
Information Coding / Computer Graphics, ISY, LiTH

Lecture 3 (lesson 3 in original plan)

More CUDA

Information Coding / Computer Graphics, ISY, LiTH

In this episode...
• Query device capabilities

• CUDA events

• More on CUDA memory:

Coalescing, Constant memory, Texture memory...

Information Coding / Computer Graphics, ISY, LiTH

The story so far...
• CUDA and its language extensions

• The CUDA architecture

• Intro to memory

• Matrix multiplication example, using
shared memory

Information Coding / Computer Graphics, ISY, LiTH

CUDA and its language extensions
Kernel involation myKernel<<<>>>()

__global__ __device__ __host__

cudaMalloc(), cudaMemcpy()

threadIdx, blockIdx, blockDim, gridDim

Using nvcc

Information Coding / Computer Graphics, ISY, LiTH

The CUDA architecture
Blocks and threads

Grid-block-thread hierarchy

Indexing data with thread/block numbers

Information Coding / Computer Graphics, ISY, LiTH

Intro to memory
global memory

shared memory

constant memory

local memory

texture memory/texture units

Information Coding / Computer Graphics, ISY, LiTH

Matrix multiplication example, using
shared memory

Huge speedup - my measly 9400M went from
obvious loser to clearly faster than CPU!

Information Coding / Computer Graphics, ISY, LiTH

Over to todayʼs episode:

Information Coding / Computer Graphics, ISY, LiTH

Lecture questions:
1. Why can using constant memory

improve performance?

2. What is CUDA Events used for?

3. What does coalescing mean and what
should we do to get a speedup from

coalescing?

Information Coding / Computer Graphics, ISY, LiTH

CUDA and graphics
Simplest way: Pass output from CUDA to an OpenGL texture.

Example: Julia set.

Good for visualizing results. Better methods exist, without
having to move data to CPU and back.

Information Coding / Computer Graphics, ISY, LiTH

Self-squaring fractals, the Julia set
zk+1 = zk2 + λ

Julia set for
λ = (0, 1) = 0 + j

Start with position in
complex space.

Apply complex function
recursively

Inspect distance to origin

Perfectly parallel
algorothm

Information Coding / Computer Graphics, ISY, LiTH

Query devices
You canʼt trust all devices to have the

same - or even similar - data.

New boards may have totally different
data.

Query CUDA for a list of features using
cudaGetDeviceProperties()

Information Coding / Computer Graphics, ISY, LiTH

Example query result
---- Information for GeForce 9400M ----

Compute capability: 1.1
Total global memory/VRAM: 259712 kB

Total constant Mem: 64 kB
Number of thread processors (mp): 2

Shared mem per mp: 16 kB
Registers per mp: 8192
Threads in warp: 32

Max threads per block: 512
Max thread dimensions: (512, 512, 64)
Max grid dimensions: (65535, 65535, 1)

Information Coding / Computer Graphics, ISY, LiTH

What is important?
Compute capability - can this board at all work with

our program?

Amount of shared memory - make sure we fit.

Max threads, max dimensions - make sure we fit.

Threads in warp: A lower bound for performance.

Number of thread processors: Lower bound for blocks

Information Coding / Computer Graphics, ISY, LiTH

Compute capability
Essentially CUDA/architecture version

number.

1.0: Original release.
1.1: Mapped memory, atomic operations.

1.3: Double support.
2.0: Fermi.

Information Coding / Computer Graphics, ISY, LiTH

Do I care about Compute
capability?

While learning CUDA - not much. Stick to the
basics, it works on all.

But if you write professional CUDA code, of
course.

Information Coding / Computer Graphics, ISY, LiTH

CUDA Events
Timing!

Two ways of timing CUDA programs:

• CPU timer. Synchronize at start and end.

• CUDA Events. Synchronize at end.

Synchronize? Because CUDA runs
asynchronously.

Information Coding / Computer Graphics, ISY, LiTH

CUDA Events API
cudaEventCreate - initialize an event variable

cudaEventRecord - place a marker in the queue

cudaEventSynchronize - wait until all markers
have received values

cudaEventElapsedTime - get the time difference
between two events

Information Coding / Computer Graphics, ISY, LiTH

CUDA memory
Coalescing

Constant memory

Texture memory

Pinned memory

Information Coding / Computer Graphics, ISY, LiTH

CUDA memory
We already know...

• Global memory is slow.

• Shared memory is fast and can be used as
”manual cache”

• There were some other kinds of memory...

Information Coding / Computer Graphics, ISY, LiTH

Coalescing
Always access global memory ”in order”

If threads access global memory in order of
thread numbers, performance will be

improved!

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Thread

RAM

Good!

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Thread

RAM

Bad!

Information Coding / Computer Graphics, ISY, LiTH

WTF?
How can performance depend on what order

I access my data??? Isnʼt it ”random
access”?

Yes... You can access in any order you want,
but ordered access helps the GPU to read

more data in one access!

Why? Because the GPU bus is wider than
your data!

Information Coding / Computer Graphics, ISY, LiTH

Coalescing
Example: Assume that the data below is 1/4

of the bus width.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Thread

RAM

Good!

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Thread

RAM

Bad!

One access One access
Eight separate accesses

Information Coding / Computer Graphics, ISY, LiTH

Coalescing on Fermi
Effect reduced by caches - but not removed.

Coalescing is still needed for maximum
performance.

Information Coding / Computer Graphics, ISY, LiTH

Accelerating by coalescing
Pure memory transfers can be 10x faster by taking advantage

of memory coalescing!

Example: Matrix transpose

No computations!

Only memory accesses.

Information Coding / Computer Graphics, ISY, LiTH

__global__ void transpose_naive(float *odata, float* idata, int width, int height)
{
 unsigned int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
 unsigned int yIndex = blockDim.y * blockIdx.y + threadIdx.y;

 if (xIndex < width && yIndex < height)
 {
 unsigned int index_in = xIndex + width * yIndex;
 unsigned int index_out = yIndex + height * xIndex;
 odata[index_out] = idata[index_in];
 }
}

Matrix transpose
Naive implementation

How can this be bad?

Information Coding / Computer Graphics, ISY, LiTH

Matrix transpose
Coalescing problems

Row-by-row and column-by-column.
Column accesses non-coalesced!

Information Coding / Computer Graphics, ISY, LiTH

Matrix transpose
Coalescing solution

Read from global memory
to shared memory

In order from global, any
order to shared

Write to global memory

In order write to global,
any order from shared

Information Coding / Computer Graphics, ISY, LiTH

__global__ void transpose(float *odata, float *idata, int width, int height)
{

__shared__ float block[BLOCK_DIM][BLOCK_DIM+1];

// read the matrix tile into shared memory
unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x;
unsigned int yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y;
if((xIndex < width) && (yIndex < height))
{

unsigned int index_in = yIndex * width + xIndex;
block[threadIdx.y][threadIdx.x] = idata[index_in];

}

__syncthreads();

// write the transposed matrix tile to global memory
xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;
yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y;
if((xIndex < height) && (yIndex < width))
{

unsigned int index_out = yIndex * height + xIndex;
odata[index_out] = block[threadIdx.x][threadIdx.y];

}
}

Better CUDA matrix transpose kernel

Shared memory
for temporary
storage

Read data to
temporary buffer

Write data to
tglobal memory

Information Coding / Computer Graphics, ISY, LiTH

Coalescing rules of thumb
• The data block should start on a multiple of 64

• It should be accessed in order (by thread number)

• It is allowed to have threads skipping their item

• Data should be in blocks of 4, 8 or 16 bytes

Information Coding / Computer Graphics, ISY, LiTH

Constant memory
Sounds boring... but has its uses.

Read-only (for kernels)

__constant__ modifier

Use for input data, obviously

Information Coding / Computer Graphics, ISY, LiTH

Benefits of constant memory
• No cudaMemcpy needed! Just use it from kernel,

write from CPU!

• For data read by all threads, significantly faster
than global memory!

• Read-only memory is easy to cache.

Information Coding / Computer Graphics, ISY, LiTH

Why faster access? When?
All threads reading the same data.

One read can be broadcast to all ”nearby” threads.

Nearby? All threads in same ”half-warp” (16
threads in most pre-Fermi architectures)

But no help if threads are reading different data!

Information Coding / Computer Graphics, ISY, LiTH

Example of using constant memory: Ray-
caster

Demo from ”CUDA by example”

With and without using __const__

Information Coding / Computer Graphics, ISY, LiTH

Ray-caster example
Every thread renders one pixel

Loop through all spheres, find closest with intersection

Write result to an image buffer.

Image buffer displayed with OpenGL.

Non-const: Uploads sphere array by cudaMemcpy()

Const: Declares array __const__, uses directly from kernel.
(Slightly simpler code!)

Information Coding / Computer Graphics, ISY, LiTH

Ray-caster example
Resulting time:

Without using const: 70.2 ms

With const: 41.9 ms

Significant difference - for something that
simplified the code!

Information Coding / Computer Graphics, ISY, LiTH

Constant memory conclusions
Relatively fast memory - for the case when all

threads read the same memory!

Some advantage for code complexity.

NOT something we use for everything.

Information Coding / Computer Graphics, ISY, LiTH

Texture memory/ Texture units
Texture memory, yet another kind of memory (or

memory access method)

But didnʼt we hide the graphics heritage...?

Access global memory though the texturing units.
Lets CUDA take advantage of the strong points

with texturing units.

Information Coding / Computer Graphics, ISY, LiTH

Texture memory
Read-only.

Cached! Can be fast if data access patterns are good.

Texture filtering, linear interpolation.

Especially good for handling 4 floats at a time (float4).

cudaBindTextureToArray() binds data to a texture unit.

Information Coding / Computer Graphics, ISY, LiTH

Texture memory for graphics
Texture data mostly for rendering textures

One texel used by 4 neigbor pixels

One pixel usually 4 bytes - more than one pixel can be
read on one read.

Designed for spatial locality

Information Coding / Computer Graphics, ISY, LiTH

Varying access patterns - but
neighbors are still neighbors!

Information Coding / Computer Graphics, ISY, LiTH

Spatial locality for other things than
textures

Image filters of local nature

Physics simulations with local updates, transfer
of heat, liquids, pressure...

Big jumps, no gain!

Information Coding / Computer Graphics, ISY, LiTH

Using texture memory in CUDA
Allocate with cudaMalloc

Bind to texture unit using cudaBindTexture2D()

Read from data using tex2D()

Drawback: Just like in OpenGL, messy to keep
track of which texture unit/texture reference is

which data.

Information Coding / Computer Graphics, ISY, LiTH

Interpolation
Computation tricks when optimizing

Texture access provides hardware accelerated
linear interpolation!

Access texture data on non-integer coordinates
and the texture hardware will do linear

interpolation automatically!

Can be used for many calculations, e.g. filters.

Information Coding / Computer Graphics, ISY, LiTH

Interpolation

Texture accesses and calculations hardware
accelerated!

a b a+b

b/(a+b) a/(a+b)

=

Information Coding / Computer Graphics, ISY, LiTH

Hardware interpolation too good to be
true...

The interpolation trick sounds kind of useful (for some
cases)... but isnʼt as useful as it seems.

Why? It is ment for interpolating between texels,
visually. Small errors is not a problem then! May have

low precision, like 10 steps.

Not as fun then...

Information Coding / Computer Graphics, ISY, LiTH

Demo using texture memory
Heat transfer demo

Information Coding / Computer Graphics, ISY, LiTH

Demo using texture memory
Heat transfer demo

Makes local operations modelling heat dissapation

Seriously... pretty slow. I
could beat this with pure
OpenGL any time. Why?

Information Coding / Computer Graphics, ISY, LiTH

Thatʼs all folks!

Next: Computing with shaders.

