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Sorting on GPUs
Revisiting some algorithms from lecture 6:
Some not-so-good sorting approaches
Bitonic sort
QuickSort

Concurrent kernels and recursion
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Adapt to parallel algorithms
Many sorting algorithms are highly sequential
Suitable for parallel implementation?

- Data driven execution

- Data independent execution




\\\\\\\\\

Information Coding / Computer Graphics, ISY, LiTH

Data driven execution
Computing pattern depends on data
Usually harder to parallellize!

Example: QuickSort.




\\\\\\\\

Information Coding / Computer Graphics, ISY, LiTH

Data independent execution
Known computing pattern
Easier to parallellize - always the same plan

Example: Bitonic sort
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Bubble sort

Loop through data, compare neighbors
Extremely sequential
Inefficient
Parallel version: Bubble sort with odd-even transposition method
Compare all items pairwise

Two phases, "odd phase” and “even phase” (shifted one step”
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Bubble sort, parallel version
Bubble sort with odd-even transposition method
Compare all items pairwise

Two phases, "odd phase” and "even phase” (shifted one

step”
| | 1 | | T Even phase
Odd phase

O(n2)




g Information Coding / Computer Graphics, ISY, LiTH
44

Suitable for GPU?

Not as bad as it seems at first look:
- Data independent
- Excellent locality
* Pretty good possibilities to use shared memory (but with
some costly transfers at edges between blocks). Thus close
to optimal in global memory transfers.

- But certainly not optimal at very large sizes

“Better” algorithms don’t necessary beat this all that easily!
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Rank sort
Count number of items that are smaller
Easy to parallelize:
* One thread per item
- Loop through entire data

« Store in index decided from count of number of smaller
items.
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Suitable for GPU?

Again, not as bad as it seems at first look:
- Data independent

- Excellent locality - especially good for broadcasting (e.g.
constant memory). Also suitable for shared memory.

- Again, O(n2): Will grow at very large sizes

Two bad ones that are not quite as bad as they seem.

N parallel iterations may beat NlogN sequential ones!
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Bitonic sort
(As described In lecture 6)

Bitonic set: Two monotonic parts In different direction.

N
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Bitonic sort
(According to Batcher:) Let a be a bitonic set with a maximum at
k, consisting of two monotonic parts, one increasing, a- (from
item 1 to k) and one decreasing, a* (k+1 to n)

Then two new sets can be constructed as

a’ = min(a1, ak+1), min(a2, ak+2)...
a” = max(a1, ak+1), max(az, ak+2)..-

These two sets are also bitonic and max(a’ in(a”)!
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Bitonic sort by divide-and-
conquer

Bitonic sort works on a bitonic sequence:
partially sorted

The parts must be sorted. Sort them by
bitonic sort!
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Bitonic sort example
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Bitonic sort of smaller part
Reverse parts (bitonic merge)
Bitonic sort of main part
Reverse parts (bitonic merge)
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Bigger example

The problem scales nicely, uniformly
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More stages gives longer stages

(Image from Wikipedia)
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Get those steps right
Step length
Step direction
Comparison direction

Calculated from stage number and stage
length
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Code examples
Sequential
Recursive example

Iterative example
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Bitonic sort
- Data independent, no worst case
- Fast: O(n-log2n) (Why?)
- Good locality in some parts
but

* Big leaps In addressing for some parts
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What about those big leaps?

Small leaps: Can be computed within one block.
Shared memory friendly.

Big leaps (>number of threads/block): No
synchronization possible between blocks!

But we must synchronize!

-> multiple kernel runs!
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QuickSort

Very popular algorithm for sequential implementation

Choose pivot

SRR | | |
/ Nompare to pivot, form two sub\sg, repeat
V[ ¥

T

Data driven, data dependent reorganization, non-uniform

Fancy name - nobody expect QuickSort to be nothing but optimal
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QuickSort is

Fast: O(n-logn) in typical cases
O(n2) in the worst case
Data driven, data dependent reorganization, non-uniform

Fancy name - nobody expects QuickSort to be nothing
but optimal
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QuickSort on GPU

Initially ignored as impractical
CUDA implementations exist

Data driven approaches increasingly suitable as
GPUs become more flexible
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Parallel QuickSort

Several stages to consider:
* Pivot selection. Usually just grab one.
- Comparisons
» Partitioning

 Concatenate result
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Pivot selection

If we could always pick a pivot that splits the data in half...

A\ L o | <
Th‘atkv\'uou'ld be greeat...
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but you can’t do that without sorting! But
how about a random one?

NINE NINE y THAT'S THE

NINE NINE g PROBLEM
NINE NINE 3 WITH RAN-

OVER HERE
WE HAVE OUR

RANDOM NUMBER
GENERATOR.

DOMNESS -
YOU CAN
NEVER BE
SURE.

There is a worst case caused by bad pivots. Live with it!
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Comparisons
Easy to parallelize

One thread per comparison not unreasonable!
(GPUs don’t have a problem with many threads!)

No problem!
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Partitioning
The big problem!
Sequential partitioning: Bad!

Parallel partitioning 1: Atomic fetch & increment.
(GPUs have atomics!)

Parallel partitioning 2: Divide and conquer
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Recursion
GPUs can’t do recursion efficiently... or can they?
New in Kepler: Concurrent kernels
Not only a matter of launching kernels from CPU!
A kernel can spawn new kernels!

Do recursion by spawning new kernels!
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Concurrent kernels, Dynamic Parallelism

Less work for the CPU to manage the computation.
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Recursion can look like this:

__global  void quicksort(int ¥*data, int left, int right)
{

int nleft, nright;

cudaStream t sl, s2;

// Partitions data based on pivot of first element.
// Returns counts in nleft & nright
partition(datat+left, data+right, data[left], nleft, nright); But doeS th|S rea”y
// If a sub-array needs sorting, launch a new grid for it. dO a gOOd JOb on
// Note use of streams to get concurrency between sub-sorts partitioning?
if(left < nright) {
cudaStreamCreateWithFlags(&sl, cudaStreamNonBlocking);
quicksort<<< ..., sl >>>(data, left, nright);

}
if(nleft < right) {

cudaStreamCreateWithFlags(&s2, cudaStreamNonBlocking);
quicksort<<< ..., 82 >>>(data, nleft, right);

}

__host  void launch quicksort(int *data, int count)

{

quicksort<<< ... >>>(data, 0, count-1);

}

Source: http://blogs.nvidia.com/blog/2012/09/12/how-tesla-k20-
speeds-up-quicksort-a-familiar-comp-sci-code/
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Advantages
 Less work for CPU
- Less synchronizing (from CPU side)

- Easier programming!

Quicksort Performance
Dynamic Parallel vs. Host-Controlled

o

They claim it matters
this much (but your
milage will vary)
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Recursive CUDA kernels, a promising
improvement

Big change in GPU computing?

Southfork has GPUs that support it.
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