
Information Coding / Computer Graphics, ISY, LiTH

More memory
Atomics

Pinned memory

Mapped memory



Information Coding / Computer Graphics, ISY, LiTH

Atomic operations
A special memory access method, for avoiding 

conflicts and race conditions.

Available from Compute model 1.1.

To use it, specify model with

-arch compute_11



Information Coding / Computer Graphics, ISY, LiTH

Example: Histogram
Simple method for gathering statitics about a set of 

data.

Common in image processing.

for all elements i in a[]
h[a[i]] += 1



Information Coding / Computer Graphics, ISY, LiTH

Histogram memory conflicts
If you try to parallelize this operation, threads will write 

at the same place.

Non-atomic operations will read h[a[i]], add 1, and write 
back.

Read

Add 1

Write back

Read

Add 1

Write back

10

11

Read

Add 1

Write back

Read

Add 1

Write back

10

11

10

11

or

Unknown write order

Write unsynchronized values in sequence



Information Coding / Computer Graphics, ISY, LiTH

Solution: Atomics
Read - modify - write in one operation!

Guaranteed not to be subject to racing.

atomicAdd, atomicSub, atomicExch, atomicMin, atomicMax, 
atomicInc, atomicDec, atomicCAS, atomicAnd, atomicOr, atomicXor

More types in fermi

For a cost: Slower than other operations.

Global memory only (1.1)



Information Coding / Computer Graphics, ISY, LiTH

Example: Find maximum
for all elements i in a[]

maxValue := max(maxValue, a[i])

Easy? Parallel? No!

All threads will write to the same memory element!

Use atomics? Very slow! All write at the same time, will have to 
wait - we get sequential performance.

Solution: Split problem in parts, each section finds a local 
maximum. Merge later.



Information Coding / Computer Graphics, ISY, LiTH

Pinned memory
Page-locked memory

So far: malloc() and cudaMalloc()

New call: cudaHostAlloc()

Allocated page-locked memory! Fixed 
physical location!



Information Coding / Computer Graphics, ISY, LiTH

Pinned memory
Page-locked memory is a limited resource!

If you donʼt use it: CUDA copies internally to 
page-locked memory, then DMA to GPU. 

Transfer time goes up!



Information Coding / Computer Graphics, ISY, LiTH

Pinned memory, streams, 
overlapping computation

Pinned memory is part of the optimization 
with overlapping computations

Not only slight speedup of the data transfer.

cudaMemcpyAsynch(), can copy locked 
memory asynchonously



Information Coding / Computer Graphics, ISY, LiTH

CUDA Events and Streams
CUDA commands are placed in a queue - a 

stream

Commands are executed, and when a marker is 
encountered, it is given a time value

We usually only use the default CUDA stream.

Multiple CUDA streams can be used to overlap 
work - especially computing and data transfers



Information Coding / Computer Graphics, ISY, LiTH

Copy data to GPU

Run kernel

Copy result to CPU

Copy data to GPU

Run kernel

Copy result to CPU

Single stream computation
The kernel can not run until the data is 

transfered.

For this example: 2/3 data transfer, 1/3 
computation



Information Coding / Computer Graphics, ISY, LiTH

Copy data to GPU

Run kernel

Copy result to CPU

Copy data to GPU

Run kernel

Copy result to CPU

Dual stream 
computation

One stream runs a kernel while 
the other performs data 

copying.

More time for computing, 
kernels running 1/2 of the time 

instead of 1/3.

Copy data to GPU

Run kernel

Copy result to CPU

Copy data to GPU

Run kernel

Copy result to CPU

-

-

-



Information Coding / Computer Graphics, ISY, LiTH

Not all devices...
Asynchronous data copying as well as 

concurrent execution is not guaranteed...

so make a device query!

CU_DEVICE_ATTRIBUTE_ASYNCH_ENGINE_CO
UNT: Can we copy pinned memory asynch?

CU_DEVICE_ATTRIBUTE_CONCURRENT_KERN
ELS: Can we run multiple kernels?



Information Coding / Computer Graphics, ISY, LiTH

Mapped memory
Mapped memory shared between CPU and 

GPU, no transfer needed.

Must be page-locked.

Data transfers overlapping kernel execution 
possible without multiple streams.



Information Coding / Computer Graphics, ISY, LiTH

CUDA roundup
Some final comments



Information Coding / Computer Graphics, ISY, LiTH

From NVIDIA Fermi Tuning Guide:

CUDA Best Practices
The performance guidelines and best practices described in the CUDA Programming Guide 
[2] and the CUDA Best Practices Guide [3] apply to all CUDA architectures. Programmers 
must primarily focus on following those recommendations to achieve the best performance.

The high-priority recommendations from those guides are as follows:

 Find ways to parallelize sequential code

 Minimize data transfers between the host and the device

 Adjust kernel launch configuration to maximize device utilization

 Ensure global memory accesses are coalesced

 Replace global memory accesses with shared memory accesses 
whenever possible

 Avoid different execution paths within the same warp.



Information Coding / Computer Graphics, ISY, LiTH

Porting to CUDA
1. Parallel-friendly CPU algorithm.

2. Trivial (serial) CUDA implementation.

3. Split to blocks and threads.

4. Take advantage of shared memory.



Information Coding / Computer Graphics, ISY, LiTH

CUDA emulation mode
CUDA programs can be compiled to CPU only versions.

--device-emulation

Lets you run CUDA (slowly) on non-NVidia hardware

Debugging easier (e.g. printf)



Information Coding / Computer Graphics, ISY, LiTH

Summary of synchronization
__synchthreads() the basic in-kernel call, wait 

until all threads reach the command.

cudaDeviceSynchronize() complete all streams

cudaStreamSynchronize() complete a specific 
stream (of commands)

cudaEventSynchronize() waits until all events 
have occurred (been assigned times)



Information Coding / Computer Graphics, ISY, LiTH

Thatʼs all folks!

Next: Computing with shaders.


