jf ‘#taj Information Coding / Computer Graphics, ISY, LiTH
o, M

Memory access

Vital for performance!
Memory types
Coalescing

Example of using shared memory

Information Coding / Computer Graphics, ISY, LiTH

Memory types
Global
Shared
Constant (read only)
Texture cache (read only)
Local
Registers

Care about these when optimizing - not to begin with

Information Coding / Computer Graphics, ISY, LiTH

Global memory
400-600 cycles latency!

Shared memory fast temporary storage
Coalesce memotry access!
Continuous
Aligned on power of 2 boundary

Addressing follows thread numbering

Use shared memory for reorganizing data for
coalescing!

Information Coding / Computer Graphics, ISY, LiTH

Using shared memory to reduce
number of global memory accesses
Read blocks of data to shared memory
Process
Write back as needed
Shared memory as "manual cache”

Example: Matrix multiplication

Information Coding / Computer Graphics, ISY, LiTH

Matrix multiplication

To multiply two N*N matrices, every item will have to be accessed N timesl

Naive implementation: 2N3 global memory accesses!

Information Coding / Computer Graphics, ISY, LiTH

Matrix multiplication

Let each block handle a part of the output.

Load the parts of the matrix needed for the block into shared memory.

Information Coding / Computer Graphics, ISY, LiTH

Matrix multiplication on CPU

Simple triple "for” loop

void MatrixMultCPU(float *a, float *b, float *c, int theSize)
{

int sum, i, j, k;

// For every destination element

for(i = 0; 1 < theSize; i++)
for{j = ©; j = theSize; j++)
{

sum = 9;
// sum along a row in a and a column in b
for(k = 0; k < theSize; k++)
sum = sum + (a[i*theSize + k]*b[k*theSize + j]);
c[i*theSize + j] = sum;

Information Coding / Computer Graphics, ISY, LiTH

Naive GPU version

Replace outer loops by thread indices

__global__ void MatrixMultNaive(float *a, float *b, float *c, int
theSize)
{

int sum, i, j, k;

blockIdx.x * blockDim.x + threadldx.x;
blockIdx.y * blockDim.y + threadIdx.y;

j

7/ For every destination element
sum = 9;
7/ sum along a row in a and a column in b
for{k = @; k = theSize; k++)
sum = sum + (a[i*theSize + k]*b[k*theSize + j]1D;
c[i*theSize + j] = sum;

Information Coding / Computer Graphics, ISY, LiTH

Naive GPU version inefficient

Every thread makes 2N global memory
accesses!

Can be significantly reduced using shared
memory

Information Coding / Computer Graphics, ISY, LiTH

Optimized GPU version

Data split into blocks.

Every element takes part in all the blocks in the same
rowfor A, columnfor B

For every such block
Every thread reads one element to shared memory

Then loop over the appropriate row and column
for the block

Information Coding / Computer Graphics, ISY, LiTH

Destinaion A B
element for
thread] O O | OJ Il
I
Destination ~ 0
m%calfdfor All blocks on the same And all blocks
row inA are needed to in the same
produce the destination column of C
block O
4
[l

For every block, thre thread
read one elemant matching
the destination element

For every block, we 0 What one thread
loop over the part of e reads is used by
one row and column a— everybody inths
to perform that part of [same row (A) or
the: computation column (B))

Information Coding / Computer Graphics, ISY, LiTH

__global__ woid MotrizMultOptimized(floot* A, float* B, float* C, int theSi
{

Optimized GPU =" "
p Imlze A4 Global index for thread
1 = blockIds.x * blockDim.x + threadIds<.x;

Version h] ; blockIds.y * blockDim.y + threadIds.y;

floot sum = 8.0
£4 for all source blocks
Loop over blocks (1D) for (b= @; b = gridDim.x; bt
{
__szhared__ float As[BLOCKSIZE*BLOCKSIZE];

Allocate shared memory _shared__ float Bs[BLOCKSIZE*ELOCKSIZE];

#4 Index locked to block
i1 b * block[im.x + threadIds.«;
33 b * blocklim.y + threadIds.y;

As[threadIds.y*blockDim.x + threadIds.x] = A[ii*theSize + j];
Copy one element to Bs[threadIds.y*blockDim.x + threadldx.x] = B[i*theSize + j3];

shared memory

__syncthreads(); // Synchronize to make sure all dota iz looded

£4 Loop in block

Loop over row/column in block, For (k = @ k < blockDim.x3 ++k)
+= As[threadlds. y*blocklim.x + k]
compute, accumulate result for P A i
one element
__syncthreads(); /4 Synch so nobody storts next pass premoturely
}
Write result to global memory Cli*theSize + 51 = sum:

Information Coding / Computer Graphics, ISY, LiTH

Modified computing model:
Upload data to global GPU memory

For a number of parts, do:
Upload partial data to shared memory
Process partial data
Write partial data to global memory

Download result to host

Information Coding / Computer Graphics, ISY, LiTH

Synchronization

As soon as you do something where one part of a
computation depends on a result from another thread,
you must synchronize!

__syncthreads()
Typical implementation:

* Read to shared memory
__syncthreads()

* Process shared memory

« __synchthreads()

- Write result to global memory

Information Coding / Computer Graphics, ISY, LiTH

Summary:
- Make threads and blocks to make the hardware occupied
« Access data depending on thread/block number
+ Memory accesses are expensivel
+ Shared memory is fast
- Make threads within a block cooperate

- Synchronize

Information Coding / Computer Graphics, ISY, LiTH

That’s all folks!

Next: More about memory management and
optimization.

