

Examples of reduction algorithms

Extracting small data from larger

Finding max or min

- Calculating median or average
 - Histograms
 - **Common problems!**

Sequentially trivial

Loop through data

Add, min/max, accumulate results

Fits badly in massive parallelism!

Tree-based approach

Each level parallel! Can be split onto large numbers of threads

but

the parallelism is reduced for each level, and the results need to be reorganized to a smaller number of threads!

Multiple kernel runs for varying size!

For n = k downto 0 do Launch 2ⁿ kernels

Multiple levels can be merged into one - but not all of them!

Important note: You can not synchronize between blocks!

Why?

Complex hardware Risk for deadlock between blocks that are not simultaneously active

Many important optimizations:

- Avoid "if" statements, divergent branches
 - Avoid bank conflicts in shared memory
 - Loop unrolling to avoid loop overhead (classic old-style optimization!)

Huge speed difference reported by Harris

	Time (2 ²² ints)	Bandwidth	Step Speedup	Cumulati Speedu
Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s		
Kernel 2: interleaved addressing with bank conflicts	3.456 ms	4.854 GB/s	2.33x	2.3
Kernel 3: sequential addressing	1.722 ms	9.741 GB/s	2.01x	4.6
Kernel 4: first add during global load	0.965 ms	17.377 GB/s	1.78x	8.3
Kernel 5: unroll last warp	0.536 ms	31.289 GB/s	1.8x	15.0
Kernel 6: completely unrolled	0.381 ms	43.996 GB/s	1.41x	21.1
Kernel 7: multiple elements per thread	0.268 ms	62.671 GB/s	1.42x	30.0

Conclusions:

- Multiple kernel runs for varying problem size
- Multiple kernel runs for synchronizing blocks
- Optimizing matters! Not only shared memory and coalescing!