
Information Coding / Computer Graphics, ISY, LiTH

Lecture 4 (10)

A bit more on CUDA
Just a few notes that didnʼt fit before

Shaders, GLSL and GPGPU
Why it interesting to do GPU computing with 

graphics APIs today, and how it works



Information Coding / Computer Graphics, ISY, LiTH

Lecture overview
• Why care about shaders for computing?

• Shaders for graphics

• GLSL

• Computing with shaders



Information Coding / Computer Graphics, ISY, LiTH

Lecture questions
1) What kind of shaders is most interesting 

for GPU computing? (What part of the 
pipeline?)

2) What geometry is usually used for shader-
based GPU computing?

3) What is ping-ponging? Suggest an 
example where it is useful.



Information Coding / Computer Graphics, ISY, LiTH

Why is classic GPGPU interesting?
• Highly suited to all problems dealing with images, 

computer vision, image coding etc

• Parallelization ”comes natural”, you canʼt avoid it and 
good speedups are likely. Fewer pitfalls.

• Highly optimized (for graphics performance).

• Compatibility is vastly superior!

• Very much easier to install!



Information Coding / Computer Graphics, ISY, LiTH

They say classic GPGPU is obsolete?
• Marketing hype!

• Mature technology - publishing opportunities limited.

• Remapping to images awkward for some problems.

• Limited access to local memory

• A lot more messy code than CUDA (but more like OpenCL)

”Any given program, when running, is obsolete”



Information Coding / Computer Graphics, ISY, LiTH

So when should we try a shader solution?
• Any time you must have an installer-free option.

• Any time you deal with images.

• When your CUDA/OpenCL solution has problems, or you 
need to explore all possibilities for other reasons.



Information Coding / Computer Graphics, ISY, LiTH

Shaders and GLSL
Letʼs have a look at how it works!



Information Coding / Computer Graphics, ISY, LiTH

The OpenGL pipeline

Vertex 
processorVertex coordinates

and normal vectors
Transformed 
coordinates

Primitive 
assembly

Primitives, 
connectivity

Triangles etc

Raster 
conversion

Clip, cull

Fragment 
processor Pixel coord

Fragment 
operations

Frame buffer 
operations

+color, texture

Texture



Information Coding / Computer Graphics, ISY, LiTH

Vertex 
processorVertex coordinates

and normal vectors
Transformed 
coordinates

Primitive 
assembly

Primitives, 
connectivity

Triangles etc

Raster 
conversion

Clip, cull

Fragment 
processor Pixel coord

Fragment 
operations

Frame buffer 
operations

+color, texture

Texture

Out of these, three are 
programmable!



Information Coding / Computer Graphics, ISY, LiTH

Shader programs
Program snippets that are executed per vertex or per 

fragment, on the GPU!

Two programs cooperate, one vertex program and one 
fragment program.

“Shader” implies that the goal is lighting, but that is only 
one of the goals!.

Vertex transform
Vertexcolor, vertex-level lighting

Texturing
Color and light per pixel

Can be done in a 
vertex shader

Can be done in a 
fragment shader



Information Coding / Computer Graphics, ISY, LiTH

Vertex shader
Replaces the fixed functionality of the vertex processor.

It can:
• transform vertices, normals and texture coordinates
• generate texture coordinates
• calculate lighting per vertex
• set values for interpolation for use in a fragment shader

It knows nothing about:
• Perspective, viewport
• Frustum
• Primitives (!)
• Culling



Information Coding / Computer Graphics, ISY, LiTH

Fragment shader
(a.k.a pixel shader)

Replaces the fixed functionality of the fragment processor.

It can:
• set the fragment color
• get color values from textures
• calculate fog and other color calculations
• use any kind of interpolated data from the vertices

It can not
• change the fragment coordinates
• write into textures
• affect stencil, scissor, alpha, depth...



Information Coding / Computer Graphics, ISY, LiTH

Shader languages
Four different:

Assembly language: Old solution, no longer 
updated. Dead! But used in old GPGPU research.

Cg: “C for graphics”, NVidia
HLSL: “High-level shading language”, Microsoft
GLSL: “OpenGL shading language”

Choice depends on flatform and needs (and taste). 
GLSL superior for compatibility!



Information Coding / Computer Graphics, ISY, LiTH

Typical shader examples in graphics
Vertex manipulation (deformations)

Lighting calculations

Multitexturing

Bump mapping


