e %
: \.# j Information Coding / Computer Graphics, ISY, LiTH
.4

Introduction to CUDA

Ingemar Ragnemalm
Information Coding, ISY

e i
: # ; Information Coding / Computer Graphics, ISY, LiTH
g P

This lecture:

Programming model and language

Introduction to memory spaces and
memory access

Shared memory

Matrix multiplication example

~ ..l%"a
' ‘# : Information Coding / Computer Graphics, ISY, LiTH
o,

Lecture questions:

1. What concept in CUDA corresponds to a
SM (streaming multiprocessor) in the
architecture?

2. How does matrix multiplication benefit
from using shared memory?

3. When do you typically need to
synchronize threads?

e i
: # ; Information Coding / Computer Graphics, ISY, LiTH
g P

CUDA = Compute Unified
Device Architecture

Developed by NVidia

Only available on NVidia boards, G80 or
better GPU architecture

Designed to hide the graphics heritage
and add control and flexibility

' ‘# : Information Coding / Computer Graphics, ISY, LiTH
o,

Computing model:
1. Upload data to GPU
2. Execute kernel
3. Download resulit

Similar to shader-based solutions and
OpenCL

e i
: # ; Information Coding / Computer Graphics, ISY, LiTH
g P

Integrated source

The source of host and kernel code can be in
the same source file, written as one and the
same program!

Major difference to shaders and OpenCL, where
the kernel source is separate and explicitly
compiled by the host.

Kernel code identified by special modifiers.

i %
: \.# j Information Coding / Computer Graphics, ISY, LiTH
e

<

CUDA

An architecture and C extension (and more!)

Spawn a large number of threads, to be ran virtually in
parallel

Just like in graphics! You can’t expect all
fragments/computations to be executed in parallel.
Instead, they are executed a bunch at a time - a warp.

But unlike graphics it looks much more like an
ordinary C program! No more "data stored as pixels” -
they are just arrays!

& %
) # : Information Coding / Computer Graphics, ISY, LiTH
o

L4

C
C

1
i

{

Simple CUDA example

A working, compilable example

#include «stdio.h= cudaMallocd (woild**)&cd, size D
dim3 dimBlock{ blocksize, 1 3;
onst int N = 16; dim3 dimGrid{ 1, 1 3
onst int blocksize = 16; simple<==dimGrid, dimBlock=m=={cd);
cudaMemcpy(¢, cd, size, cudaMemcpyDewviceToHost 3
_global__ cudaFree! cd 73
vold simple(float *c)
for {1 =0; 1 = N; 1++)
c[threadldx.x] = threadldx.x; printf{"sf ", c[1]D;
printf™n"y;
delete[] c;
nt maindy printf{"donesn™y;
return EXIT_SUCCESS;
int i; }
float *c = new float[N];
float *cd;

const int size = N*sizeof(floatl;

& i
' ‘# : Information Coding / Computer Graphics, ISY, LiTH
g

Simple CUDA example
A working, compilable example

Allocate GPU memaory

#include =stdio.h= cudaMallocd (woid**3kcd, size D
dim3 dimBlock(blocksize, 1 35 1 hlack, 16 threads
const int N = 16; dim3 dimGrid{ 1, 1 3;
const int blocksize = 163 simples==dimGrid, dimBlock==={cdy; Call kernel
cudaMemcpy{ c, cd, size, cudaMemcpyDeviceToHost J;
__global__ Kernel cudaFrea! cd 3 Read back data

vold simple(float *c)
for {1 =0; 1 = N; 1++2

c[threadldx.x] = threadIdx.x; printf{"%f ", <[i]13;

B thread identifier printf(™n"y;
delete[] c;

int main printf{"donexn™);
{ return EXIT_SUCCESS;

int 1i; T

float *c = new float[N];

float *cd;

const int size = N¥sizeof(float);

& %
: # ; Information Coding / Computer Graphics, ISY, LiTH
X,

=

Modifiers for code

Three modifiers are provided to specify how code
should be used:

__global__ executes on the GPU, invoked from the
CPU. This is the entry point of the kernel.

__device is local to the GPU

__host___is CPU code (superfluous).

CPU GPU
__device_ myDeviceFunc(()

__host__ myHostFunc() /

]
T _ global__ myGlobalFunc(()

' ‘# : Information Coding / Computer Graphics, ISY, LiTH
o,

Memory management

cudaMalloc(ptr, datasize)
cudaFree(ptr)

Similar to CPU memory management, but done by the
CPU to allocate on the GPU

cudaMemCpy(dest, src, datasize, arg)

arg = cudaMemcpyDeviceToHost
or cudaMemcpyHostToDevice

s‘J- %
: # ; Information Coding / Computer Graphics, ISY, LiTH
o,

Kernel execution
simple<<<griddim, blockdim>>>(...)
(Weird! Who came up with the syntax...?)

The grid is a grid of thread blocks. Threads have
numbers within its block.

Built-in variables for kernel:

threadldx and blockldx
blockDim and gridDim

(Note that no prefix is used, like GLSL does.)

‘#tﬁ: Information Coding / Computer Graphics, ISY, LiTH
o P

Compiling Cuda
hvece
nvce is nvidia’s tool, /usr/local/cuda/bin/nvce
Source files suffixed .cu

Command-line for the simple example:

nvcc simple.cu -o simple

(Command-line options exist for libraries etc)

L %
: # : Information Coding / Computer Graphics, ISY, LiTH
J*m'.wj

Compiling Cuda for larger applications
nvce and gcc in co-operation
nvcc for .cu files
gcc for .c/.cpp etc
Mixing languages possible.
Final linking must include C++ runtime libs.

Example: One C file, one CU file

.44

‘#tﬁ: Information Coding / Computer Graphics, ISY, LiTH
P

Example of multi-unit compilation

Source files: cudademokernel.cu and cudademo.c

nvcc cudademokernel.cu -o cudademokernel.o -c

gce -¢ cudademo.c -o cudademo.o -I/usr/local/cuda/include

g++ cudademo.o cudademokernel.o -o cudademo -
L/usr/local/cuda/1ib -lcuda -lcudart -1m

Link with g++ to include C++ runtime

e
.
o

: # : Information Coding / Computer Graphics, ISY, LiTH
e

C/CUDA program
code .cu

CUDA compilation
behind the scene

»| CPU binary

=

3

PTX code

l

PTX to target

Target binary
code

jf ‘#taj Information Coding / Computer Graphics, ISY, LiTH
o, M

Executing a Cuda program
Must set environment variable to find Cuda runtime.
export DYLD_LIBRARY_PATH=/usr/local/cuda/1lib:$DYLD_LIBRARY_PATH
Then run as usual:

Jsimple

A problem when executing without a shell!

Launch with execve()

e
.
o

:“‘J- %,
: # : Information Coding / Computer Graphics, ISY, LiTH
e

Computing with CUDA

Organization and access

Blocks, threads...

:s w-#g: Information Coding / Computer Graphics, ISY, LiTH
1"“%'.»0}

Warps

A warp is the minimum number of data itemsAhreads
that will actually be processed in parallel by a CUDA
capable device. This number varies with different GPUs.

We usually don’t care about warps but rather discuss
threads and blocks.

e
.
o

:“‘J- %,
: # : Information Coding / Computer Graphics, ISY, LiTH
e

Processing organization

1 warp =32 threads
1 kernel - 1 grid
1 grid - many blocks
1 block - 1 SM
1 block - many threads
Use many threads and many blocks! > 200 blocks
recommended.

Thread # multiple of 32

"“‘-m- vj '

Information Coding / Computer Graphics, ISY, LiTH

Distributing computing over threads

and blocks

Hierarcical model

Grid

Elock 0,0

1000000000
10agannooo

Block 1,C

0000000000
(nooooooon

Elock 2,C

0000000000
[aooooonon

Block 3,C

(000000000
(000000000

Elock 0,1

1000annoon
0000000000

Block 1,1

(noooooonn
0000000000

Elock 2,1

(000000000

Block 3,1

(n0ooo0nno
(000000000

Block n,n

Thread 0,0 || Thread 1,0 [Thread 2,0

Thread 3,0

Thread 0,1 |[Thread 1,1 | [Thread 2,1

Thread 3,1

Thread 0, || Thread 1,2 | [Thread 2,2

Thread 3,2

ponnoooooo

Thread 0,2 |[Thread 1,2 | [Thread 2,2 || Thread 3,2

gridDim.x * gridDim.y block

BlockDim x * blockDim.y thread

~“ “a ‘%*a
: # : Information Coding / Computer Graphics, ISY, LiTH
e

Indexing data with thread/block IDs

Calculate index by blockldx, blockDim, threadldx

Another simple example, calculate square of every
element, device part:

/7 Kernel that executes on the CUDA device
__global__ void square_array(float *a, int N)
{
int idx = blockIdx.x * blockDim.x + threadldx.x;
if {idx<N) al[idx] = a[idx] * a[idx];
}

Information Coding / Computer Graphics, ISY,

LiTH

Host part of square example

Set block size and grid size

/7 main routine that executes on the host
int main{int argc, char *argy[])
{
float *a_h, *a_d; /4 Pointer to host and dewvice arrays
const int M = 1@; /4 Number of elements 1n arrays
size_t size = N * sizeof(floath;
a_h = {float *ymalloc{size};
cudaMalloc{{wvold **3 &a_d, size); /4 Allocate array on device
Af Inmitialize host array and copy 1t to CUDA dewice
for (int 1=0; 1<N; 1++) a_h[1] = (float)i;
cudaMemcpy{a_d, a_h, size, cudaMemcpyHostToDewvice);
/4 Do calculation on device:
int block_size = 4;
int n_blocks = N/block_zsize + (N¥block_size == @ 7 @:17;
square_array === n_blocks, block_size === {a_d, N);
AF Retrieve result from device and store 1t in host drray
cudaMemcpy(a_h, d_d, sizeof{float)*N, cudaMemcpyDeviceToHost):
AF Print results and cleanup
for (int 1=0; 1<N; 1+4+ printf"%d SHn", 1, a_h[i]):
free(a_hy; cudaFree(a_d};

