:f w-#g: Information Coding / Computer Graphics, ISY, LiTH
1"“%'.»0}

Timeline for CPUs
80’s: CPU and system same speed. Zero wait states.

1993: CPUs faster than the rest of the system. Rapid
raise of frequency.

Late 90’s to present: Multi-CPU systems, multi-core
CPUs.

CPUs are still improving, but going for higher
frequency is not as obvious as before.
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Meanwhile, at the graphics dept
80’s: Hardware sprites. Push pixels with low-level code.
1993: Textures 3D games: Wolf3D, Doom.

Early 90’s: Professional 3D hoards.

1996: 3dfx Voodoo1!

2001: Programmable shaders.

2006: G80, unified architecture. CUDA
2009: OpenCL.

2010: Fermi architecture

2012: Kepler architecture
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1995 | 2005

CPU Frequency (GHz) _ 3.2 32x
Memory Frequency (GHz) 1.2 40x
Bus Bandwidth (GB/sec) 1| 4

Hard Disk Size (GB) AQ0X
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CPU Frequency (GHz) 32x
Memory Frequency (GHz) 40x

40x
Pixel Fill Rate (GPixels/sec) 0004 3.3 8250x
Vertex Rate (GVerts/sec) 0005 | .35 700x
Graphics flops (GFlops/sec) 001 | 40 40000x
Graphics Bandwidth (GB/sec) 3 | 19 63x

Frame Buffer Size (MB 128x
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How about 2005-2011?

Hard Disk Size (GB)

e
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Hard Disk Size (GB)

Pixel Fill Rate (GPixels/sec)
Vertex Rate (GVerts/sec)
Graphics flops (GFlops/sec)
Graphics Bandwidth (GB/sec)
Frame Buffer Size (MB)
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GFLOPS

Another graph, including ATI/AMD
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How is this possible?

Area use:
CPU GPU
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But in particular: SIMD architecture
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Flynn’s taxonomy

Since instruction, single data Mupltiple instructions, single data
Old single-core Multiple computations for redundancy
Since instruction, multiple data Muliple instructions, multiple data.
GPUs, vector processors Multi-core CPUs

SIMT = single instruction, mulitiple thread
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Important implications of
SIMD/SIMT

SIMD: ”if” statements - all or none

SIMT: Thread focused. Fast thread switching.
Hides memory latency!
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Why did GPUs get so much performance?

Early problem with large amounts of data. (Complex geometry,
millions of output pixels.)

Graphics pipeline designed for parallelism!
Hiding memory latency by parallelism

Volume. 3D graphics boards central component in game
industry. Everybody wants one!

New games heed new impressive features. Many important
advancements started as game features.
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Must process many pixels fast! Q

Early GPUs could draw textured, shaded triangles much
faster than the CPU.

Must do matrix multiplication and divisions fast. Q

Next generation could transform vertices and normalize
vectors.

Must have programmable parts.
This was added to make Phong shading and bump mapping.
Must work in floating-point!

This was for light effects, HDR.
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So a GPU should

+ process vertices, many in parallel, applying the same
transformations on each

- process pixels (fragments) in parallel, applying the
same colorllighttexture calculations on each

SIMD friendly problem!

Less control, control many calculations instead of one
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A different Kind of threads

SIMD threads, all run the same program

Group-wise, they execute Iin parallel, SIMD-style

Shader threads calculate one pixel or one vertex

CUDA/OpenCL threads may calculate anything, but
typically one part of the output - in order
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The main tasks in rendering graphics:

One thread per vertex
Same operations, same kernel, different data

- " CUDA and OpenCL generalize
- this to any kind of data, and
possibility to access any part of
memory.

One thread per pixel {fragment)
Same operations, same Kernel, different data
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The 3D pipeline in the GPU

Low-level operations from vertices to pixel data

Frimitives,
connectiviy

erter coordinales Vertex Transformed Primitive Triangles ete
and normal vectors Processor  |coordinates assembly
Clip, cull
Texture
Fragment = {}
operations Fragment Rast
] ——— Raster
Frame buffer N2 ®%% pracassor [\ 2™ | conversion
operations




