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Compute shaders!
!

The future of GPU computing or a late rip-off of 
Direct Compute?
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Compute shaders!
!

Previously a Microsoft concept, Direct Compute!
!

Now also in OpenGL, new kind of shader since the 
recent OpenGL 4.3!

!
”Bleeding edge”
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Why is this important?!
!

Why use that instead of CUDA or OpenCL?!
!
!

+ Better integration with OpenGL!
!

+ No extra installation!!
!

+ Easier to configure than OpenCL!
!

+ Not NVidia specific like CUDA!
!

+ If you know GLSL, Compute Shaders are (fairly) easy!
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Not only plus...!
!

- Steep hardware demands! Kepler + 4.3!
!

- Some new concepts!
!

- Not part of the main graphics pipeline like 
fragment shaders!

!
!

Compute shaders run alone, not compiled 
together with others.
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So how do I use it?!
!

Compiled like other shaders!!
!

Trivial change from the usual shader loader/compilers 
from graphics programs, just compile as 

GL_COMPUTE_SHADER.!
!

Easy:!
!

• Uniforms work as usual!
!

• Textures work as usual!
!

(Note that you can write to textures in Fermi and up!)
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Write to textures?!
!

Only newest GPUs.!
!

Call in shader: imageStore()!
!

imageStore(texUnit, texCoord, color);!
!

Needs synchronisation! New call for that: 
glMemoryBarrier() and memoryBarrier() in shaders.!

!
GLSL is getting more and more general - but freedom does 

not always make life easier.!
!

Back to Compute Shaders...
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A bit different!
!

No longer not one thread per fragment (output pixel)!
!

Thereby: No thread specific output!
!
!

Shader Storage Buffer Objects:!
!

General buffer type for arbitrary data!
!

Can be declared as an array of structures!
!

Read and written freely by Compute Shaders!
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How do I upload input data?!
!

Upload to SSBO:!
!

glGenBuffers(1, &ssbo);!
glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo);!

glBufferData(GL_SHADER_STORAGE_BUFFER, size, ptr, 
GL_STATIC_DRAW);!

!
How does the shader know?!

!
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, id, 

ssbo);!
!

layout(std430, binding = id, buffer x {type y[];};



Information Coding / Computer Graphics, ISY, LiTH

Access data in the shader!
!

Set number of threads per block:!
!

layout(local_size_x = width, local_size_y = height)!
!

Thread number:!
!

gl_GlobalInvocation!
gl_localInvocation!

!
        void main()!

        {!
          buffer[gl_GlobalInvocation.x] =!

            - buffer[gl_GlobalInvocation.x];!
        }
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Execute kernel!
!

glUseProgram(program);!
!

glDispatchCompute(sizex, sizey, sizez);!
!
!

The arguments to glDispatchProgram set the number of 
blocks / workgroups. The number of threads (work items) 

per block are set by the shader.
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Getting output data!
!

glBindBuffer(GL_SHADER_STORAGE, ssbo);!
ptr = (int *) glMapBuffer(GL_SHADER_STORAGE, 

GL_READ_ONLY);!
!

Then read from ptr[i]!
!

glUnmapBuffer(GL_SHADER_STORAGE);
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int main(int argc, char **argv)	
{	
  glutInit (&argc, argv);	
  glutCreateWindow("TEST1");	
    	
// Load and compile the compute shader    	
  GLuint p =loadShader("cs.csh");	
	
  GLuint ssbo; //Shader Storage Buffer Object	
	
  // Some data	
  int buf[16] = {1, 2, -3, 4, 5, -6, 7, 8, 9,	
																10, 11, 12, 13, 14, 15, 16};	
  int *ptr;	
  	
// Create buffer, upload data	
  glGenBuffers(1, &ssbo);	
  glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo);	
  glBufferData(GL_SHADER_STORAGE_BUFFER,	
      16 * sizeof(int), &buf, GL_STATIC_DRAW);

// Tell it where the input goes!	
// "5" matches "layuot" in the shader.	
	
  glBindBufferBase(GL_SHADER_STORAGE_BUFFER,	
         5, ssbo);	
	
// Get rolling!	
    glDispatchCompute(16, 1, 1);	
	
// Get data back!	
  glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo);	
  ptr = (int *)glMapBuffer(	
         GL_SHADER_STORAGE_BUFFER,	
         GL_READ_ONLY);	
  for (int i=0; i < 16; i++)	
  {	
    printf("%d\n", ptr[i]);	
  }	
}

Complete main program:
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#version 430	
#define width 16	
#define height 16	
	
// Compute shader invocations in each work group	
	
layout(std430, binding = 5) buffer bbs {int bs[];};	
	
layout(local_size_x=width, local_size_y=height) in;	
	
//Kernel Program	
void main()	
{	
  int i = int(gl_LocalInvocationID.x * 2);	
  bs[gl_LocalInvocationID.x] = -bs[gl_LocalInvocationID.x];	
}

Simple Compute Shader:
Note: Too many threads!
for data (16*16*16)
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News in 2014!
!

OpenGL Compute Shaders are now supported 
in!
!

GLES 3.1 (embedded systems!)!
!

MESA for Intel GPUs (Haswell)
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Are Compute Shaders an 
alternative?!

!
• Portable between GPUs and OSes!

!
• Steep hardware demands - for now!

!
• All advantages in the future?!
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But how about the performance???!
!

Some comparisons!
!

One old project: CUDA vs GLSL vs OpenCL,!
compared with a mass-spring system!

!
One current project: Multiple platforms,!

compared with similar FFT implementation
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Mass-spring system!
!

by Marco Fratarcangeli!
!

Part of my GPU computing PhD course a few years ago.!
!

Published in "Game Engine Gems 2"!
!

Result: CUDA and GLSL almost the same, OpenCL noticably 
behind.



Information Coding / Computer Graphics, ISY, LiTH

"FFT everywhere" project!
!

by Torbjörn Sörman!
!

Ongoing diploma thesis project.!
!

Some interesting (preliminary) results.
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Torbjörn Sörman's preliminary results!
!

• cuFFT so much faster that it is scary...!
• Torbjörn's own GPU implementations much faster than CPU 

versions!
• On NVidia, CUDA and Direct Compute significantly faster than 

OpenGL Compute Shaders and OpenCL!
• On AMD, Direct Compute, OpenCL and OpenGL Compute Shaders 

ran side-by-side!
!

Lots of if's and but's... but two clear conclusions:!
!

• Hard optimization (cuFFT and FFTW) pays, and not just by a little!!
• OpenCL and Compute Shaders very close - basically the same?
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GPU computing conclusions!
!

The desktop supercomputer!
!

Fast changing area!
!

Great performance for big problems that fit the 
architecture!

!
Good performance for many other problems


