Information Coding / Computer Graphics, ISY, LiTH

Sorting on GPUs
Revisiting some algorithms from lecture 6:
Some not-so-good sorting approaches
Bitonic sort
QuickSort

Concurrent kernels and recursion

Information Coding / Computer Graphics, ISY, LiTH

Adapt to parallel algorithms
Many sorting algorithms are highly sequential
Suitable for parallel implementation?

- Data driven execution

- Data independent execution

\\\\\\\\\

Information Coding / Computer Graphics, ISY, LiTH

Data driven execution
Computing pattern depends on data
Usually harder to parallellize!

Example: QuickSort.

\\\\\\\\

Information Coding / Computer Graphics, ISY, LiTH

Data independent execution
Known computing pattern
Easier to parallellize - always the same plan

Example: Bitonic sort

Jj Information Coding / Computer Graphics, ISY, LiTH
P/

Bubble sort

Loop through data, compare neighbors
Extremely sequential
Inefficient
Parallel version: Bubble sort with odd-even transposition method
Compare all items pairwise

Two phases, "odd phase” and “even phase” (shifted one step”

Information Coding / Computer Graphics, ISY, LiTH

Bubble sort, parallel version
Bubble sort with odd-even transposition method
Compare all items pairwise

Two phases, "odd phase” and "even phase” (shifted one

step”
| | 1 | | T Even phase
Odd phase

O(n2)

g Information Coding / Computer Graphics, ISY, LiTH
44

Suitable for GPU?

Not as bad as it seems at first look:
- Data independent
- Excellent locality
* Pretty good possibilities to use shared memory (but with
some costly transfers at edges between blocks). Thus close
to optimal in global memory transfers.

- But certainly not optimal at very large sizes

“Better” algorithms don’t necessary beat this all that easily!

~—d”‘; Information Coding / Computer Graphics, ISY, LiTH
e

Rank sort
Count number of items that are smaller
Easy to parallelize:
* One thread per item
- Loop through entire data

« Store in index decided from count of number of smaller
items.

g Information Coding / Computer Graphics, ISY, LiTH
-

Suitable for GPU?

Again, not as bad as it seems at first look:
- Data independent

- Excellent locality - especially good for broadcasting (e.g.
constant memory). Also suitable for shared memory.

- Again, O(n2): Will grow at very large sizes

Two bad ones that are not quite as bad as they seem.

N parallel iterations may beat NlogN sequential ones!

..........

Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort
(As described In lecture 6)

Bitonic set: Two monotonic parts In different direction.

N

12} Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort
(According to Batcher:) Let a be a bitonic set with a maximum at
k, consisting of two monotonic parts, one increasing, a- (from
item 1 to k) and one decreasing, a* (k+1 to n)

Then two new sets can be constructed as

a’ = min(a1, ak+1), min(a2, ak+2)...
a” = max(a1, ak+1), max(az, ak+2)..-

These two sets are also bitonic and max(a’ in(a”)!

. COMNG _
& 4,

s 1 ’..
. o -
. .

/“' "j

o

Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort by divide-and-
conquer

Bitonic sort works on a bitonic sequence:
partially sorted

The parts must be sorted. Sort them by
bitonic sort!

Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort example

IRARE
IEREI RS
RN Y
TEIETRIA ST AN

Bitonic sort of smaller part
Reverse parts (bitonic merge)
Bitonic sort of main part
Reverse parts (bitonic merge)

Information Coding / Computer Graphics, ISY, LiTH

Bigger example

The problem scales nicely, uniformly

3 3 - 3 . - [
31 It ¥ I ll} I I
3 P13 k3 I] I
T B 3 LI it 3] [_J}L_
T £ S 3 I 7
T R f m L ”} —

23 ’I I3 H fI L] ':l_] t__m__
L] £ 1 T

More stages gives longer stages

(Image from Wikipedia)

g Information Coding / Computer Graphics, ISY, LiTH
e

g
4,
g

Get those steps right
Step length
Step direction
Comparison direction

Calculated from stage number and stage
length

\\\\\\\\

Information Coding / Computer Graphics, ISY, LiTH

Code examples
Sequential
Recursive example

Iterative example

d Information Coding / Computer Graphics, ISY, LiTH
=

Bitonic sort
- Data independent, no worst case
- Fast: O(n-log2n) (Why?)
- Good locality in some parts
but

* Big leaps In addressing for some parts

“
‘”h\t.

Information Coding / Computer Graphics, ISY, LiTH

What about those big leaps?

Small leaps: Can be computed within one block.
Shared memory friendly.

Big leaps (>number of threads/block): No
synchronization possible between blocks!

But we must synchronize!

-> multiple kernel runs!

"d’hﬁ Information Coding / Computer Graphics, ISY, LiTH
4

QuickSort

Very popular algorithm for sequential implementation

Choose pivot

SRR | | |
/ Nompare to pivot, form two sub\sg, repeat
V[¥

T

Data driven, data dependent reorganization, non-uniform

Fancy name - nobody expect QuickSort to be nothing but optimal

d Information Coding / Computer Graphics, ISY, LiTH
=

QuickSort is

Fast: O(n-logn) in typical cases
O(n2) in the worst case
Data driven, data dependent reorganization, non-uniform

Fancy name - nobody expects QuickSort to be nothing
but optimal

Information Coding / Computer Graphics, ISY, LiTH

QuickSort on GPU

Initially ignored as impractical
CUDA implementations exist

Data driven approaches increasingly suitable as
GPUs become more flexible

Information Coding / Computer Graphics, ISY, LiTH

Parallel QuickSort

Several stages to consider:
* Pivot selection. Usually just grab one.
- Comparisons
» Partitioning

 Concatenate result

Information Coding / Computer Graphics, ISY, LiTH

Pivot selection

If we could always pick a pivot that splits the data in half...

A\ L o | <
Th‘atkv\'uou'ld be greeat...

!
!

Information Coding / Computer Graphics, ISY, LiTH

« COMNG
5
(S
o A
v -
. »
. -
-
1‘%
NG

but you can’t do that without sorting! But
how about a random one?

NINE NINE y THAT'S THE

NINE NINE g PROBLEM
NINE NINE 3 WITH RAN-

OVER HERE
WE HAVE OUR

RANDOM NUMBER
GENERATOR.

DOMNESS -
YOU CAN
NEVER BE
SURE.

There is a worst case caused by bad pivots. Live with it!

Information Coding / Computer Graphics, ISY, LiTH

Comparisons
Easy to parallelize

One thread per comparison not unreasonable!
(GPUs don’t have a problem with many threads!)

No problem!

g Information Coding / Computer Graphics, ISY, LiTH
24

“
4”,'“' ~

Partitioning
The big problem!
Sequential partitioning: Bad!

Parallel partitioning 1: Atomic fetch & increment.
(GPUs have atomics!)

Parallel partitioning 2: Divide and conquer

1?} Information Coding / Computer Graphics, ISY, LiTH

“
40”“. ~

Recursion
GPUs can’t do recursion efficiently... or can they?
New in Kepler: Concurrent kernels
Not only a matter of launching kernels from CPU!
A kernel can spawn new kernels!

Do recursion by spawning new kernels!

..........

‘g Information Coding / Computer Graphics, ISY, LiTH
1,.'%. v‘/

Concurrent kernels, Dynamic Parallelism

Less work for the CPU to manage the computation.

= ——m (I

= (Il [[[[M

B — (DI A |
— 000 [0

™ U0 0 (I (I

. COMNG |

Information Coding / Computer Graphics, ISY, LiTH

Recursion can look like this:

__global void quicksort(int ¥*data, int left, int right)
{

int nleft, nright;

cudaStream t sl, s2;

// Partitions data based on pivot of first element.
// Returns counts in nleft & nright
partition(datat+left, data+right, data[left], nleft, nright); But doeS th|S rea”y
// If a sub-array needs sorting, launch a new grid for it. dO a gOOd JOb on
// Note use of streams to get concurrency between sub-sorts partitioning?
if(left < nright) {
cudaStreamCreateWithFlags(&sl, cudaStreamNonBlocking);
quicksort<<< ..., sl >>>(data, left, nright);

}
if(nleft < right) {

cudaStreamCreateWithFlags(&s2, cudaStreamNonBlocking);
quicksort<<< ..., 82 >>>(data, nleft, right);

}

__host void launch quicksort(int *data, int count)

{

quicksort<<< ... >>>(data, 0, count-1);

}

Source: http://blogs.nvidia.com/blog/2012/09/12/how-tesla-k20-
speeds-up-quicksort-a-familiar-comp-sci-code/

..........

jy Information Coding / Computer Graphics, ISY, LiTH
Y, v/

Advantages
 Less work for CPU
- Less synchronizing (from CPU side)

- Easier programming!

Quicksort Performance
Dynamic Parallel vs. Host-Controlled

o

They claim it matters
this much (but your
milage will vary)

W

w
f——

¥

l

|

™
(o))
1

_.1\ e CPU Launch

— Te— s GPU Launch

?’
{
{

Relative Sorting Performance
S ()

o
n

o

Increasing Problem Size

‘1")”‘1 Information Coding / Computer Graphics, ISY, LiTH
e

-“l
4,
»'\t.' o B

Recursive CUDA kernels, a promising
improvement

Big change in GPU computing?

Southfork has GPUs that support it.

Information Coding / Computer Graphics, ISY, LiTH

Information Coding / Computer Graphics, ISY, LiTH

Information Coding / Computer Graphics, ISY, LiTH

Information Coding / Computer Graphics, ISY, LiTH

