Physics for computer game developers

Sergiy Valyukh,
Department of Physics, Chemistry and Biology (IFM)

About the lectures

Purpose

To inroduce into basics of physics, in order to model the "real world" in computer games

Sources

Webpage of the course (Ingemar R)

http://computer-graphics.se/TSBK03/

https://www.computer-graphics.se/TSBK03/files/Beachball-Physics-2023-09-05.pdf

Ragnemalm, PFNP-SHCWMTS [IR]

- G. Palmer, *Physics for Game Programmers*, Apress, 2005
- Oreilly.-.Physics.for.Game.Developers.2nd.Edition.2013
- Ian Millingston, Game Physics Engine Development, Elsevier, 2007
- Witkin, Baraff, Kass, lectures from Pixar "SIGGRAPH 2001 Course notes" [Pix], http://www.pixar.com/
- **□** ...

i.2 Physics as a natural science

i.3 Modelling of the physical word

90% of games applied physical simulations use:

3D objects and 3D scenes
Movement
Rigid objects
Rotation
Friction
Air and water resistance
Gravity
Collisions and explosions
Springy things
Waves

Criterion for a physical model in a game:

If it is looks right on the screen, that's good enough!

Outline

- i. Introduction (physics and its role in game industry)
- Models
- Kinematics
- Newton's Dynamics
- Work, Energy and Power
- Rotational motion
- Projectiles
- Collisions
- Water simulations
- Sports Simulations
- Cars and Motorcycles
- Boats, flight simulation (airplanes, rockets and missiles)
- Optical effects

i.3 Real word & fakes

i.3 Real word & fakes

i.3 Modelling of the physical word

- Physics Will Keep Your Games from Looking Fake
- Adding Physics-Based Realism Is Easier Than You Might Think
- Adding Physics Won't Affect Game Performance
- Knowing Some Physics Will Make You a Better Game Programmer

Modelling and models

Modelling and models

Modelling and models

Graphical unit

Coordinates of all objects

Physical unit

t=t+delta t

For (i=1; i<=Number of objects; i++)

Set initial conditions for the i-th object @ t;

Write Eq. of motion for the i-th object

Solving Eq. of motion for the i-th object;

Initial conditions for all objects @t

- Harris

Systems of Units

Quantity	English Units	SI Units	Conversion Factor
Length	foot (ft) mile	meter (<i>m</i>) kilometer (<i>km</i>)	0.3048 1.609
Mass	pound-mass (<i>lbm</i>) slug	kilogram (<i>kg</i>) kilogram (<i>kg</i>)	0.4536 14.593
Force	pound (lb)	Newton (N)	4.448
Pressure	lb/in^2	N/m^2	6894.7
Density	slug/ft ³ lbm/ft ³	kg/m^3 kg/m^3	515.379 16.018
Temperature	Fahrenheit (${}^{o}F$) Rankine (R)	Kelvin (<i>K</i>) Kelvin (<i>K</i>)	5/9(F + 459.67) 5/9

Coordinate Systems and Frames of Reference

Coordinate Systems and Frames of Reference

Transformation of Coordinates

The observers are moving at a relative velocity of v and each observer has their own set of coordinates (x,y,z,t) and (x',y',z',t'). What coordinates do they assign to the event?

Scalars and Vectors

$$\vec{R} = x \vec{i} + y \vec{j} + z \vec{k}$$

$$\vec{V} = V_x \vec{i} + V_y \vec{j} + V_z \vec{k}$$

$$|\vec{R}| = \sqrt{x^2 + y^2 + z^2}$$

$$\vec{R}_1 \pm \vec{R}_2 = (x_1 \pm x_2) \vec{i} + (y_1 \pm y_2) \vec{j} + (z_1 \pm z_2) \vec{k}$$

$$(\vec{R}_1 \cdot \vec{R}_2) = x_1 x_2 + y_1 y_2 + z_1 z_2$$

$$(\vec{R}_1 \cdot \vec{R}_2) = |\vec{R}_1| |\vec{R}_2| \cos \alpha$$

$$[\vec{R}_1 \times \vec{R}_2] = (y_1 z_2 - y_2 z_1) \vec{i} + (z_1 x_2 - z_2 x_1) \vec{j} + (x_1 y_2 - x_2 y_1) \vec{k}$$

$$\left[\left|\vec{R}_{1} \times \vec{R}_{2}\right|\right] = \left|\vec{R}_{1}\right| \left|\vec{R}_{2}\right| \sin \alpha$$

- Matrices
- Derivatives
- Differential Equations

Matrices

Derivatives

Derivatives

Comparing acceleration, velocity, and altitude for the snowboarder

Differential Equations

$$m\frac{d^2x}{dt^2} + \mu \frac{dx}{dt} + kx = 0$$

The motion of a spring as a function of time

Kinematics

Displacement

$$\Delta \vec{r}(t) = \vec{r}(t) - \vec{r}(t_o)$$

[m]

Average velocity
$$\vec{v}_{average} = \frac{\vec{r}(t) - \vec{r}(t_o)}{t - t_o}$$

Instantaneous velocity

$$\vec{v}(t) = \frac{d\vec{r}(t)}{dt} = \vec{r}(t)$$

Acceleration

$$\vec{a}(t) = \frac{d\vec{v}(t)}{dt} = \vec{r}(t)$$

Distance

$$s = \int_{t_1}^{t_2} |dr| \qquad [m]$$

$$\vec{r}(t) = \vec{r}(t_o) + \int_{t_o}^{t} \vec{v}(t) dt = \vec{r}(t_o) + \vec{v}(t_o) t + \int_{t_o}^{t} \int_{t_o}^{t} \vec{a}(t) dt$$

Newtonian Dynamics

- Newton's three laws of motion
- Some special types of forces—gravitational, friction, centripetal, and spring
- The concept of a force vector
- Force balances and force diagrams

Newton's First Law of Motion: Inertia

Every body preserves in its state of rest, or of uniform motion in a right line, unless it is compelled to change that state by forces impressed thereon.

Newton's Second Law of Motion: Force, Mass, and Acceleration

$$\vec{F} = m \vec{a}$$

The alteration of motion is ever proportional to the motive force impressed

Newton's Third Law of Motion: Equal and Opposite Forces

To every action there is always opposed an equal reaction

Centripetal Force

$$F = \frac{mv^2}{r}$$

Gravitational Force

Gravitational Force

$$\vec{F} = G \frac{M_1 M_2}{|\vec{R}_{12}|^3} \vec{R}_{12} = M_2 g$$

$$G = 6.674 \cdot 10^{-11} \frac{Nm^2}{kg^2}$$

$$g = 6.674 \cdot 10^{-11} \frac{Nm^2}{kg^2} \frac{5.9736 \cdot 10^{24} kg}{(6,375 \cdot 10^6 m)^2} = 9.81 \frac{N}{kg}$$

Gravitational Force

Gravitation Force

Equations of motion for projections

Quantity	Differential Equation	Solution
Acceleration	None	$a_z = -g,$ $a_x = 0, a_y = 0$
Velocity	$\frac{dv_z}{dt} = a_z = -g$	$v_z = v_{z0} - gt$, $v_x = v_{x0}$, $v_y = v_{y0}$
Location	$\frac{d^2z}{dt^2} = a_z = -g$	$z = z_o + v_{z0} t - \frac{1}{2} g t^2$,
	$\frac{dz}{dt} = v_z = v_{z0} - gt$	$x = x_o + v_{x0} t,$ $y = y_o + v_{y0} t$

Gravitation Force

Equations of motion in vector form

Quantity

Differential Equation

Solution

Acceleration

None

$$\vec{a} = \vec{g}$$

Velocity

$$\frac{d\vec{v}}{dt} = \vec{a} = \vec{g}$$

$$\vec{v} = \vec{v_o} + \vec{g}t$$

Location

$$\frac{d^2\vec{r}}{dt^2} = \vec{a} = \vec{g}$$

$$\frac{d\vec{r}}{dt} = \vec{v} = \vec{v}_o + \vec{g}t$$

$$\vec{r} = \vec{r_o} + \vec{v_o}t + \frac{1}{2}\vec{g}t^2$$

$$F_F = \mu F_N$$

Friction Coefficients for Some Common Surface Interactions

Materials	μ_{S}	μ_{k}	
Steel—steel	0.7-0.74	0.57-0.6	
Steel—steel (lubricated)	0.12	0.07	
Aluminum—steel	0.61	0.47	
Copper—steel	0.53	0.36	
Cast iron—cast iron	1.1	0.15	
Teflon—Teflon	0.04	0.04	
Glass—glass	0.94	0.4	
Wood—wood	0.25-0.5	0.2-0.3	
Rubber—concrete	1.0	0.8	
Rubber—concrete (wet)	0.7	0.5	
Ice—ice	0.1	0.03	
Waxed ski—snow	0.1-0.14	0.05-0.1	

^{*} Source: RoyMech, www.roymech.co.uk

^{*} Raymond Serway and John Jewitt, Physics for Scientists and Engineers, Sixth Edition (Brooks-Cole, 2003)

^{*} www.physlink.com/Reference/FrictionCoefficients.cfm

^{*} Encarta.msn.com

The sliding block demo

https://www.computer-graphics.se/demos/files03/Beachball-demos.zip

The sliding block demo 2

https://www.computer-graphics.se/demos/files03/Beachball-demos.zip

DeformationSprings

Hooke's Law

$$\vec{F} = -k\Delta \vec{x}$$

Equation of motion: $m \ddot{x}$

$$m \ddot{x} = -kx$$

$$\ddot{x} + \varpi^2 x = 0 \qquad \varpi^2 = \frac{k}{m}$$

$$x(t) = A \sin(\varpi t + \phi_o)$$

$$T = \frac{2\pi}{\varpi} = 2\pi \sqrt{\frac{m}{k}}$$

Deformation Springs

Deformation

Deformation

https://www.computer-graphics.se/demos/files03/Beachball-demos.zip

Pendulum

$$\vec{F} = -mg\sin\theta = -\frac{mg}{L}\Delta\vec{x}$$

$$\vec{F} = -k\Delta \vec{x}$$

Equation of motion:

$$m\ddot{x} = -kx$$

$$\ddot{x} + \omega^2 x = 0 \qquad \omega^2 = \frac{g}{L}$$

Solution:

$$x(t) = A \sin(\varpi t + \phi_o)$$

$$T = \frac{2\pi}{\varpi} = 2\pi \sqrt{\frac{L}{g}}$$

HOMEWORK

Boat

Write the equation of motion for a boat in water.

What is the period of the vibration?