 512
Max thread dimensions: (512, 512, 64)
Max grid dimensions: (65535, 65535, 1)

16(86)

Information Coding / Computer Graphics, ISY, LiTH

Example query result 2 (GT 650M)

---- Information for GeForce GT 650M ----
Compute capability: 3.0
Total global memory/VRAM: 523968 kB
Total constant Mem: ©64 kB
Number of Streaming Multiprocessors (SM): 2
Shared mem per SM: 48 kB
Registers per SM: 65536
Threads in warp: 32
Max threads per block: 1024
Max thread dimensions: (1024, 1024, 64)
Max grid dimensions: (2147483647, 65535, ©65535)

17(86)

d Information Coding / Computer Graphics, ISY, LiTH
P/

What is important?

Compute capability - can this board at all work with
our program?

Amount of shared memory - make sure we fit.
Max threads, max dimensions - make sure we fit.
Threads in warp: A lower bound for performance.

Number of SMs: Lower bound for blocks

18(86)

Information Coding / Computer Graphics, ISY, LiTH

Compute capability

Essentially CUDA/architecture version
number.

1.0: Original release.
1.1: Mapped memory, atomic operations.
1.3: Double support.
2.0: Fermi.
3.0: Kepler.
5.0: Maxwell.
6.0: Pascal.

19(86)

Feature Support

Compute Capability

(Unlisted features are supported for all
compute capabilities)

1.0

1.1

Atomic functions operating on 32-bit integer
values in global memory (Atomic Functions)

atomicExch() operating on 32-bit floating
point values in global memory (atomicExch())

No

1.2 =

Yes

2.x,
3.0

3.5

LiTH

Atomic functions operating on 32-bit integer
values in shared memory (Atomic Functions)

atomicExch() operating on 32-bit floating
point values in shared memory (atomicExch())

Atomic functions operating on 64-bit integer
values in global memory (Atomic Functions)

Warp vote functions (Warp Vote Functions)

Yes

Double-precision floating-point numbers

Yes

Atomic functions operating on 64-bit integer
values in shared memory (Atomic Functions)

Atomic addition operating on 32-bit floating

point values in global and shared memory
(atomicAdd())

_ballot() (Warp Vote Functions)

__threadfence_system() (Memory Fence
Functions)

—syncthreads_count(),
—syncthreads_and(),

—syncthreads_or() (Synchronization
Functions)

Surface functions (Surface Functions)

3D grid of thread blocks

No

Yes

Funnel shift (see reference manual)

No

Yes

20(86)

Information Coding / Computer Graphics, ISY, LiTH

FERMI FERMI KEPLER | KEPLER

GF100 | GF104 | GK104 | GK110
Compute Capability 2.0 2.1 3.0 3.5
Threads / Warp 32 32 32 32
Max Warps / Multiprocessor 48 48 64 64
Max Threads / Multiprocessor 1536 1536 2048 2048
Max Thread Blocks / Multiprocessor 8 8 16 16
32-bit Registers / Multiprocessor 32768 32768 65536 65536
Max Registers / Thread 63 63 63 255
Max Threads / Thread Block 1024 1024 1024 1024
Shared Memory Size Configurations (bytes) 16K 16K 16K 16K
48K 48K 32K 32K
48K 48K
Max X Grid Dimension 2716-1 | 27M16-1 | 2732-1(2732-1
Hyper-Q No No No Yes
Dynamic Parallelism No No No Yes

Compute Capability of Fermi and Kepler GPUs

21(86)

Information Coding / Computer Graphics, ISY, LiTH

Compute Capability

SM Version

Threads / Warp

Warps / Multiprocessor

Threads / Multiprocessor

Thread Blocks / Multiprocessor

Max Shared Memory / Multiprocessor (bytes)
Register File Size

Register Allocation Unit Size
Allocation Granularity

Max Registers / Thread

Shared Memory Allocation Unit Size
Warp allocation granularity

Max Thread Block Size

Shared Memory Size Configurations (bytes)
[note: default at top of list]

Warp register allocation granularities
[note: default at top of list]

1.0
sm_10
32

24

768

16384
8192

256
block
124
512

512

16384

1.1
sm_11
32

24

768

16384
8192

256
block
124
512

512

16384

1.2
sm_12
32

32
1024

16384
16384

512
block
124
i b7

512

16384

1.3
sm_13
32

32
1024

16384
16384

512
block
124
512

512

16384

2.0
sm_20
32
1536

49152
32768

warp
63
128

1024

49152
16384

128

5 |
sm_21
32
1536

49152
32768

warp
63
128

1024

49152
16384

128

3.0
sm_30
32

2048
16
49152
65536

256
warp
63
256

1024
495152
16384

32768

256

3.5
sm_35
32

2048
16
49152
65536

256
warp
255
256

1024
49152
16384

32768

256

22(86)

Information Coding / Computer Graphics, ISY, LiTH

Do | care about Compute
capability?

While learning CUDA - not much. Stick to the
basics, it works on all.

But if you write professional CUDA code, of
course.

23(86)

o COMNG
& 4
s -
~ -
. -
% "‘/
4,
g . W

Information Coding / Computer Graphics, ISY, LiTH

CUDA Events

Timing!

Two ways of timing CUDA programs:

- CPU timer. Synchronize at start and end.

- CUDA Events. Synchronize at end.

Synchronize? Because CUDA runs
asynchronously.

24(86)

. COMNG
.."" (_4’
< A ¥
~ -“
. -
. T
’l
!
4

o

Information Coding / Computer Graphics, ISY, LiTH

CUDA Events API

cudaEventCreate - initialize an event variable
cudaEventRecord - place a marker in the queue

cudaEventSynchronize - wait until all markers
have received values

cudaEventElapsedTime - get the time difference
between two events

25(86)

