|||||||

Information Coding / Computer Graphics, ISY, LiTH

Lecture 11

More CUDA

Information Coding / Computer Graphics, ISY, LiTH

In this episode...
* Error checking
- Query device capabilities
- CUDA events
* More on CUDA memory:

Coalescing, Constant memory, Texture memory...

Information Coding / Computer Graphics, ISY, LiTH

Lab 4

Happened earlier than usual. Everybody done or
almost done?

Last year major change: "Mandelbrot revisited”
part, to follow up lab 1.

00 Mandelbrot explorer (CPU)

Everything OK
so far?

(Except for the drivers
in the Multicore lab.)

Jj Information Coding / Computer Graphics, ISY, LiTH
N

The story so far...
- CUDA and its language extensions
- The CUDA architecture
* Intro to memory

- Matrix multiplication example, using
shared memory

Information Coding / Computer Graphics, ISY, LiTH

CUDA and its language extensions
Kernel involation myKernel<<<>>>()
__global__ _ device_ _ host__
cudaMalloc(), cudaMemcpy()
threadldx, blockldx, blockDim, gridDim

Using nvcc

Information Coding / Computer Graphics, ISY, LiTH

The CUDA architecture

Blocks and threads
Grid-block-thread hierarchy

Indexing data with thread/block numbers

d Information Coding / Computer Graphics, ISY, LiTH
z," v‘j

Intro to memory
global memory
shared memory

constant memory
local memory

texture memory/texture units

Information Coding / Computer Graphics, ISY, LiTH

Matrix multiplication example, using
shared memory

L] I N R A

) Of O o

Huge speedup - my measly 9400M went from
obvious loser to clearly faster than CPU!

Information Coding / Computer Graphics, ISY, LiTH

Over to today’s episode:

“
‘1%“.

Information Coding / Computer Graphics, ISY, LiTH

Lecture questions:

1. Why can using constant memory
improve performance?

2. What is CUDA Events used for?

3. What does coalescing mean and what
should we do to get a speedup from
coalescing?

Information Coding / Computer Graphics, ISY, LiTH

Error checking

- Functions returns error codes (but

kernel launch does not)
- cudaGetLastError()

- cudaPeekLastError()

Information Coding / Computer Graphics, ISY, LiTH

Asynchronous error
checking

Asynchronous errors can not be returned
by the function call!

Call cudaDeviceSynchronize() and check
its returned error code.

Information Coding / Computer Graphics, ISY, LiTH

Query devices

You can’t trust all devices to have the
same - or even similar - data.

New boards may have totally different
data.

Query CUDA for a list of features using
cudaGetDeviceProperties()

Information Coding / Computer Graphics, ISY, LiTH

Example query result

---- Information for GeForce 9400M ----
Compute capability: 1.1
Total global memory (VRAM): 259712 kB
Total constant Mem: ©64 kB
Number of SMs: 2
Shared mem per SM: 16 kB
Registers per SM: 8192
Threads in warp: 32
Max threads per block: 512
Max thread dimensions: (512, 512, 64)
Max grid dimensions: (65535, 65535, 1)

g Information Coding / Computer Graphics, ISY, LiTH
e

What is important?

Compute capability - can this board at all work with
our program?

Amount of shared memory - make sure we fit.
Max threads, max dimensions - make sure we fit.
Threads 1in warp: A lower bound for performance.

Number of SMs: Lower bound for blocks

Information Coding / Computer Graphics, ISY, LiTH

Compute capability

Essentially CUDA/architecture version
number.

1.0: Original release.
1.1: Mapped memory, atomic operations.
1.3: Double support.
2.0: Fermi.
3.0: Kepler.
5.0: Maxwell.

Feature Support

Compute Capability

(Unlisted features are supported for all
compute capabilities)

2.x,

1.0 1.1 1.2 1.3 3.0

Atomic functions operating on 32-bit integer
values in global memory (Atomic Functions)

atomicExch() operating on 32-bit floating
point values in global memory (atomicExch())

No Yes

3.5

LiTH

Atomic functions operating on 32-bit integer
values in shared memory (Atomic Functions)

atomicExch() operating on 32-bit floating
point values in shared memory (atomicExch())

Atomic functions operating on 64-bit integer
values in global memory (Atomic Functions)

Warp vote functions (Warp Vote Functions)

Double-precision floating-point numbers

Atomic functions operating on 64-bit integer
values in shared memory (Atomic Functions)

Atomic addition operating on 32-bit floating

point values in global and shared memory
(atomicAdd())

_ballot() (Warp Vote Functions)

_threadfence_system() (Memory Fence
Functions)

—syncthreads_count(),
—syncthreads_and(),

syncthreads_or() (Synchronization
Functions)

Surface functions (Surface Functions)

3D grid of thread blocks

No

Yes

Funnel shift (see reference manual)

No

Yes

Information Coding / Computer Graphics, ISY, LiTH

FERMI FERMI KEPLER | KEPLER

GF100 | GF104 | GK104 | GK110
Compute Capability 2.0 2 3.0 3.5
Threads / Warp 32 32 32 32
Max Warps / Multiprocessor 48 48 64 64
Max Threads / Multiprocessor 1536 1536 2048 2048
Max Thread Blocks / Multiprocessor 8 8 16 16
32-bit Registers / Multiprocessor 32768 32768 65536 65536
Max Registers / Thread 63 63 63 255
Max Threads / Thread Block 1024 1024 1024 1024
Shared Memory Size Configurations (bytes) 16K 16K 16K 16K
48K 48K 32K 32K
48K 48K
Max X Grid Dimension 2716-1 2716-1 2732-1 2732-1
Hyper-Q No No No Yes
Dynamic Parallelism No No No Yes

Compute Capability of Fermi and Kepler GPUs

Information Coding / Computer Graphics, ISY, LiTH

Compute Capability 1.0 1.1 1.2 1.3 2.0 2.1 3.0 3.5

SM Version sm_10 sm_11 sm_12 sm_13 sm_20 sm_21 sm_30 sm_35

Threads / Warp 32 32 32 32 32 32 32 32

Warps / Multiprocessor 24 24 32 32 43 438 64 64

Threads / Multiprocessor 768 768 1024 1024 1536 1536 2048 2048

Thread Blocks / Multiprocessor 8 8 8 8 8 8 16 16

Max Shared Memory / Multiprocessor (bytes) 16384 16384 16384 16384 49152 49152 49152 49152
Register File Size 8192 8192 16384 16384 32768 32768 65536 65536

Register Allocation Unit Size 256 256 512 512 64 64 256 256

Allocation Granularity block block block block warp warp warp warp

Max Registers / Thread 124 124 124 124 63 63 63 255

Shared Memory Allocation Unit Size 512 512 512 512 128 128 256 256

Warp allocation granularity 2 2 2 2 2 2 4 4

Max Thread Block Size 512 512 512 512 1024 1024 1024 1024

Shared Memory Size Configurations (bytes) 16384 16384 16384 16384 49152 49152 49152 49152
[note: default at top of list] 16384 16384 16384 16384

32768 32768

Warp register allocation granularities 64 64 256 256

[note: default at top of list] 128 128

Information Coding / Computer Graphics, ISY, LiTH

Do | care about Compute
capability?

While learning CUDA - not much. Stick to the
basics, it works on all.

But if you write professional CUDA code, of
course.

« COMNNG =
‘u‘ (."’
- -
~ -“
. - -
. -
“
4 V“}
g . W

Information Coding / Computer Graphics, ISY, LiTH

CUDA Events
Timing!

Two ways of timing CUDA programs:

- CPU timer. Synchronize at start and end.

- CUDA Events. Synchronize at end.

Synchronize? Because CUDA runs
asynchronously.

12} Information Coding / Computer Graphics, ISY, LiTH

“
ﬂﬂﬂﬂﬂ

CUDA Events API

cudaEventCreate - initialize an event variable
cudaEventRecord - place a marker in the queue

cudaEventSynchronize - wait until all markers
have received values

cudaEventElapsedTime - get the time difference
between two events

