
Information Coding / Computer Graphics, ISY, LiTH

Introduction to CUDA
Ingemar Ragnemalm

Information Coding, ISY

Information Coding / Computer Graphics, ISY, LiTH

This lecture:
Programming model and language

Introduction to memory spaces and
memory access

Shared memory

Matrix multiplication example

Information Coding / Computer Graphics, ISY, LiTH

Lecture questions:
1. What concept in CUDA corresponds to a

thread processor in the architecture?

2. How does matrix multiplication benefit
from using shared memory?

3. When do you typically need to
synchronize threads?

Information Coding / Computer Graphics, ISY, LiTH

CUDA = Compute Unified
Device Architecture

Developed by NVidia

Only available on NVidia boards, G80 or
better GPU architecture

Designed to hide the graphics heritage
and add control and flexibility

Information Coding / Computer Graphics, ISY, LiTH

Similar to shader-based
solutions and OpenCL:

1. Upload data to GPU

2. Execute kernel

3. Download result

Information Coding / Computer Graphics, ISY, LiTH

Integrated source
The source of host and kernel code can be in
the same source file, written as one and the

same program!

Major difference to shaders and OpenCL, where
the kernel source is separate and explicitly

compiled by the host.

Kernel code identified by special modifiers.

Information Coding / Computer Graphics, ISY, LiTH

CUDA
An architecture and C extension (and more!)

Spawn a large number of threads, to be ran virtually in
parallel

Just like in graphics! You canʼt expect all
fragments/computations to be executed in parallel.

Instead, they are executed a bunch at a time - a warp.

But unlike graphics it looks much more like an
ordinary C program! No more ”data stored as pixels” -

they are just arrays!

Information Coding / Computer Graphics, ISY, LiTH

Simple CUDA example
A working, compilable example

#include <stdio.h>

const int N = 16;
const int blocksize = 16;

__global__
void simple(float *c)
{

c[threadIdx.x] = threadIdx.x;
}

int main()
{

int i;
float *c = new float[N];
float *cd;
const int size = N*sizeof(float);

cudaMalloc((void**)&cd, size);
dim3 dimBlock(blocksize, 1);
dim3 dimGrid(1, 1);
simple<<<dimGrid, dimBlock>>>(cd);
cudaMemcpy(c, cd, size, cudaMemcpyDeviceToHost);
cudaFree(cd);

for (i = 0; i < N; i++)
printf("%f ", c[i]);

printf("\n");
delete[] c;
printf("done\n");
return EXIT_SUCCESS;

}

Information Coding / Computer Graphics, ISY, LiTH

Simple CUDA example
A working, compilable example

#include <stdio.h>

const int N = 16;
const int blocksize = 16;

__global__
void simple(float *c)
{

c[threadIdx.x] = threadIdx.x;
}

int main()
{

int i;
float *c = new float[N];
float *cd;
const int size = N*sizeof(float);

cudaMalloc((void**)&cd, size);
dim3 dimBlock(blocksize, 1);
dim3 dimGrid(1, 1);
simple<<<dimGrid, dimBlock>>>(cd);
cudaMemcpy(c, cd, size, cudaMemcpyDeviceToHost);
cudaFree(cd);

for (i = 0; i < N; i++)
printf("%f ", c[i]);

printf("\n");
delete[] c;
printf("done\n");
return EXIT_SUCCESS;

}

Read back data

Allocate GPU memory

Kernel
Call kernel

1 block, 16 threads

thread identifier

Information Coding / Computer Graphics, ISY, LiTH

Modifiers for code
Three modifiers are provided to specify how code

should be used:

__global__ executes on the GPU, invoked from the
CPU. This is the entry point of the kernel.

__device__ is local to the GPU

__host__ is CPU code (superfluous).

CPU

__host__ myHostFunc()

GPU

__global__ myGlobalFunc(()

__device__ myDeviceFunc(()

Information Coding / Computer Graphics, ISY, LiTH

Memory management
cudaMalloc(ptr, datasize)

cudaFree(ptr)

Similar to CPU memory management, but done by the
CPU to allocate on the GPU

cudaMemCpy(dest, src, datasize, arg)

arg = cudaMemcpyDeviceToHost
or cudaMemcpyHostToDevice

Information Coding / Computer Graphics, ISY, LiTH

Kernel execution
simple<<<griddim, blockdim>>>(…)

(Weird! Who came up with the syntax…?)

The grid is a grid of thread blocks. Threads have
numbers within its block.

Built-in variables for kernel:

threadIdx and blockIdx
blockDim and gridDim

(Note that no prefix is used, like GLSL does.)

Information Coding / Computer Graphics, ISY, LiTH

Compiling Cuda
nvcc

nvcc is nvidiaʼs tool, /usr/local/cuda/bin/nvcc

Source files suffixed .cu

Command-line for the simple example:

nvcc simple.cu -o simple

(Command-line options exist for libraries etc)

Information Coding / Computer Graphics, ISY, LiTH

Compiling Cuda for larger applications
nvcc and gcc in co-operation

nvcc for .cu files

gcc for .c/.cpp etc

Mixing languages possible.

Final linking must include C++ runtime libs.

Example: One C file, one CU file

Information Coding / Computer Graphics, ISY, LiTH

Example of multi-unit compilation
Source files: cudademokernel.cu and cudademo.c

nvcc cudademokernel.cu -o cudademokernel.o -c

gcc -c cudademo.c -o cudademo.o -I/usr/local/cuda/include

g++ cudademo.o cudademokernel.o -o cudademo -
L/usr/local/cuda/lib -lcuda -lcudart -lm

Link with g++ to include C++ runtime

Information Coding / Computer Graphics, ISY, LiTH

C/CUDA program
code .cu

nvcc CPU binary

PTX code

Target binary
codePTX to target

CUDA compilation
behind the scene

Information Coding / Computer Graphics, ISY, LiTH

Executing a Cuda program
Must set environment variable to find Cuda runtime.

export DYLD_LIBRARY_PATH=/usr/local/cuda/lib:$DYLD_LIBRARY_PATH

Then run as usual:

./simple

A problem when executing without a shell!

Launch with execve()

Information Coding / Computer Graphics, ISY, LiTH

Computing with CUDA
Organization and access

Blocks, threads...

Information Coding / Computer Graphics, ISY, LiTH

Warps
A warp is the minimum number of data items/threads
that will actually be processed in parallel by a CUDA

capable device. This number varies with different GPUs.

We usually donʼt care about warps but rather discuss
threads and blocks.

Information Coding / Computer Graphics, ISY, LiTH

Processing organization
1 warp = 32 threads

1 kernel - 1 grid

1 grid - many blocks

1 block - 1 thread processor

1 block - many threads

Use many threads and many blocks! > 200 blocks
recomended.

Thread # multiple of 32

Information Coding / Computer Graphics, ISY, LiTH

Distributing computing over threads
and blocks

Hierarcical model

Grid
Block 0,0 Block 1,0 Block 2,0 Block 3,0

Block 0,1 Block 1,1 Block 2,1 Block 3,1

Block n,n
Thread 0,0 Thread 1,0 Thread 2,0

Thread 0,1 Thread 1,1 Thread 2,1

Thread 3,0

Thread 3,1

Thread 0,2 Thread 1,2 Thread 2,2

Thread 0,3 Thread 1,3 Thread 2,3

Thread 3,2

Thread 3,3gridDim.x * gridDim.y blocks

BlockDim.x * blockDim.y threads

Information Coding / Computer Graphics, ISY, LiTH

Indexing data with thread/block IDs
Calculate index by blockIdx, blockDim, threadIdx

Another simple example, calculate square of every
element, device part:

// Kernel that executes on the CUDA device
__global__ void square_array(float *a, int N)
{

int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx<N) a[idx] = a[idx] * a[idx];

}

Information Coding / Computer Graphics, ISY, LiTH

// main routine that executes on the host
int main(int argc, char *argv[])
{

float *a_h, *a_d; // Pointer to host and device arrays
const int N = 10; // Number of elements in arrays
size_t size = N * sizeof(float);
a_h = (float *)malloc(size);
cudaMalloc((void **) &a_d, size); // Allocate array on device

// Initialize host array and copy it to CUDA device
for (int i=0; i<N; i++) a_h[i] = (float)i;
cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);

// Do calculation on device:
int block_size = 4;
int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);
square_array <<< n_blocks, block_size >>> (a_d, N);

// Retrieve result from device and store it in host array
cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);

// Print results and cleanup
for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]);
free(a_h); cudaFree(a_d);

}

Host part of square example
Set block size and grid size

Information Coding / Computer Graphics, ISY, LiTH

Memory access
Vital for performance!

Memory types

Coalescing

Example of using shared memory

Information Coding / Computer Graphics, ISY, LiTH

Memory types
Global

Shared

Constant (read only)

Texture cache (read only)

Local

Registers

Care about these when optimizing - not to begin with

Information Coding / Computer Graphics, ISY, LiTH

Global memory
400-600 cycles latency!

Shared memory fast temporary storage

Coalesce memory access!

Continuous
Aligned on power of 2 boundary

Addressing follows thread numbering

Use shared memory for reorganizing data for
coalescing!

Information Coding / Computer Graphics, ISY, LiTH

Using shared memory to reduce
number of global memory accesses

Read blocks of data to shared memory

Process

Write back as needed

Shared memory as ”manual cache”

Example: Matrix multiplication

Information Coding / Computer Graphics, ISY, LiTH

To multiply two N*N matrices, every item will have to be accessed N times!

Naive implementation: 2N3 global memory accesses!

Matrix multiplication

Information Coding / Computer Graphics, ISY, LiTH

Let each block handle a part of the output.

Load the parts of the matrix needed for the block into shared memory.

Matrix multiplication

Information Coding / Computer Graphics, ISY, LiTH

Matrix multiplication on CPU
 Simple triple ”for” loop

void MatrixMultCPU(float *a, float *b, float *c, int theSize)
{

int sum, i, j, k;

// For every destination element
for(i = 0; i < theSize; i++)

for(j = 0; j < theSize; j++)
{

sum = 0;
// Sum along a row in a and a column in b
for(k = 0; k < theSize; k++)

sum = sum + (a[i*theSize + k]*b[k*theSize + j]);
c[i*theSize + j] = sum;

}
}

Information Coding / Computer Graphics, ISY, LiTH

Naive GPU version
 Replace outer loops by thread indices

__global__ void MatrixMultNaive(float *a, float *b, float *c, int
theSize)
{

int sum, i, j, k;

i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;

// For every destination element
sum = 0;
// Sum along a row in a and a column in b
for(k = 0; k < theSize; k++)

sum = sum + (a[i*theSize + k]*b[k*theSize + j]);
c[i*theSize + j] = sum;

}

Information Coding / Computer Graphics, ISY, LiTH

Naive GPU version inefficient
Every thread makes 2N global memory
accesses!

Can be significantly reduced using shared
memory

Information Coding / Computer Graphics, ISY, LiTH

Optimized GPU version
Data split into blocks.

Every element takes part in all the blocks in the same
row for A, column for B

For every such block

Every thread reads one element to shared memory

Then loop over the appropriate row and column
for the block

Information Coding / Computer Graphics, ISY, LiTH

Destination
element for
thread

C A B

Destination
block for
thread All blocks on the same

row inA are needed to
produce the destination
block

And all blocks
in the same
column of C

For every block, thre thread
read one element matching
the destination element

For every block, we
loop over the part of
one row and column
to perform that part of
the computation

What one thread
reads is used by
everybody in the
same row (A) or
column (B)!

Information Coding / Computer Graphics, ISY, LiTH

Optimized GPU
version

__global__ void MatrixMultOptimized(float* A, float* B, float* C, int theSize)
{

int i, j, k, b, ii, jj;

// Global index for thread
i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;

float sum = 0.0;
// for all source blocks
for (b = 0; b < gridDim.x; b++)
{

__shared__ float As[BLOCKSIZE*BLOCKSIZE];
__shared__ float Bs[BLOCKSIZE*BLOCKSIZE];

// Index locked to block
ii = b * blockDim.x + threadIdx.x;
jj = b * blockDim.y + threadIdx.y;

As[threadIdx.y*blockDim.x + threadIdx.x] = A[ii*theSize + j];
Bs[threadIdx.y*blockDim.x + threadIdx.x] = B[i*theSize + jj];

__syncthreads(); // Synchronize to make sure all data is loaded

// Loop in block
for (k = 0; k < blockDim.x; ++k)

sum += As[threadIdx.y*blockDim.x + k]
* Bs[k*blockDim.x + threadIdx.x];

__syncthreads(); // Synch so nobody starts next pass prematurely
}

C[i*theSize + j] = sum;
}

Allocate shared memory

Copy one element to
shared memory

Loop over blocks (1D)

Loop over row/column in block,
compute, accumulate result for
one element

Write result to global memory

Information Coding / Computer Graphics, ISY, LiTH

Modified computing model:
Upload data to global GPU memory

For a number of parts, do:

Upload partial data to shared memory

Process partial data

Write partial data to global memory

Download result to host

Information Coding / Computer Graphics, ISY, LiTH

Synchronization
As soon as you do something where one part of a

computation depends on a result from another thread,
you must synchronize!

__syncthreads()

Typical implementation:

• Read to shared memory
• __syncthreads()
• Process shared memory
• __synchthreads()
• Write result to global memory

Information Coding / Computer Graphics, ISY, LiTH

Thatʼs all folks!

Next: More about memory management and
optimization.

