Information Coding / Computer Graphics, ISY, LiTH

Lecture 11 (#3 on GPU Computing)

More CUDA

Information Coding / Computer Graphics, I1SY, LiTH

In this episode...
* Query device capabilities
- CUDA events
* More on CUDA memory:

Coalescing, Constant memory, Texture memotry...




Information Coding / Computer Graphics, ISY, LiTH

The story so far...
« CUDA and its language extensions
* The CUDA architecture
* Intro to memory

« Matrix multiplication example, using
shared memory

Information Coding / Computer Graphics, I1SY, LiTH

CUDA and its language extensions

Kernel involation myKernel<<<>>>()
__global _ device _ host
cudaMalloc(), cudaMemcpy()
threadidx, blockldx, blockDim, gridDim

Using nvcc




Information Coding / Computer Graphics, ISY, LiTH

The CUDA architecture

Blocks and threads
Grid-block-thread hierarchy

Indexing data with thread/block humbers

Information Coding / Computer Graphics, I1SY, LiTH

Intro to memotry
global memory
shared memory

constant memory
local memory

texture memory/texture units




Information Coding / Computer Graphics, ISY, LiTH

Matrix multiplication example, using
shared memory

Ol o g |o g O

O

O

O

Huge speedup - my measly 9400M went from
obvious loser to clearly faster than CPU!

Information Coding / Computer Graphics, I1SY, LiTH

Over to today’s episode:




Information Coding / Computer Graphics, ISY, LiTH

Lecture questions:

1. Why can using constant memory
improve performance?

2. What is CUDA Events used for?

3. What does coalescing mean and what
should we do to get a speedup from
coalescing?

Information Coding / Computer Graphics, I1SY, LiTH

Query devices

You can’t trust all devices to have the
same - or even similar - data.

New boards may have totally different
data.

Query CUDA for a list of features using
cudaGetDeviceProperties()




Information Coding / Computer Graphics, ISY, LiTH

Example query result

---- Information for GeForce 940@0M ----
Compute capability: 1.1
Total global memory (VRAM): 259712 kB
Total constant Mem: 64 kB
Number of SMs: 2
Shared mem per SM: 16 kB
Registers per SM: 8192
Threads 1in warp: 32
Max threads per block: 512
Max thread dimensions: (512, 512, ©4)
Max grid dimensions: (65535, 65535, 1)

Information Coding / Computer Graphics, I1SY, LiTH

What is important?

Compute capability - can this boadrd at all work with
our program?

Amount of shared memory - make sure we fit.
Max threads, max dimensions - make sure we fit.
Threads in warp: A lower bound for performance.

Number of SMs: Lower bound for blocks




Information Coding / Computer Graphics, ISY, LiTH

Compute capability

Essentially CUDA/architecture version
number.

1.0: Original release.
1.1: Mapped memory, atomic operations.
1.3: Double support.
2.0: Fermi.
3.5: Kepler.

Information Coding / Computer Graphics, I1SY, LiTH

Do | care about Compute
capability?

While learning CUDA - not much. Stick to the
basics, it works on all.

But if you write professional CUDA code, of
course.




Information Coding / Computer Graphics, ISY, LiTH

CUDA Events

Timing!
Two ways of timing CUDA programs:
- CPU timer. Synchronize at start and end.
- CUDA Events. Synchronize at end.

Synchronize? Because CUDA runs
asynchronously.

Information Coding / Computer Graphics, I1SY, LiTH

CUDA Events API

cudaEventCreate - initialize an event variable
cudaEventRecord - place a marker in the queue

cudaEventSynchronize - wait until all markers
have received values

cudaEventElapsedTime - get the time difference
between two events




Information Coding / Computer Graphics, ISY, LiTH

CUDA Events and Streams

CUDA commands are placed in a queue - a
stream

Commands are executed, and when a marker is
encountered, it is given a time value

We usually only use the default CUDA stream.

Multiple CUDA streams can be used to overlap
work - especially computing and data transfers

Information Coding / Computer Graphics, I1SY, LiTH

BG4

Single stream computation

The kernel can not run until the data is
transfered.

Copy data to GPU

Run kernel

For this example: 2/3 data transfer, 1/3 Copy result to CPU
computation

Copy data to GPU

Run kernel

Copy result to CPU




Information Coding / Computer Graphics, ISY, LiTH

Dual stream
computation

One stream runs a kernel while
the other performs data

copying.

More time for computing,
kernels running 122 of the time
instead of 1/3.

Copy data to GPU

Run kernel

Copy data to GPU

Copy result to CPU

Run kernel

Copy data to GPU

Run kernel

Copy result to CPU

Copy data to GPU

Copy result to CPU

Run kernel

Copy result to CPU




