:f w-#g: Information Coding / Computer Graphics, ISY, LiTH
1"“%'.»0}

Timeline for CPUs
80’s: CPU and system same speed. Zero wait states.

1993: CPUs faster than the rest of the system. Rapid
raise of frequency.

Late 90’s to present: Multi-CPU systems, multi-core
CPUs.

CPUs are still improving, but going for higher
frequency is not as obvious as before.

e
.
o

: # : Information Coding / Computer Graphics, ISY, LiTH
e

Meanwhile, at the graphics dept
80’s: Hardware sprites. Push pixels with low-level code.
1993: Textures 3D games: Wolf3D, Doom.

Early 90’s: Professional 3D boards.

1996: 3dfx Voodoo1!

2001: Programmable shaders.

2006: G80, unified architecture. CUDA
2009: OpenCL.

2010: Fermi architecture

f

s "
: % Information Coding / Computer Graphics, ISY, LiTH

o
1995 | 2005

CPU Frequency (GHz) _ 3.2 32x
Memory Frequency (GHz) 1.2 40x
Bus Bandwidth (GB/sec) 1| 4

Hard Disk Size (GB) AQ0X

. cob
&

:g . : Information Coding / Computer Graphics, ISY, LiTH
N

CPU Frequency (GHz) 32x
Memory Frequency (GHz) 40x

40x
Pixel Fill Rate (GPixels/sec) 0004 3.3 8250x
Vertex Rate (GVerts/sec) 0005 | .35 700x
Graphics flops (GFlops/sec) 001 | 40 40000x
Graphics Bandwidth (GB/sec) 3 | 19 63x

Frame Buffer Size (MB 128x

g Y
j y : Information Coding / Computer Graphics, ISY, LiTH

How about 2005-2011?

Hard Disk Size (GB)

e
: # : Information Coding / Computer Graphics, I1SY, LiTH

Hard Disk Size (GB)

Pixel Fill Rate (GPixels/sec)
Vertex Rate (GVerts/sec)
Graphics flops (GFlops/sec)
Graphics Bandwidth (GB/sec)
Frame Buffer Size (MB)

e COUG

¢ %
j % Information Coding / Computer Graphics, ISY, LiTH
X,

Theoretica The GFLOPS race

GFILOR/s
1750

HVIDIA GPU Single Predsion
1500 e HVIDIA GPU Double Precision
g it (P Single Predsion
s el CPU Double Prevasion

1250
1000
750
Tesla C2050
500
250 Westmere
wﬂﬂm'eslat‘luﬁb
0 Penti Harpertown
Sep-01 Oct-05 Mar-07 Jul-08
-s’rgjv-‘- ..(ﬁ‘ - - - -
: % Information Coding / Computer Graphics, ISY, LiTH
"
The GFLOPS race
GT200
1000
NVIDIA GPU
—8—|ntel (PU G80 G992
o0 Ultra
2 G80
[
Q
d 500
(V]
™ G71
n
o
GT70
250 NV40 : 3.2 GHz
NV3b : 3.0 GHz Harpertown
o - ﬂ?i——"'"
- =D T -&
dJan Jun Apr Jun Mar Nov May Jun

2003 2004 2005 2006 2007 2008

: % Information Coding / Computer Graphics, ISY, LiTH

Another graph, including ATI/AMD
400 T T T T T T T T T T

: T,:{I“)”‘ 86.4 GB/s |
300 + == Intel

wn
o
= 200
b
e
100 b 8.5 GB/S
d d']']
na (‘V
{] i i 1 i 1 "
2001 2002 2003 2004 2005 2006 2007
Year
j % Information Coding / Computer Graphics, ISY, LiTH

How is this possible?

Area use:
CPU GPU

AL |
|
Cache =

But in particular: SIMD architecture

[B

B

js ‘#t,: Information Coding / Computer Graphics, ISY, LiTH
oy w}

Why did GPUs get so much performance?

Early problem with large amounts of data. (Complex geometry,
millions of output pixels.)

Graphics pipeline designhed for parallelism!
Hiding memory latency by parallelism

Volume. 3D graphics boards central component in game
industry. Everybody wants one!

New games heed new impressive features. Many important
advancements started as game features.

NG
[’
iy

‘#ta: Information Coding / Computer Graphics, I1SY, LiTH
o,

Must process many pixels fast! ﬂ

Early GPUs could draw textured, shaded triangles much
faster than the CPU.

Must do matrix muitiplication and divisions fast. Q

Next generation could transform vertices and normalize
vectors.

Must have programmable parts.
This was added to make Phong shading and bump mapping.
Must work in floating-pointi

This was for light effects, HDR.

_#«,.: Information Coding / Computer Graphics, ISY, LiTH
o

So a GPU should

- process vertices, many in parallel, applying the same
transformations on each

+ process pixels (fragments) in parallel, applying the
same colorllighttexture calculations on each

SIMD friendly problem!

Less control, control many calculations instead of one

NG
[’
iy

‘#ta: Information Coding / Computer Graphics, I1SY, LiTH
o,

A different Kind of threads

SIMD threads, all run the same program

Group-wise, they execute in parallel, SIMD-style

Shader threads calculate one pixel or one vertex

CUDA/OpenCL threads may calculate anything, but
typically one part of the output - in order

Information Coding / Computer Graphics, ISY, LiTH

One thread per vertex
Same operations, same kernel, different data

Q —F\V

One thread per pixel {fragment)
Same operations, same kernel, different data

The main tasks in rendering graphics:

CUDA and OpenCL generalize
this to any kind of data, and
possibility to access any part of
memory.

Information Coding / Computer Graphics, ISY, LiTH

The 3D pipeline in the GPU

Low-level operations from vertices to pixel data

Yettex coordinates V e rtex
and normal vectors

processor

Fragment
operations

Frame buffer
operations

+eolor, texture

Transformed
coordinates

Primitives,
conneckivity

Primitive Triangles etc
assembly
Texture C“p’ cul
Fragment ————— Raster
processor \2*™ | sonversion

