
Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

Compute shaders!
!

The future of GPU computing or a late rip-off of
Direct Compute?

Information Coding / Computer Graphics, ISY, LiTH

Compute shaders!
!

Previously a Microsoft concept, Direct Compute!
!

Now also in OpenGL, new kind of shader since the
recent OpenGL 4.3!

!
”Bleeding edge”

Information Coding / Computer Graphics, ISY, LiTH

Why is this important?!
!

Why use that instead of CUDA or OpenCL?!
!
!

+ Better integration with OpenGL!
!

+ No extra installation!!
!

+ Easier to configure than OpenCL!
!

+ Not NVidia specific like CUDA!
!

+ If you know GLSL, Compute Shaders are (fairly) easy!

Information Coding / Computer Graphics, ISY, LiTH

Not only plus...!
!

- Steep hardware demands! Kepler + 4.3!
!

- Some new concepts!
!

- Not part of the main graphics pipeline like
fragment shaders!

!
!

Compute shaders run alone, not compiled
together with others.

Information Coding / Computer Graphics, ISY, LiTH

Information Coding / Computer Graphics, ISY, LiTH

Information Coding / Computer Graphics, ISY, LiTH

So how do I use it?!
!

Compiled like other shaders!!
!

Trivial change from the usual shader loader/compilers
from graphics programs, just compile as

GL_COMPUTE_SHADER.!
!

Easy:!
!

• Uniforms work as usual!
!

• Textures work as usual!
!

(Note that you can write to textures in Fermi and up!)

Information Coding / Computer Graphics, ISY, LiTH

Write to textures?!
!

Only newest GPUs.!
!

Call in shader: imageStore()!
!

imageStore(texUnit, texCoord, color);!
!

Needs synchronisation! New call for that:
glMemoryBarrier() and memoryBarrier() in shaders.!

!
GLSL is getting more and more general - but freedom does

not always make life easier.!
!

Back to Compute Shaders...

Information Coding / Computer Graphics, ISY, LiTH

A bit different!
!

No longer not one thread per fragment (output pixel)!
!

Thereby: No thread specific output!
!
!

Shader Storage Buffer Objects:!
!

General buffer type for arbitrary data!
!

Can be declared as an array of structures!
!

Read and written freely by Compute Shaders!

Information Coding / Computer Graphics, ISY, LiTH

How do I upload input data?!
!

Upload to SSBO:!
!

glGenBuffers(1, &ssbo);!
glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo);!

glBufferData(GL_SHADER_STORAGE_BUFFER, size, ptr,
GL_STATIC_DRAW);!

!
How does the shader know?!

!
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, id,

ssbo);!
!

layout(std430, binding = id, buffer x {type y[];};

Information Coding / Computer Graphics, ISY, LiTH

Access data in the shader!
!

Set number of threads per block:!
!

layout(local_size_x = width, local_size_y = height)!
!

Thread number:!
!

gl_GlobalInvocation!
gl_localInvocation!

!
 void main()!

 {!
 buffer[gl_GlobalInvocation.x] =!

 - buffer[gl_GlobalInvocation.x];!
 }

Information Coding / Computer Graphics, ISY, LiTH

Execute kernel!
!

glUseProgram(program);!
!

glDispatchCompute(sizex, sizey, sizez);!
!
!

The arguments to glDispatchProgram set the number of
blocks / workgroups. The number of threads (work items)

per block are set by the shader.

Information Coding / Computer Graphics, ISY, LiTH

Getting output data!
!

glBindBuffer(GL_SHADER_STORAGE, ssbo);!
ptr = (int *) glMapBuffer(GL_SHADER_STORAGE,

GL_READ_ONLY);!
!

Then read from ptr[i]!
!

glUnmapBuffer(GL_SHADER_STORAGE);

Information Coding / Computer Graphics, ISY, LiTH

int main(int argc, char **argv)	
{	
 glutInit (&argc, argv);	
 glutCreateWindow("TEST1");	
 	
// Load and compile the compute shader 	
 GLuint p =loadShader("cs.csh");	
	
 GLuint ssbo; //Shader Storage Buffer Object	
	
 // Some data	
 int buf[16] = {1, 2, -3, 4, 5, -6, 7, 8, 9,	
																10, 11, 12, 13, 14, 15, 16};	
 int *ptr;	
 	
// Create buffer, upload data	
 glGenBuffers(1, &ssbo);	
 glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo);	
 glBufferData(GL_SHADER_STORAGE_BUFFER,	
 16 * sizeof(int), &buf, GL_STATIC_DRAW);

// Tell it where the input goes!	
// "5" matches "layuot" in the shader.	
	
 glBindBufferBase(GL_SHADER_STORAGE_BUFFER,	
 5, ssbo);	
	
// Get rolling!	
 glDispatchCompute(16, 1, 1);	
	
// Get data back!	
 glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo);	
 ptr = (int *)glMapBuffer(
 GL_SHADER_STORAGE_BUFFER,	
 GL_READ_ONLY);	
 for (int i=0; i < 16; i++)	
 {	
 printf("%d\n", ptr[i]);	
 }	
}

Complete main program:

Information Coding / Computer Graphics, ISY, LiTH

#version 430	
#define width 16	
#define height 16	
	
// Compute shader invocations in each work group	
	
layout(std430, binding = 5) buffer bbs {int bs[];};	
	
layout(local_size_x=width, local_size_y=height) in;	
	
//Kernel Program	
void main()	
{	
 int i = int(gl_LocalInvocationID.x * 2);	
 bs[gl_LocalInvocationID.x] = -bs[gl_LocalInvocationID.x];	
}

Simple Compute Shader:
Note: Too many threads!
for data (16*16*16)

Information Coding / Computer Graphics, ISY, LiTH

News in 2014!
!

OpenGL Compute Shaders are now supported
in!
!

GLES 3.1 (embedded systems!)!
!

MESA for Intel GPUs (Haswell)

Information Coding / Computer Graphics, ISY, LiTH

Are Compute Shaders an
alternative?!

!
• Portable between GPUs and OSes!

!
• Steep hardware demands - for now!

!
• All advantages in the future?!

Information Coding / Computer Graphics, ISY, LiTH

CUDA

OpenCL

GLSL
Fragment
shaders

GLSL
Compute
shaders

Portable Features

Weak

Weak

Great Good

Great

Install

Weak

Weak

Great

Good

Great

Good Good

Code

Great

OK

Messy

OK

Information Coding / Computer Graphics, ISY, LiTH

But how about the performance???!
!

Some comparisons!
!

One old project: CUDA vs GLSL vs OpenCL,!
compared with a mass-spring system!

!
One current project: Multiple platforms,!

compared with similar FFT implementation

Information Coding / Computer Graphics, ISY, LiTH

Mass-spring system!
!

by Marco Fratarcangeli!
!

Part of my GPU computing PhD course a few years ago.!
!

Published in "Game Engine Gems 2"!
!

Result: CUDA and GLSL almost the same, OpenCL noticably
behind.

Information Coding / Computer Graphics, ISY, LiTH

"FFT everywhere" project!
!

by Torbjörn Sörman!
!

Ongoing diploma thesis project.!
!

Some interesting (preliminary) results.

Information Coding / Computer Graphics, ISY, LiTH
To

rb
jö

rn
 S

ör
m

an
's

 p
re

lim
in

ar
y!

re
su

lts
, 1

D
 F

FT

Information Coding / Computer Graphics, ISY, LiTH
To

rb
jö

rn
 S

ör
m

an
's

 p
re

lim
in

ar
y!

re
su

lts
, 2

D
 F

FT

Information Coding / Computer Graphics, ISY, LiTH
To

rb
jö

rn
 S

ör
m

an
's

 p
re

lim
in

ar
y!

re
su

lts
, 1

D
 F

FT
, A

M
D

Information Coding / Computer Graphics, ISY, LiTH

Torbjörn Sörman's preliminary results!
!

• cuFFT so much faster that it is scary...!
• Torbjörn's own GPU implementations much faster than CPU

versions!
• On NVidia, CUDA and Direct Compute significantly faster than

OpenGL Compute Shaders and OpenCL!
• On AMD, Direct Compute, OpenCL and OpenGL Compute Shaders

ran side-by-side!
!

Lots of if's and but's... but two clear conclusions:!
!

• Hard optimization (cuFFT and FFTW) pays, and not just by a little!!
• OpenCL and Compute Shaders very close - basically the same?

Information Coding / Computer Graphics, ISY, LiTH

GPU computing conclusions!
!

The desktop supercomputer!
!

Fast changing area!
!

Great performance for big problems that fit the
architecture!

!
Good performance for many other problems

