

Jens Ogniewski

Information Coding Group

Outline

Introduction (incl. Motivation)

Language Overview (incl. synchronization, system model)

Parallel Programming (incl. debugging, optimization)

Motivation

 OpenCL vs Cuda

 Cuda faster than OpenCL on NVIDIA GPUs

 NVIDIA GPUs best GPUs for general processing

=> Use CUDA for high performance computing

=> Use OpenCL everywhere else!

Motivation

 Future portable multimedia systems (e.g. smartphone, pads)

 More and more multicore systems

 Including hardware accelerators

 Enabling high processing power with low energy consumption

 OpenCL might become new standard programming language for
embedded systems

Introduction

 First suggested by Apple

 Standardized by Khronos (as OpenGL)

 Work in Progess – still subject to changes

Introduction

Introduction

Introduction

 Language aimed for parallel architectures

 Programmer defines explicitly where and how parallelism
occurs

 Geared towards data-parallelism

 Task-parallelism also possible

 Heterogeneous = Hardware independent (mostly)

 Supports even hardware accelerators

 Optimized code still needs intimidate knowledge of used
architecture (GPU vs Cell vs hyperthreaded CISC)

 Basically a language to program all parallel systems

OpenCL for NVIDIA GPUs

 Different terms (CUDA legacy)

 Compute unit = multiprocessor

 Work item = thread

 Work group = thread block, sometimes also warp

 Carefully: warp often used with a constant size (e.g. 1 warp =
32 threads)

 And CUDA local memory ≠ OpenCL local memory (= CUDA
shared memory)

Platform model

 One host (e.g. PC), one or several compute devices (e.g.
graphic card)

 Each compute device: one or several compute units (e.g.
SIMD multiprocessor)

 Each compute unit: one or several processing elements

Memory model model

 Private memory

 Only accessible by one
processing element (e.g.
register)

 Local memory

 Only accessible by one
compute unit

 Global / Constant memory

 Accessible by one compute
device

 Copying betw.
global/constant memory and
local memory has to be done
explicitly!

Memory model

 Global memory

 Allocated by host

 Passed as parameter during the kernel invocation

 Local memory

 Have to be marked with __local

 If used for arrays inside kernel: size must be known at
compilation time

 Everything else will end up in private memory

Execution model

Execution model

 Kernel

 (Short) function which will be executed in parallel

 How many is determined by the global dimensions

 Each execution is called a work item

 Several work items share one computing unit

 Called a work group

 How many is determined by the local dimensions

 Local and global dimensions are given by the programmer

 Should be chosen carefully depending on application,
algorithm and hardware used

Execution model

 Resident work item

 Has reserved private memory in multiprocessor

 Does not need to be active, but can become active anytime

 Active work item

 Executes instruction

 Thread scheduler

 Can swap out / in resident work items without any overhead

 Tries to swap out work items waiting for memory access and
run other resident work items instead

 Tries to coalesce memory access inside a workgroup

Synchronization

 Memory

 Explicit data movement between host and compute device
memory

 Explicit data movement between global/constant and local
memory on the device

 Global/constant memory can be “linked” to host memory
during creation

 Task synchronization: only inside a workgroup

 Using barrier(CLK_LOCAL_MEM_FENCE)

 Execution continues only after all items in the work group
passed this command and wrote back all changes from private
memory to local or global memory

 No synchronization between workgroups!

Synchronization

 Barrier command

 Works only inside a workgroup

 The programmer can optionally select which memory(s)
should be synchronized (e.g. CLK_LOCAL_MEM_FENCE for
local memory)

 After encountering a barrier, the work item makes sure that all
its write accesses to these memory(s) have finished, and then
waits until all other work items in the work group has done the
same

 The barrier has to be passed by all work items of the work
group
=> don‟t put a barrier inside part of your code which cannot be
reached by all work items (e.g. inside an if branch) or your
program will stall!

 Synchronization for global memory is possible, but should be
avoided due to its long access time. If you are sharing
variables between different work items you should put it in
local memory anyway to speed-up your kernel.

Synchronization

 Between host and compute device(s):

 Using queues

 Available for tasks (e.g. clEnqueueNDRangeKernel)

 Memory (e.g. clEnqueueReadBuffer)

 And events (e.g. clWaitforEvents)

 Queues can be in-order or out-of-order

 Several queues in parallel possible, programmer has to
take care of synchronization however

 Queue system enables task-parallism

 e.g. CPU can work on a task while waiting for the results of
the GPU

Synchronization

 Since aimed towards heterogenous systems

 Functions exist to specify where tasks should be executed

 Need to be called before a task can be executed

 Basically return a pointer to the device

 Also, functions exists to determine how many devices are
available, and what capability each device has

 Tasks are compiled at runtime

=> More overhead as CUDA, but that's the price for increased
flexibilty

The Language

 Based on C99, but:

 No function pointers (will come later?)

 No pointers to pointers in function calls (=> no
multidimensional arrays)

 No recursion

 No arrays with dynamical length

 No bitfields

 Also, no possibility to call a kernel from another kernel

 Optional:

 Pointers with length <32 bit

 Writing support for 3D images

 Double and half types

 Atomic functions

The Language

 But instead:

 Integrated functions for reading / writing 2D images and
reading 3D images

 Converting functions incl. explicit rounding and saturation

 math.h, all functions with different precisions

 Vector support (2-, 3- and 4-dimensional)

 Available primitive datatypes:

 Bool, char, int, long, float, size_t, void, unsigned versions as
well

 Mix of OpenCL and OpenGL possible

 Can share data structures and variables (without copying)

 API functions available

The Language

 Pointers: only useable as kernel arguments

 Inside kernel: no pointers, no memory management
functions, the size of all data has to be known at
compilation time

 Saves overhead of a stack

 Workaround

 Put placeholders for the array sizes in your kernel code

 During runtime: replace the placeholders with the values you
want, before kernel compilation

Example Architecture

 NVIDIA GTS 250 (found in Olympen)

 8192 registers / compute unit

 16 kb local memory / compute unit

 64 kb constant memory (varying global memory size)

 Max. 16 kbytes private memory / working item

 Local memory access time: 24 cycles

 Global memory access time: 400-600 cycles

 Kernel size limit: 2 million PTX instructions

 8 processing elements / compute unit

 16 compute units

 Max. 768 resident work items per compute unit

 Max. 512 work items / work group

 Support for atomic functions on 32byte words in global
memory

Parallel Programming – Practical Issues

 When to use GPGPU?

 Parallel algorithm

 Instruction mix: little memory access, less branches, much
computation

Or if your algorithm can be rewritten to fulfill those
criteria without introducing much overhead (little is ok)!

 But how to do that?

 Find dataparallism

 Works often: look for loop which doesn't have dependencies
between iterations (or which can be rewritten to fulfill this
criteria)

 Dimension of the loop can be used as the global work group
size

 e.g. in image processing the x size is the width and the y size the
height of the image

Parallel Programming – Practical Issues

 But how to do that?

 Find dataparallism

 Works often: look for loop which don't have dependencies
between iterations

 Input dimensions can be used as workgroup-sizes

 e.g. in image processing the x-size is the width and the y size the
height of the image

Example:

for (i=0; i<n; i++) {

 a[i]=a[i]+b[i]*c[i];

}

 But how to do that?

 Find dataparallism

 Works often: look for loop which don't have dependencies
between iterations (or which can be rewritten to fulfill this
criteria)

 Input dimensions can be used as workgroup-sizes

 e.g. in image processing the x-size is the width and the y size the
height of the image

Example: Trivially:

for (i=0; i<n; i++) {

 a[i]=a[i]+b[i]*c[i];

}

Parallel Programming – Practical Issues

Example:

for (i=0; i<n; i++) {

 a[i]=a[i]+b[i]*c[i];

}

Trivial solution:

__kernel void task1(..)

 a[get_global_id(0)]=

 a[get_global_id(0)]

+b[get_global_id(0)]

*c[get_global_id(0)];

}

Parallel Programming – Practical Issues

Example:

for (i=0; i<n; i++) {

 a[i]=a[i]+b[i]*c[i];

}

Trivial solution:

__kernel void task1(..)

 a[get_global_id(0)]=

a[get_global_id(0)]+b[get_global_id(0

)]

*c[get_global_id(0)];

}

Example:

for (i=0; i<n; i++) {

 a[i]=a[i-1]+b[i]*c[i];

}

No trivial solution:

 Data dependency to earlier iteration of the loop

 Parallelization difficult, if possible at all

Parallel Programming – Practical Issues

Example:

for (i=0; i<n; i++) {

 a[i]=a[i-1]+b[i]*c[i];

}

No trivial solution:

 Data dependencies to earlier iteration of the loop

 Parallelization difficult, if possible at all

Example:

for (i=0; i<n; i++) {

 a[i]=a[i+1]+b[i]*c[i];

}

Problem:

 A thread with a higher id may write back his result to „a‟
before a thread with a lower id read its value from „a‟
(e.g. thread 3 writes its value back to „a‟ before thread 2
could read its value from „a‟)

 Solution: see next slide

Parallel Programming – Practical Issues

Example:

for (i=0; i<n; i++) {

 a[i]=a[i+1]+b[i]*c[i];

}

Problem:

 A thread with a higher id may write back his result
before a thread with a lower id read its value from a
(e.g. thread 3 writes its value back to a before thread 2
could read its value from a)

 Solution: see next slide

Solution: write the output to a different array

for (i=0; i<n; i++) {

 d[i]=a[i+1]+b[i]*c[i];

}

Trivially:

__kernel void task1(..)

 d[get_global_id(0)]=

 a[get_global_id(0)+1]

+b[get_global_id(0)]

*c[get_global_id(0)];

}

Parallel Programming – Optimization Issues

 Avoid:

 Branches

 Double precision (ok for new graphic cards)

 Memory access: recomputation might lead to faster results

 Memory bank conflicts

 Private memory in global memory, fit it into the register file

 Barrier(), use auto-synchronization techniques if possible

 Atomic commands if possible

Parallel Programming – Optimization Issues

 What else?

 Use vector intrinsics: to make sure that SIMDs are used
correctly and most efficiently

 Coalescing memory: enforce aligned memory access

 Prefer constant to global memory, since it is cached

 Use local memory as buffer for global memory

 try to have at least 192 resident work items per compute unit
to hide memory accesses

 Try to reuse kernels as much as possible (avoid compilation)

 For filters: use similar block sizes in all dimensions to minimize
memory access

 Use low precision functions if possible

 Use the inbuilt interpolation, but beware of its precision

 Try to replace if branches by min / max functions

 Don't forget the CPU – let it work, too!

Parallel Programming – Debugging Issues

 Current Lab environment: Unfortunately limited debugging
capability

 No printout available (if running on GPU)

 Only few error messages

 “Black flash”: program crashed

 Errors in pixels on the display: wrong memory usage, will need
to restart eventually

 Very fast runtime: probably wrong work group size, most likely
too big (might even be that the kernel is too big or that it uses
too much memory for this work group size)

 Note: even if you get the correct result back, the execution
might have failed (the results might belong to an earlier run of
the program)

Parallel Programming – Practical Issues

 Finally: Don't be anxious if your speedup isn‟t that high

 Many research projects reports very high speedups (100 times
and more) if using the GPU

 In reality might be less:

 Copying between CPU and GPU neglected in report

 Or serial part of the application ignored

 Often even comparing GPU to unoptimized CPU code

 Still, you should get a much higher speed for most applications, 4
times (and more) are realistic

Which is great!

Further readings

 Open CL at Khronos

http://www.khronos.org/developers/library/overview/opencl
_overview.pdf

http://www.khronos.org/registry/cl/specs/opencl-1.0.48.pdf

 NVIDIA and OpenCL

http://www.nvidia.com/content/cudazone/download/OpenC
L/NVIDIA_OpenCL_ProgrammingGuide.pdf

http://www.nvidia.com/content/cudazone/CUDABrowser/do
wnloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf

Questions?

Thank you very much!

www.liu.se

