
Information Coding / Computer Graphics, ISY, LiTH

GPGPU
When GPUs turned to non-graphics

problems

Information Coding / Computer Graphics, ISY, LiTH

GPGPU
General purpose

A crazy idea that became a smash hit: Try to use the
computing power of the GPU for other purposes than
graphics.

gpgpu.org

Started when shader programs became powerful
enough.

CUDA, OpenCL etc arrived after shaders proved that the
path was viable.

Information Coding / Computer Graphics, ISY, LiTH

GPGPU
 Application examples:

 • Image processing
 • Image analysis
 • Equation systems
 • Wavelet transform
 • Fourier transform
 • Cosine transform
 • Level sets
 • Video codning

Really just about anything that is computationally
heavy and of parallel nature!

Information Coding / Computer Graphics, ISY, LiTH

GPGPU
Problem:

• Algorithms must be parallellized - more than with
CUDA. No intermediate results from neighbors can be
used.

• No access to shared memory. (But access to
constant memory and easy access to texture
memory.)

Does it pay to use shaders for GPU Computing?

Information Coding / Computer Graphics, ISY, LiTH

Model

World-to-view

coordinates
World

coordinates
View

coordinates
Projected

coordinates
Device

coordinates

TwRwRvTvPSdTd

transformation
Model-to-world
transformationProjection

transformation
Device
transformation

Typical OpenGL situation
• Complex geometry

• Many transformations
• Perspective projection

• Lighting and material calculations
for the surfaces

• Many texture accesses for interpolation and
supersampling

Information Coding / Computer Graphics, ISY, LiTH

Typical GPGPU processing
(also used in filtering in graphics):

• Render to a single rectangle covering the entire
image buffer.
• Use FBOs for effective feedback
• Floating-point buffers
• Ping-ponging, many pass with different shaders

Information Coding / Computer Graphics, ISY, LiTH

The GPGPU/shaders model
• Array of input data = texture
• Array of output data = resulting frame buffer
• Computation kernel = shader
• Computation = rendering
• Feedback = switch between FBOʼs or copy
frame buffer to texture

Information Coding / Computer Graphics, ISY, LiTH

Computation = rendering
Typical situation:

• Texture and frame buffer same size
• Render the polygon over the entire frame buffer

Texture Frame buffer

shader

Information Coding / Computer Graphics, ISY, LiTH

Kernel = shader
Shaders are read and compiled to one or more program objects. A GPGPU
application can use several shaders in conjunction!

Activate desired shader as needed using glUseProgramObjectARB();

The fragment shader performs the computation:

uniform sampler2D texUnit;
void main(void)
{
 vec4 texVal = texture2D(texUnit, gl_TexCoord[0].xy);"

 gl_FragColor = sqrt(texVal);
}

Information Coding / Computer Graphics, ISY, LiTH

Render a single polygon
• Texture and frame buffer same size
• Render polygon over entire frame buffer

glBegin(GL_QUADS);
glTexCoord2f(0, 0);
glVertex2i(0, 0);
glTexCoord2f(0, 1);
glVertex2i(0, m);
glTexCoord2f(1, 1);
glVertex2i(n ,m);
glTexCoord2f(1, 0);
glVertex2i(n, 0);

glEnd();

Information Coding / Computer Graphics, ISY, LiTH

Feedback
We must be able to pass output from one operation
as input of the next!

Stable but not the fastest: glCopyTexSubImage2D
Copies frame buffer to texture!
glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 0, 0, n, m);

Faster solutions are newer members of the standard.
Best: Framebuffer Objects.

Information Coding / Computer Graphics, ISY, LiTH

“Ping-pong”-ing

Using “framebuffer objects” the
output image can be a texture

Input data is a number of
textures. Limited by the
number of texturing units
available.

The kernel reads from one or
more texture, writes into the
frame buffer

Information Coding / Computer Graphics, ISY, LiTH

Ping-ponging in practice
Set source:

glBindTexture(GL_TEXTURE_2D, tx1);

Set destination:
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fb);
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, tx2, 0);

Set shader:
glUseProgramObjectARB(shaderProgramObject);

Render! Repeat!

Information Coding / Computer Graphics, ISY, LiTH

Filtering, convolution
Common problem, highly suited for shaders.

All kinds of linear filters:

• Low-pass filtering (smoothing)
• Gradient, embossing

Must be done by gather operations, not
scatter!

Information Coding / Computer Graphics, ISY, LiTH

3x1 filter
uniform sampler2D texUnit;
uniform float texSize;
void main(void)
{

float offset = 1.0 / 256.0;
vec2 texCoord = gl_TexCoord[0].xy;
vec4 c = texture2D(texUnit, texCoord);
texCoord.x = texCoord.x + offset;
vec4 l = texture2D(texUnit, texCoord);
texCoord.x = texCoord.x - 2.0*offset;
vec4 r = texture2D(texUnit, texCoord);
texCoord.x = texCoord.x - offset;
gl_FragColor = (c + c + l + r) * 0.25;

}

1 2 1

Information Coding / Computer Graphics, ISY, LiTH

Separable filters

1 4 6

4 16 24

4 1

16 4

6 24 36

4 16 24

24 6

16 4

1 4 6 4 1

1 2 1

1

2

1

1

2

1

1 2 1⊗

=

⊗

⊗

Implemented as ping-ponging passes.
Optimization possibilities!

Information Coding / Computer Graphics, ISY, LiTH

Scatter vs gather

Shaders give output for one pixel -> gather only!

Scatter Gather

Information Coding / Computer Graphics, ISY, LiTH

Sorting
QuickSort hard to implement in shaders

Bitonic Merge Sort fits shaders well

7
1
8
3
5
6
2
4

1
7
8
3
5
6
4
2

1
3
8
7
5
6
4
2

1
3
7
8
6
5
4
2

1
3
4
2
6
5
7
8

1
2
4
3
6
5
7
8

1
2
3
4
5
6
7
8

Information Coding / Computer Graphics, ISY, LiTH

Reduction
Reduction algorithms are implemented by a ping-ponging pyramid

Maximum, minimum, global average...

Output smaller than input

(Images by Dominik Göddeke)

Information Coding / Computer Graphics, ISY, LiTH

Reduction
1) Texture pyramid, typically 2x2

2) Constant texture size, use smaller
and smaller parts of the texture!

Same performance! The geometry
coverage is what counts!

Information Coding / Computer Graphics, ISY, LiTH

Special considerations
• vec4 or scalar?

• Texture size limitations

• Interpolation

Information Coding / Computer Graphics, ISY, LiTH

vec4 or scalar?
GPUs are/were designed to process 4-component

vectors! (NVidia less so today.)

Packing data in groups of four values (RGBA) can
be needed for maximizing performance -

especially on AIT boards.

This will complicate algorithms. The neighbor of
data[100].a is data[101].r!

Information Coding / Computer Graphics, ISY, LiTH

Texture size limitations
Maximum 4096 elements! That means 16384 floating-

point values!

Larger arrays must be packed in 2D or 3D!

Again, edges get complicated. The neighbor of
data[0,255] is data[1,0] (for a 256 item wide texture)!

Information Coding / Computer Graphics, ISY, LiTH

Interpolation
Computation tricks when optimizing

Texture access provides hardware accelerated
linear interpolation!

Access texture data on non-integer coordinates
and the texture hardware will do linear

interpolation automatically!

Can be used for many calculations, e.g. filters.

Information Coding / Computer Graphics, ISY, LiTH

Interpolation

Texture accesses and calculations hardware
accelerated!

a b a+b

b/(a+b) a/(a+b)

=

