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Memory access

Vital for performance!
Memory types
Coalescing

Example of using shared memory
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Memory types
Global
Shared
Constant (read only)
Texture cache (read only)
Local
Registers

Care about these when optimizing - not to begin with
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Global memory
400-600 cycles latency!

Shared memory fast temporary storage
Coalesce memotry access!
Continuous
Aligned on power of 2 boundary

Addressing follows thread numbering

Use shared memory for reorganizing data for
coalescing!
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Using shared memory to reduce
number of global memory accesses
Read blocks of data to shared memory
Process
Write back as needed
Shared memory as "manual cache”

Example: Matrix multiplication




Information Coding / Computer Graphics, ISY, LiTH

Matrix multiplication

To multiply two N*N matrices, every item will have to be accessed N timesl

Naive implementation: 2N3 global memory accesses!
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Matrix multiplication

Let each block handle a part of the output.

Load the parts of the matrix needed for the block into shared memory.
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Matrix multiplication on CPU

Simple triple "for” loop

void MatrixMultCPU(float *a, float *b, float *c, int theSize)
{

int sum, i, j, k;

// For every destination element

for(i = 0; 1 < theSize; i++)
for{j = ©; j = theSize; j++)
{

sum = 9;
// sum along a row in a and a column in b
for(k = 0; k < theSize; k++)
sum = sum + (a[i*theSize + k]*b[k*theSize + j]);
c[i*theSize + j] = sum;
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Naive GPU version

Replace outer loops by thread indices

__global__ void MatrixMultNaive(float *a, float *b, float *c, int
theSize)
{

int sum, i, j, k;

blockIdx.x * blockDim.x + threadldx.x;
blockIdx.y * blockDim.y + threadIdx.y;

j

7/ For every destination element
sum = 9;
7/ sum along a row in a and a column in b
for{k = @; k = theSize; k++)
sum = sum + (a[i*theSize + k]*b[k*theSize + j]1D;
c[i*theSize + j] = sum;




Information Coding / Computer Graphics, ISY, LiTH

Naive GPU version inefficient

Every thread makes 2N global memory
accesses!

Can be significantly reduced using shared
memory
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Optimized GPU version

Data split into blocks.

Every element takes part in all the blocks in the same
rowfor A, columnfor B

For every such block
Every thread reads one element to shared memory

Then loop over the appropriate row and column
for the block
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__global__ woid MotrizMultOptimized( floot* A, float* B, float* C, int theSi
{

Optimized GPU =" "
p Imlze A4 Global index for thread
1 = blockIds.x * blockDim.x + threadIds<.x;

Version h] ; blockIds.y * blockDim.y + threadIds.y;

floot sum = 8.0
£4 for all source blocks
Loop over blocks (1D) for (b= @; b = gridDim.x; bt
{
__szhared__ float As[BLOCKSIZE*BLOCKSIZE];

Allocate shared memory _shared__ float Bs[BLOCKSIZE*ELOCKSIZE];

#4 Index locked to block
i1 b * block[im.x + threadIds.«;
33 b * blocklim.y + threadIds.y;

As[threadIds.y*blockDim.x + threadIds.x] = A[ii*theSize + j];
Copy one element to Bs[threadIds.y*blockDim.x + threadldx.x] = B[i*theSize + j3];

shared memory

__syncthreads(); // Synchronize to make sure all dota iz looded

£4 Loop in block

Loop over row/column in block, For (k = @ k < blockDim.x3 ++k)
+= As[threadlds. y*blocklim.x + k]
compute, accumulate result for P A i
one element
__syncthreads(); /4 Synch so nobody storts next pass premoturely
}
Write result to global memory Cli*theSize + 51 = sum:
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Modified computing model:
Upload data to global GPU memory

For a number of parts, do:
Upload partial data to shared memory
Process partial data
Write partial data to global memory

Download result to host
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Synchronization

As soon as you do something where one part of a
computation depends on a result from another thread,
you must synchronize!

__syncthreads()
Typical implementation:

* Read to shared memory
__syncthreads()

* Process shared memory

« __synchthreads()

- Write result to global memory
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Summary:
- Make threads and blocks to make the hardware occupied
« Access data depending on thread/block number
+ Memory accesses are expensivel
+ Shared memory is fast
- Make threads within a block cooperate

- Synchronize
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That’s all folks!

Next: More about memory management and
optimization.




