
Information Coding / Computer Graphics, ISY, LiTH

Introduction to CUDA

Ingemar Ragnemalm
Information Coding, ISY

Information Coding / Computer Graphics, ISY, LiTH

This lecture:

Programming model and language

Memory spaces and memory access

Shared memory

Examples

Information Coding / Computer Graphics, ISY, LiTH

Lecture questions:

1. Suggest two significant differences
between CUDA and OpenCL.

2. How does matrix transposing
benefit from using shared memory?

3. When do you typically need to
synchronize threads?

Information Coding / Computer Graphics, ISY, LiTH

CUDA = Compute Unified
Device Architecture

Developed by NVidia

Only available on NVidia boards, G80 or
better GPU architecture

Designed to hide the graphics heritage
and add control and flexibility

Information Coding / Computer Graphics, ISY, LiTH

Similar to shader-based
solutions and OpenCL:

1. Upload data to GPU

2. Execute kernel

3. Download result

Information Coding / Computer Graphics, ISY, LiTH

Integrated source

The source of host and kernel code can be in
the same source file, written as one and the

same program!

Major difference to shaders and OpenCL, where
the kernel source is separate and explicitly

compiled by the host.

Kernel code identified by special modifiers.

Information Coding / Computer Graphics, ISY, LiTH

CUDA

An architecture and C extension (and more!)

Spawn a large number of threads, to be ran virtually in
parallel

Just like in graphics! You can!t expect all
fragments/computations to be executed in parallel.

Instead, they are executed a bunch at a time - a warp.

But unlike graphics it looks much more like an
ordinary C program! No more ”data stored as pixels” -

they are just arrays!

Information Coding / Computer Graphics, ISY, LiTH

Simple CUDA example

A working, compilable example

#include <stdio.h>

const int N = 16;
const int blocksize = 16;

__global__
void simple(float *c)
{

c[threadIdx.x] = threadIdx.x;
}

int main()
{

int i;
float *c = new float[N];
float *cd;
const int size = N*sizeof(float);

cudaMalloc((void**)&cd, size);
dim3 dimBlock(blocksize, 1);
dim3 dimGrid(1, 1);
simple<<<dimGrid, dimBlock>>>(cd);
cudaMemcpy(c, cd, size, cudaMemcpyDeviceToHost);
cudaFree(cd);

for (i = 0; i < N; i++)
printf("%f ", c[i]);

printf("\n");
delete[] c;
printf("done\n");
return EXIT_SUCCESS;

}

Information Coding / Computer Graphics, ISY, LiTH

Simple CUDA example

A working, compilable example

#include <stdio.h>

const int N = 16;
const int blocksize = 16;

__global__
void simple(float *c)
{

c[threadIdx.x] = threadIdx.x;
}

int main()
{

int i;
float *c = new float[N];
float *cd;
const int size = N*sizeof(float);

cudaMalloc((void**)&cd, size);
dim3 dimBlock(blocksize, 1);
dim3 dimGrid(1, 1);
simple<<<dimGrid, dimBlock>>>(cd);
cudaMemcpy(c, cd, size, cudaMemcpyDeviceToHost);
cudaFree(cd);

for (i = 0; i < N; i++)
printf("%f ", c[i]);

printf("\n");
delete[] c;
printf("done\n");
return EXIT_SUCCESS;

}

Read back data

Allocate GPU memory

Kernel

Call kernel

1 block, 16 threads

thread identifier

Information Coding / Computer Graphics, ISY, LiTH

Modifiers for code

Three modifiers are provided to specify how code
should be used:

__global__ executes on the GPU, invoked from the
CPU. This is the entry point of the kernel.

__device__ is local to the GPU

__host__ is CPU code (superfluous).

CPU

__host__ myHostFunc()

GPU

__global__ myGlobalFunc(()

__device__ myDeviceFunc(()

Information Coding / Computer Graphics, ISY, LiTH

Memory management

cudaMalloc(ptr, datasize)
cudaFree(ptr)

Similar to CPU memory management, but done by the
CPU to allocate on the GPU

cudaMemCpy(dest, src, datasize, arg)

arg = cudaMemcpyDeviceToHost
or cudaMemcpyHostToDevice

Information Coding / Computer Graphics, ISY, LiTH

Kernel execution

simple<<<griddim, blockdim>>>(…)

(Weird! Who came up with the syntax…?)

The grid is a grid of thread blocks. Threads have
numbers within its block.

Built-in variables for kernel:

threadIdx and blockIdx
blockDim and gridDim

(Note that no prefix is used, like GLSL does.)

Information Coding / Computer Graphics, ISY, LiTH

Compiling Cuda

nvcc

nvcc is nvidia!s tool, /usr/local/cuda/bin/nvcc

Source files suffixed .cu

Command-line for the simple example:

nvcc simple.cu -o simple

(Command-line options exist for libraries etc)

Information Coding / Computer Graphics, ISY, LiTH

Compiling Cuda for larger applications

nvcc and gcc in co-operation

nvcc for .cu files

gcc for .c/.cpp etc

Mixing languages possible.

Final linking must include C++ runtime libs.

Example: One C file, one CU file

Information Coding / Computer Graphics, ISY, LiTH

Example of multi-unit compilation

Source files: cudademokernel.cu and cudademo.c

nvcc cudademokernel.cu -o cudademokernel.o -c

gcc -c cudademo.c -o cudademo.o -I/usr/local/cuda/include

g++ cudademo.o cudademokernel.o -o cudademo -

L/usr/local/cuda/lib -lcuda -lcudart -lm

Link with g++ to include C++ runtime

Information Coding / Computer Graphics, ISY, LiTH

C/CUDA program
code .cu

nvcc CPU binary

PTX code

Target binary
codePTX to target

CUDA compilation
behind the scene

Information Coding / Computer Graphics, ISY, LiTH

Executing a Cuda program

Must set environment variable to find Cuda runtime.

export DYLD_LIBRARY_PATH=/usr/local/cuda/lib:$DYLD_LIBRARY_PATH

Then run as usual:

./simple

A problem when executing without a shell!

Launch with execve()

Information Coding / Computer Graphics, ISY, LiTH

Computing with CUDA

Organization and access

Blocks, threads...

Information Coding / Computer Graphics, ISY, LiTH

Warps

A warp is the minimum number of data items/threads
that will actually be processed in parallel by a CUDA

capable device. This number is set to 32.

We usually don!t care about warps but rather discuss
threads and blocks.

Information Coding / Computer Graphics, ISY, LiTH

Processing organization

1 warp = 32 threads

1 kernel - 1 grid

1 grid - many blocks

1 block - 1 thread processor

1 block - many threads

Use many threads and many blocks! > 200 blocks
recomended.

Thread # multiple of 32

Information Coding / Computer Graphics, ISY, LiTH

Distributing computing over threads

and blocks

Hierarcical model

Grid

Block 0,0 Block 1,0 Block 2,0 Block 3,0

Block 0,1 Block 1,1 Block 2,1 Block 3,1

Block n,n

Thread 0,0 Thread 1,0 Thread 2,0

Thread 0,1 Thread 1,1 Thread 2,1

Thread 3,0

Thread 3,1

Thread 0,2 Thread 1,2 Thread 2,2

Thread 0,3 Thread 1,3 Thread 2,3

Thread 3,2

Thread 3,3
gridDim.x * gridDim.y blocks

BlockDim.x * blockDim.y threads

Information Coding / Computer Graphics, ISY, LiTH

Indexing data with thread/block IDs

Calculate index by blockIdx, blockDim, threadIdx

Another simple example, calculate square of every
element, device part:

// Kernel that executes on the CUDA device

__global__ void square_array(float *a, int N)

{

int idx = blockIdx.x * blockDim.x + threadIdx.x;

if (idx<N) a[idx] = a[idx] * a[idx];

}

Information Coding / Computer Graphics, ISY, LiTH

// main routine that executes on the host

int main(int argc, char *argv[])

{

float *a_h, *a_d; // Pointer to host and device arrays

const int N = 10; // Number of elements in arrays

size_t size = N * sizeof(float);

a_h = (float *)malloc(size);

cudaMalloc((void **) &a_d, size); // Allocate array on device

// Initialize host array and copy it to CUDA device

for (int i=0; i<N; i++) a_h[i] = (float)i;

cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);

// Do calculation on device:

int block_size = 4;

int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);

square_array <<< n_blocks, block_size >>> (a_d, N);

// Retrieve result from device and store it in host array

cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);

// Print results and cleanup

for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]);

free(a_h); cudaFree(a_d);

}

Host part of square example

Set block size and grid size

Information Coding / Computer Graphics, ISY, LiTH

Memory access

Vital for performance!

Memory types

Coalescing

Example of using shared memory

Information Coding / Computer Graphics, ISY, LiTH

Memory types

Global

Shared

Constant (read only)

Texture cache (read only)

Local

Registers

Care about these when optimizing - not to begin with

Information Coding / Computer Graphics, ISY, LiTH

Global memory

400-600 cycles latency!

Shared memory fast temporary storage

Coalesce memory access!

Continuous
Aligned on power of 2 boundary

Addressing follows thread numbering

Use shared memory for reorganizing data for
coalescing!

Information Coding / Computer Graphics, ISY, LiTH

Using shared memory to reduce

number of global memory accesses

Read blocks of data to shared memory

Process

Write back as needed

Shared memory as ”manual cache”

Example: Matrix multiplication

Information Coding / Computer Graphics, ISY, LiTH

To multiply two N*N matrices, every item will have to be accessed N times!

Naive implementation: 2N3 global memory accesses!

Matrix multiplication

Information Coding / Computer Graphics, ISY, LiTH

Let each block handle a part of the output.

Load the parts of the matrix needed for the block into shared memory.

Matrix multiplication

Information Coding / Computer Graphics, ISY, LiTH

Modified computing model:

Upload data to global GPU memory

For a number of parts, do:

Upload partial data to shared memory

Process partial data

Write partial data to global memory

Download result to host

Information Coding / Computer Graphics, ISY, LiTH

Synchronization

As soon as you do something where one part of a
computation depends on a result from another thread,

you must synchronize!

__syncthreads()

Typical implementation:

• Read to shared memory
• __syncthreads()
• Process shared memory
• __synchthreads()
• Write result to global memory

Information Coding / Computer Graphics, ISY, LiTH

Accelerating by coalescing

Pure memory transfers can be 10x faster by taking advantage
of memory coalescing!

Example: Matrix transpose

No computations!

Only memory accesses.

Information Coding / Computer Graphics, ISY, LiTH

__global__ void transpose_naive(float *odata, float* idata, int width, int height)
{
 unsigned int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
 unsigned int yIndex = blockDim.y * blockIdx.y + threadIdx.y;

 if (xIndex < width && yIndex < height)
 {
 unsigned int index_in = xIndex + width * yIndex;
 unsigned int index_out = yIndex + height * xIndex;
 odata[index_out] = idata[index_in];
 }
}

Matrix transpose

Naive implementation

How can this be bad?

Information Coding / Computer Graphics, ISY, LiTH

Matrix transpose

Coalescing problems

Row-by-row and column-by-column.
Column accesses non-coalesced!

Information Coding / Computer Graphics, ISY, LiTH

Matrix transpose

Coalescing solution

Read from global memory
to shared memory

In order from global, any
order to shared

Write to global memory

In order write to global,
any order from shared

Information Coding / Computer Graphics, ISY, LiTH

__global__ void transpose(float *odata, float *idata, int width, int height)
{

__shared__ float block[BLOCK_DIM][BLOCK_DIM+1];

// read the matrix tile into shared memory
unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x;
unsigned int yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y;
if((xIndex < width) && (yIndex < height))
{

unsigned int index_in = yIndex * width + xIndex;
block[threadIdx.y][threadIdx.x] = idata[index_in];

}

__syncthreads();

// write the transposed matrix tile to global memory
xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;
yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y;
if((xIndex < height) && (yIndex < width))
{

unsigned int index_out = yIndex * height + xIndex;
odata[index_out] = block[threadIdx.x][threadIdx.y];

}
}

Better CUDA matrix transpose kernel

Shared memory
for temporary
storage

Read data to
temporary buffer

Write data to
tglobal memory

Information Coding / Computer Graphics, ISY, LiTH

Coalescing rules of thumb

• The data block should start on a multiple of 64

• It should be accessed in order (by thread number)

• It is allowed to have threads skipping their item

• Data should be in blocks of 4, 8 or 16 bytes

Information Coding / Computer Graphics, ISY, LiTH

Texture memory

Cached! Can be fast if data access patterns are good.

Texture filtering, linear interpolation.

Especially good for handling 4 floats at a time (float4).

cudaBindTextureToArray() binds data to a texture unit.

Information Coding / Computer Graphics, ISY, LiTH

Porting to CUDA

1. Parallel-friendly CPU algorithm.

2. Trivial (serial) CUDA implementation.

3. Split to blocks and threads.

4. Take advantage of shared memory.

Information Coding / Computer Graphics, ISY, LiTH

CUDA emulation mode

CUDA programs can be compiled to CPU only versions.

--device-emulation

Lets you run CUDA (slowly) on non-NVidia hardware

Debugging easier (e.g. printf)

Information Coding / Computer Graphics, ISY, LiTH

That!s all folks!

Next: Laborations, hands-on experience of all three
techniques!

