

Timeline for CPUs

80's: CPU and system same speed. Zero wait states.

1993: CPUs faster than the rest of the system. Rapid raise of frequency.

Late 90's to present: Multi-CPU systems, multi-core CPUs.

CPUs are still improving, but going for higher frequency is not as obvious as before.

Meanwhile, at the graphics dept

80's: Hardware sprites. Push pixels with low-level code.

1993: Textured 3D games: Wolf3D, Doom.

Early 90's: Professional 3D boards.

1996: 3dfx Voodoo1!

2001: Programmable shaders.

2006: G80, unified architecture. CUDA

2009: OpenCL.

2010: Fermi architecture

2012: Kepler architecture

	1995	2005	
CPU Frequency (GHz)	.1	3.2	32x
Memory Frequency (GHz)	.03	1.2	40x
Bus Bandwidth (GB/sec)	.1	4	40x
Hard Disk Size (GB)	.5	200	400x

	1995	2005	
CPU Frequency (GHz)	.1	3.2	32x
Memory Frequency (GHz)	.03	1.2	40x
Bus Bandwidth (GB/sec)	.1	4	40x
Hard Disk Size (GB)	.5	200	400x
Pixel Fill Rate (GPixels/sec)	.0004	3.3	8250x
Vertex Rate (GVerts/sec)	.0005	.35	700x
Graphics flops (GFlops/sec)	.001	40	40000x
Graphics Bandwidth (GB/sec)	.3	19	63x
Frame Buffer Size (MB)	2	256	128x

How about 2005-2011?

	2005	2011	
CPU Frequency (GHz)	3.2	3.8	1.18x
Memory Frequency (GHz)	1.2	2.0	1.67x
Bus Bandwidth (GB/sec)	4	31	7.75x
Hard Disk Size (GB)	200	4000	20x

	2005	2011	
CPU Frequency (GHz)	3.2	3.8	1.18x x cores?
Memory Frequency (GHz)	1.2	2.0	1.67x
Bus Bandwidth (GB/sec)	4	31	7.75x
Hard Disk Size (GB)	200	4000	20x
Pixel Fill Rate (GPixels/sec)	3.3	59	18x
Vertex Rate (GVerts/sec)	.35	?	?
Graphics flops (GFlops/sec)	40	2488	62x
Graphics Bandwidth (GB/sec)	19	327.7	17x
Frame Buffer Size (MB)	256	3000	12x

And what about 2011-2015 then?

CPU frequency: No change

Hard disk size: 8-16 TB

GPU GFLOPS: Up from 2500 to 7000

many other data tricky to find

But is this a fair comparison? Let us compare apples with apples: GFLOPS for both!

GPU CPU

1995: 0.001 0.09

2005: 40 5.6

2011: 2488 91

2015: 7000 176

(Various sources)

How about economy: GFLOPS per dollar?

1961: 8.3 trillion

1984: 42 million

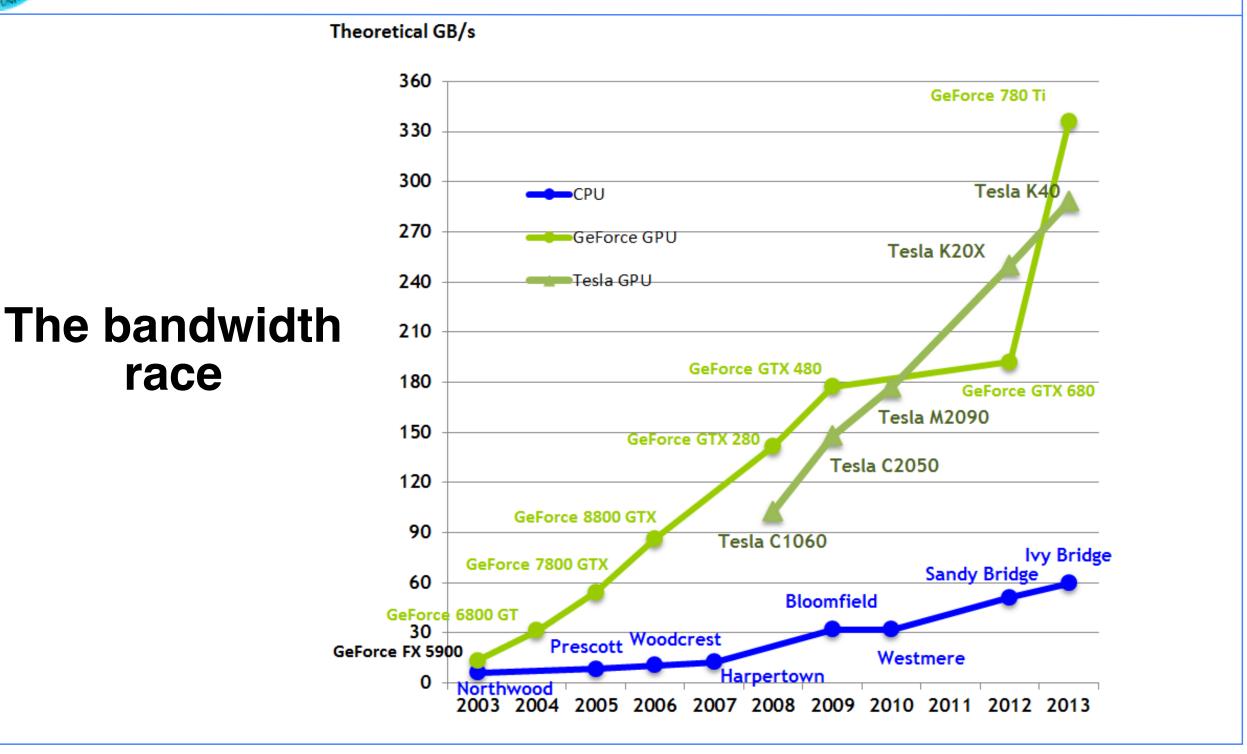
1997: 42000 (CPU cluster)

2000: 836-1300

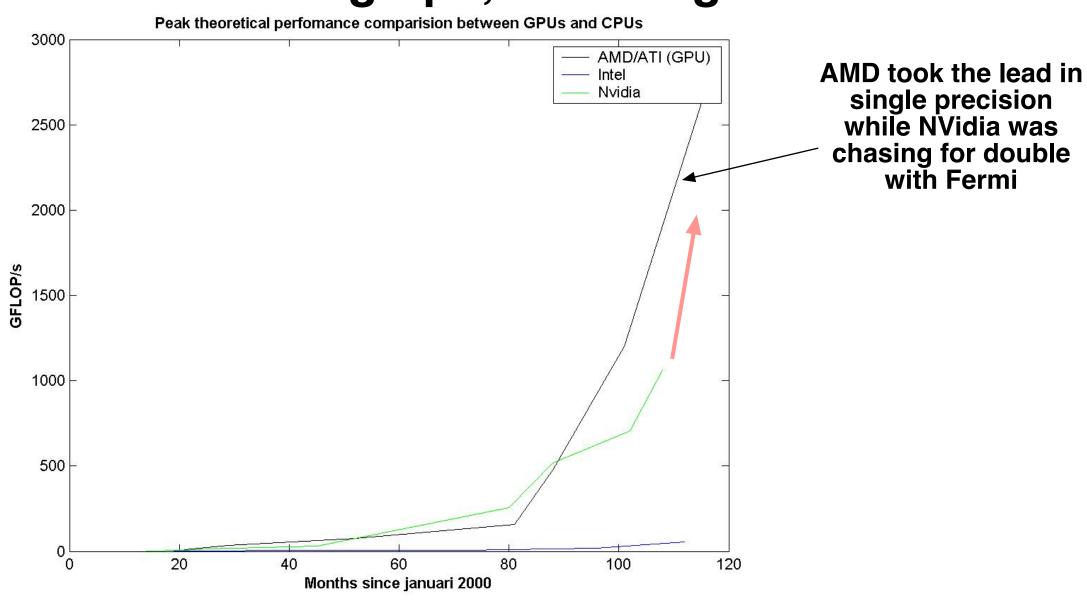
2007: 52

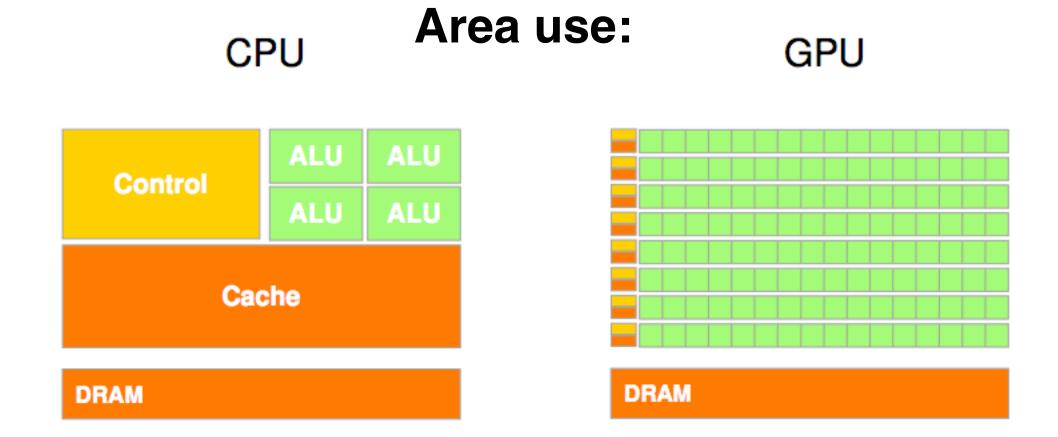
2012: 0.73 (AMD 7970)

2013: 0.22 (PS4)


2015: 0.08 (Radeon R9 295)

(Wikipedia)





Another graph, including ATI/AMD

How is this possible?

But in particular: SIMD architecture

Flynn's taxonomy

SISD

Single instruction, single data Old single-core systems

SIMD

Single instruction, multiple data GPUs, vector processors

MISD

Multiple instruction, single data Multiple for redundance

MIMD

Multiple instruction, multiple data

Multi-core CPUs

Plus SIMT, single instruction, multiple threads

SIMD

Single instruction, multiple data
Simplifies instruction handling. All cores get the same instruction.

Excellent for operations where one operation must be made on many data elements.

Is that so common? Yes!

Data best in stored arrays.

Data Oriented Programming

DOP optimizes for performance.

Data structures selected to fit the computations, instead of the programmer!

Optimize for the end user instead for the programmer!

Popular in the game industry - why not elsewhere?

SIMT - Single Instruction, Multiple Thread A variant of SIMD.

Parallelism expressed as threads.

A programming model, but also demands that the hardware can handle threads very fast.

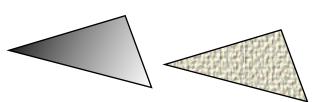
Threads dependent - executed in a SIMD processor!

So, why does SIMT fit a graphics processor so well?

Why did GPUs get so much performance?

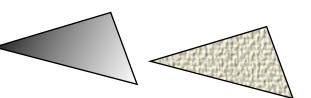
Early problem with large amounts of data. (Complex geometry, millions of output pixels.)

Graphics pipeline designed for parallelism!

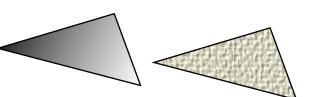

Hiding memory latency by parallelism

Volume. 3D graphics boards central component in game industry. Everybody wants one!

New games need new impressive features. Many important advancements started as game features.


Must process many pixels fast!

Early GPUs could draw textured, shaded triangles much faster than the CPU.

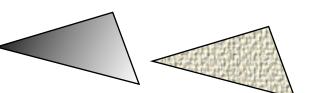

Early GPUs could draw textured, shaded triangles much faster than the CPU.

Must do matrix multiplication and divisions fast.

Next generation could transform vertices and normalize vectors.

Early GPUs could draw textured, shaded triangles much faster than the CPU.

Must do matrix multiplication and divisions fast.


Next generation could transform vertices and normalize vectors.

Must have programmable parts.

This was added to make Phong shading and bump mapping.

Early GPUs could draw textured, shaded triangles much faster than the CPU.

Must do matrix multiplication and divisions fast.

Next generation could transform vertices and normalize vectors.

Must have programmable parts.

This was added to make Phong shading and bump mapping.

Must work in floating-point!

This was for light effects, HDR.

So a GPU should

- process vertices, many in parallel, applying the same transformations on each
 - process pixels (fragments) in parallel, applying the same color/light/texture calculations on each

SIMD friendly problem!

Less control, control many calculations instead of one

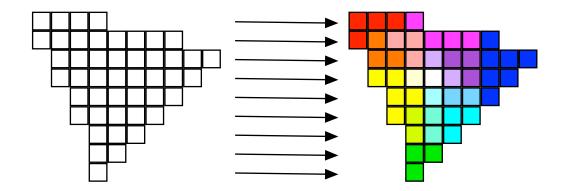
A different kind of threads

SIMD threads, all run the same program

Group-wise, they execute in parallel, SIMD-style

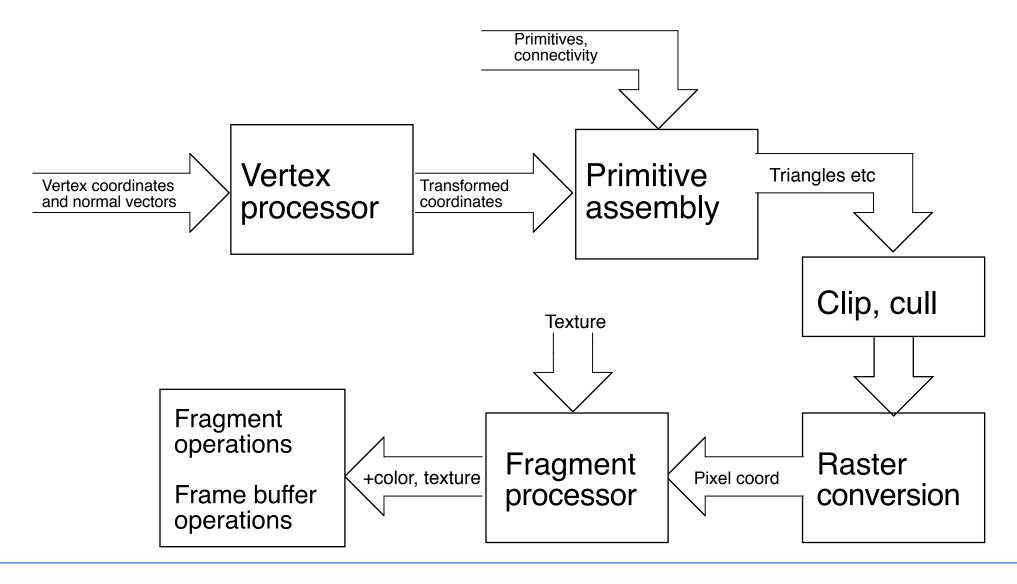
Made for graphics operations: Shader threads calculate one pixel or one vertex

CUDA/OpenCL threads may calculate anything, but typically one part of the output - in order



The main tasks in rendering graphics:

One thread per vertex Same operations, same kernel, different data


One thread per pixel (fragment) Same operations, same kernel, different data

The 3D pipeline in the GPU

Low-level operations from vertices to pixel data

