:f w-#g: Information Coding / Computer Graphics, ISY, LiTH
1"“%'.»0}

Timeline for CPUs
80’s: CPU and system same speed. Zero wait states.

1993: CPUs faster than the rest of the system. Rapid
raise of frequency.

Late 90’s to present: Multi-CPU systems, multi-core
CPUs.

CPUs are still improving, but going for higher
frequency is not as obvious as before.

e
.
o

: # : Information Coding / Computer Graphics, ISY, LiTH
e

Meanwhile, at the graphics dept
80’s: Hardware sprites. Push pixels with low-level code.
1993: Textures 3D games: Wolf3D, Doom.

Early 90’s: Professional 3D hoards.

1996: 3dfx Voodoo1!

2001: Programmable shaders.

2006: G80, unified architecture. CUDA
2009: OpenCL.

2010: Fermi architecture

2012: Kepler architecture

f

s "
: % Information Coding / Computer Graphics, ISY, LiTH

o
1995 | 2005

CPU Frequency (GHz) _ 3.2 32x
Memory Frequency (GHz) 1.2 40x
Bus Bandwidth (GB/sec) 1| 4

Hard Disk Size (GB) AQ0X

. cob
&

:g . : Information Coding / Computer Graphics, ISY, LiTH
N

CPU Frequency (GHz) 32x
Memory Frequency (GHz) 40x

40x
Pixel Fill Rate (GPixels/sec) 0004 3.3 8250x
Vertex Rate (GVerts/sec) 0005 | .35 700x
Graphics flops (GFlops/sec) 001 | 40 40000x
Graphics Bandwidth (GB/sec) 3 | 19 63x

Frame Buffer Size (MB 128x

g Y
j y : Information Coding / Computer Graphics, ISY, LiTH

How about 2005-2011?

Hard Disk Size (GB)

e
: # : Information Coding / Computer Graphics, I1SY, LiTH

Hard Disk Size (GB)

Pixel Fill Rate (GPixels/sec)
Vertex Rate (GVerts/sec)
Graphics flops (GFlops/sec)
Graphics Bandwidth (GB/sec)
Frame Buffer Size (MB)

e COUG

Information Coding / Computer Graphics, ISY, LiTH

Theoretical
GFLOP/s
31250

3000

HWIDIA GPU Single Predsion
1750 i WIDIA, BRI DhibA & P 50 S

2500 g bl CP Snple Predision
s Irted CTU Dowbie Progision
1250

2000

The GFLOPS

1500
race 1250
iooa
750

500

: Tesla 1060
150 oo rest B

Tesia £2050
o sandyBricge

1] “‘ " Wb
Sen-ﬂ'?m'”gd Jun-04 Har-gF 1o P nec 08 Aug-12

Floating-Point Operations per Second - NVIDIA CUDA C Programming Guide
Version 4.2 - 45,2012 - copyright NVIDIA Corporation 2012

- cOMNG |
s .

Information Coding / Computer Graphics, I1SY, LiTH

Theoretical GFLOP/s

4750

4500 GeForce GTX TITAN
4150 NVIDIA GPU Single Precision

4000 g NVIDIA GPU Double Precision

3750 Intel CPU Double Precision
1500 ==ge=|ntel CPU Single Predision

3250
3000 GeForce GTX 680

2750 The GFLOPS

2500
2250 race

2000

1750 GeForce GTX 580
1500 GeForce GTX <460 Tesla K20
1250

GeForce GTX 280

1000 Tesla M2090
750 GeFarce BEOG GTH Tesla C2050
500 GeForce 7800 GTX Tesla C1060

250 GeForce 5800 Ultra Harpertown,
GeForce FX 5800 Woodcrest

Sandy Bridge

Pentium 4% Bloomfield Westmere
Apr-01 Sep-02 Jan-04 May-05 Oct-06 Feb-08 Jul-09 nv—1e(5 Apr-12 Aug-13 Dec-14

L COPNG

&

"o

c“’ l&-

Information Coding / Computer Graphics, ISY, LiTH

GFLOPS

Another graph, including ATI/AMD

100 . , . T . 1 . T . T .
-3 NVIDIA 86 4 GB}FS |
- ATI '

300 + == Intel

200 .

100

T

8.5 GB/S

dual-core -l

1 1

0

2003 2004

Year

2001 2002

2005

2006 2007

Information Coding / Computer Graphics, I1SY, LiTH

GFLOP/s

3000

2300 -

Another graph, including ATIY/AMD

Paak theorstical perfomance comparision betwessn GPUs and CPUs
1 1 1 I

AT (SR AMD took the lead
Nvidia in single precision
i while NYidia was
chasing for double
ﬁf with Fermi
T - = —/
R 50 W w0 i

Months since januari 2000

y,‘s.umm.‘q%
j % Information Coding / Computer Graphics, ISY, LiTH
)

How is this possible?

Area use:
CPU GPU

EREEEEER

But in particular: SIMD architecture

Information Coding / Computer Graphics, I1SY, LiTH

Flynn’s taxonomy

Since instruction, single data Mupltiple instructions, single data
Old single-core Multiple computations for redundancy
Since instruction, multiple data Muliple instructions, multiple data.
GPUs, vector processors Multi-core CPUs

SIMT = single instruction, mulitiple thread

Information Coding / Computer Graphics, ISY, LiTH

Important implications of
SIMD/SIMT

SIMD: ”if” statements - all or none

SIMT: Thread focused. Fast thread switching.
Hides memory latency!

. A%
: # : Information Coding / Computer Graphics, ISY, LiTH
i w/

Why did GPUs get so much performance?

Early problem with large amounts of data. (Complex geometry,
millions of output pixels.)

Graphics pipeline designed for parallelism!
Hiding memory latency by parallelism

Volume. 3D graphics boards central component in game
industry. Everybody wants one!

New games heed new impressive features. Many important
advancements started as game features.

_#«,.: Information Coding / Computer Graphics, ISY, LiTH
P

=
Must process many pixels fast! Q

Early GPUs could draw textured, shaded triangles much
faster than the CPU.

Must do matrix multiplication and divisions fast. Q

Next generation could transform vertices and normalize
vectors.

Must have programmable parts.
This was added to make Phong shading and bump mapping.
Must work in floating-point!

This was for light effects, HDR.

NG
[’
iy

‘#ta: Information Coding / Computer Graphics, I1SY, LiTH
o,

So a GPU should

+ process vertices, many in parallel, applying the same
transformations on each

- process pixels (fragments) in parallel, applying the
same colorllighttexture calculations on each

SIMD friendly problem!

Less control, control many calculations instead of one

_#«,.: Information Coding / Computer Graphics, ISY, LiTH
o

A different Kind of threads

SIMD threads, all run the same program

Group-wise, they execute Iin parallel, SIMD-style

Shader threads calculate one pixel or one vertex

CUDA/OpenCL threads may calculate anything, but
typically one part of the output - in order

NG
[’
iy

‘#ta: Information Coding / Computer Graphics, I1SY, LiTH
o,

The main tasks in rendering graphics:

One thread per vertex
Same operations, same kernel, different data

- " CUDA and OpenCL generalize
- this to any kind of data, and
possibility to access any part of
memory.

One thread per pixel {fragment)
Same operations, same Kernel, different data

| _—
| —_— =

.f_u-' i = ta'
o '.dm/

Information Coding / Computer Graphics, ISY, LiTH

The 3D pipeline in the GPU

Low-level operations from vertices to pixel data

Frimitives,
connectiviy

erter coordinales Vertex Transformed Primitive Triangles ete
and normal vectors Processor |coordinates assembly
Clip, cull
Texture
Fragment = {}
operations Fragment Rast
] ——— Raster
Frame buffer N2 ®%% pracassor [\ 2™ | conversion
operations

