Physics for computer game developers

Sergiy Valyukh, Department of Physics, Chemistry and Biology (IFM)

About the course

- Purpose
 - To inroduce into basics of physics, in order to model the "real world" in computer games

Sources

Webpage of the course (Ingemar R) http://computer-graphics.se/TSBK03/

Ragnemalm, PFNP-SHCWMTS [IR]

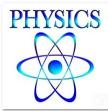
- G. Palmer, *Physics for Game Programmers*, Apress, 2005
- Oreilly.-.Physics.for.Game.Developers.2nd.Edition.2013
- Ian Millingston, Game Physics Engine Development, Elsevier, 2007
- Witkin, Baraff, Kass, lectures from Pixar "SIGGRAPH 2001 Course notes" [Pix], http://www.pixar.com/ ...
- C. Hecker, *Behind the Screen*, http://www.d6.com/users/checker

https://www.aps.org/programs/education/upload/whyphysics.PDF

Why is needed knowledge (on physics)?

A Lack of Knowledge Is a Dangerous Thing

Knowledge is the foundation


of all things in existence

i.2 Physics as a natural science

90% of games applied physical simulations use:

3D objects and 3D scenes Movement Rigid objects Rotation Friction Air and water resistance Gravity Collisions and explosions Springy things Waves

Criterion for a physical model in a game:

If it is looks right on the screen, that's good enough!

Outline

- *i*. Introduction (physics and its role in game industry)
- Models
- Kinematics
- Newton's Dynamics
- Work, Energy and Power
- Rotational motion
- Projectiles
- Collisions
- Water simulations
- Sports Simulations
- Cars and Motorcycles
- Boats, flight simulation (airplanes, rockets and missiles)
- Optical effects

i.3 Real word & fakes

i.3 Real word & fakes

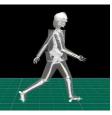
i.3 Modelling of the physical word

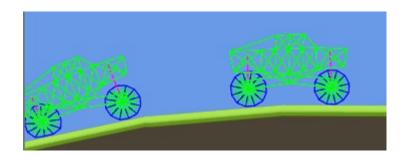
- Physics Will Keep Your Games from Looking Fake
- Adding Physics-Based Realism Is Easier Than You Might Think
- Adding Physics Won't Affect Game Performance
- Knowing Some Physics Will Make You a Better Game Programmer

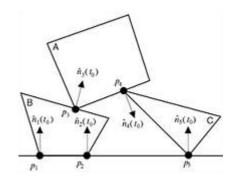
Modelling and models

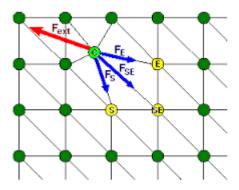
🕋 😐 📫

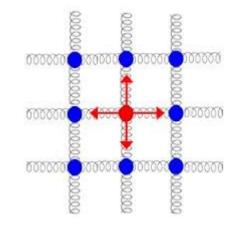
Modelling and models

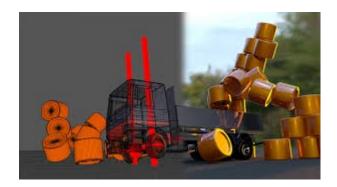


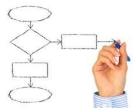


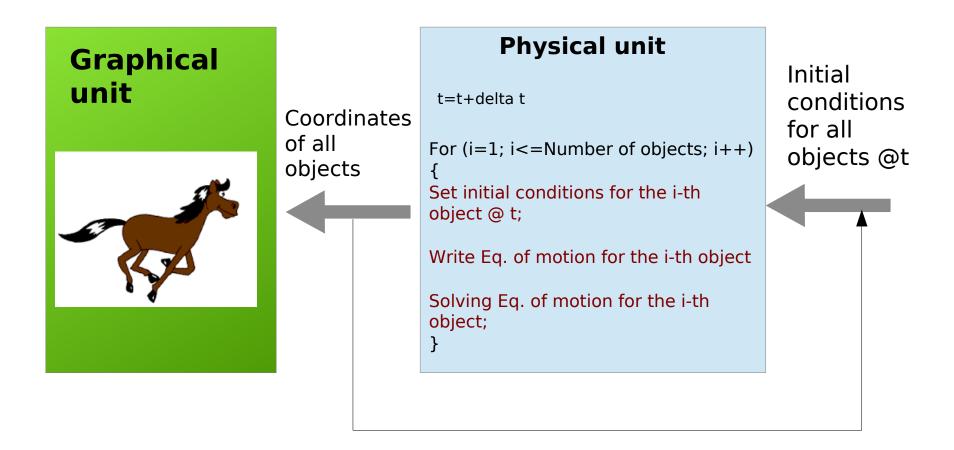


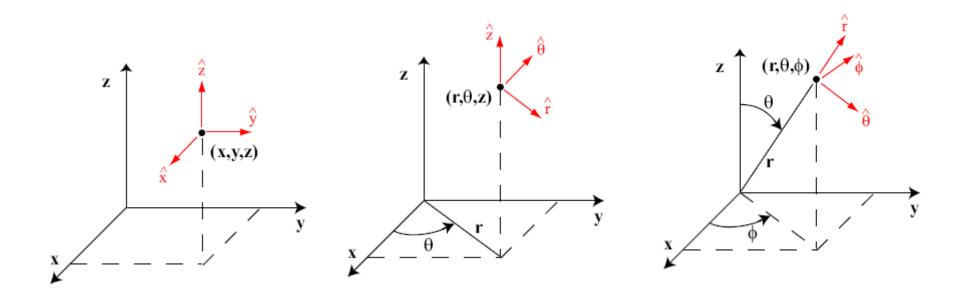



Modelling and models





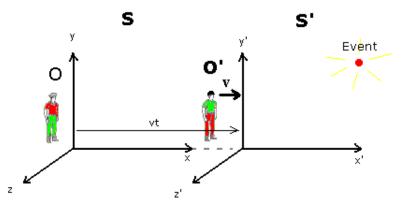



Systems of Units

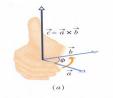
Quantity	English Units	SI Units	Conversion Factor
Length	foot (<i>ft</i>)	meter (<i>m</i>)	0.3048
	mile	kilometer (<i>km</i>)	1.609
Mass	pound-mass (<i>lbm</i>)	kilogram (<i>kg</i>)	0.4536
	slug	kilogram (<i>kg</i>)	14.593
Force	pound (<i>lb</i>)	Newton (N)	4.448
Pressure	lb/in^2	N/m^2	6894.7
Density	slug/ft ³	kg/m ³	515.379
	lbm/ft ³	kg/m ³	16.018
Temperature	Fahrenheit (^{<i>o</i>} <i>F</i>)	Kelvin (<i>K</i>)	5/9(F + 459.67)
	Rankine (<i>R</i>)	Kelvin (<i>K</i>)	5/9

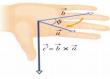
Plant

Coordinate Systems and Frames of Reference



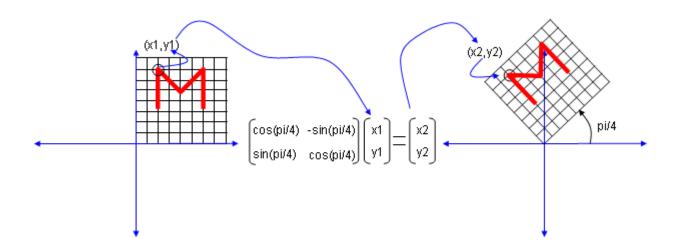
Coordinate Systems and Frames of Reference



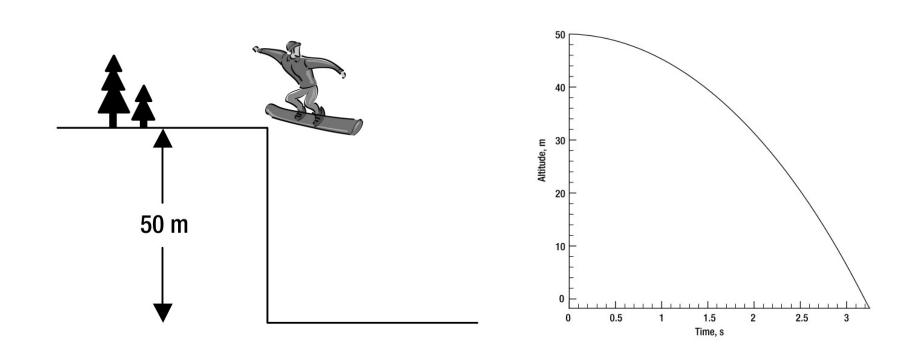

Transformation of Coordinates

The observers are moving at a relative velocity of v and each observer has their own set of coordinates (x,y,z,t) and (x',y',z',t'). What coordinates do they assign to the event?

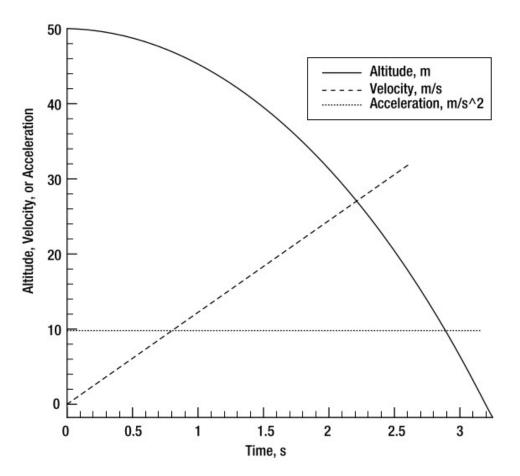
Scalars and Vectors $\vec{R} = x \vec{i} + y \vec{j} + z \vec{k}$ $\vec{V} = V_x \vec{i} + V_y \vec{j} + V_z \vec{k}$ $|\vec{R}| = \sqrt{x^2 + y^2 + z^2}$ Magnitude of a vector: $\vec{R}_1 \pm \vec{R}_2 = (x_1 \pm x_2)\vec{i} + (y_1 \pm y_2)\vec{j} + (z_1 \pm z_2)\vec{k}$ Sum of vectors: $(\vec{R}_1 \cdot \vec{R}_2) = x_1 x_2 + y_1 y_2 + z_1 z_2$ Vector scalar product: $\left(\vec{R}_{1}\cdot\vec{R}_{2}\right) = \left|\vec{R}_{1}\right|\left|\vec{R}_{2}\right|\cos\alpha$ $\left[\vec{R}_{1} \times \vec{R}_{2}\right] = (y_{1}z_{2} - y_{2}z_{1})\vec{i} + (z_{1}x_{2} - z_{2}x_{1})\vec{j} + (x_{1}y_{2} - x_{2}y_{1})\vec{k}$ Vector cross product: $\|\vec{R}_1 \times \vec{R}_2\| = |\vec{R}_1| |\vec{R}_2| \sin \alpha$



- Matrices
- Derivatives
- Differential Equations

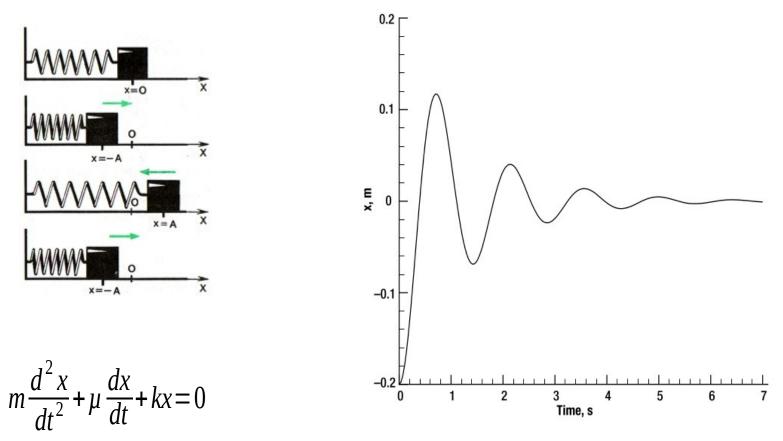


Matrices

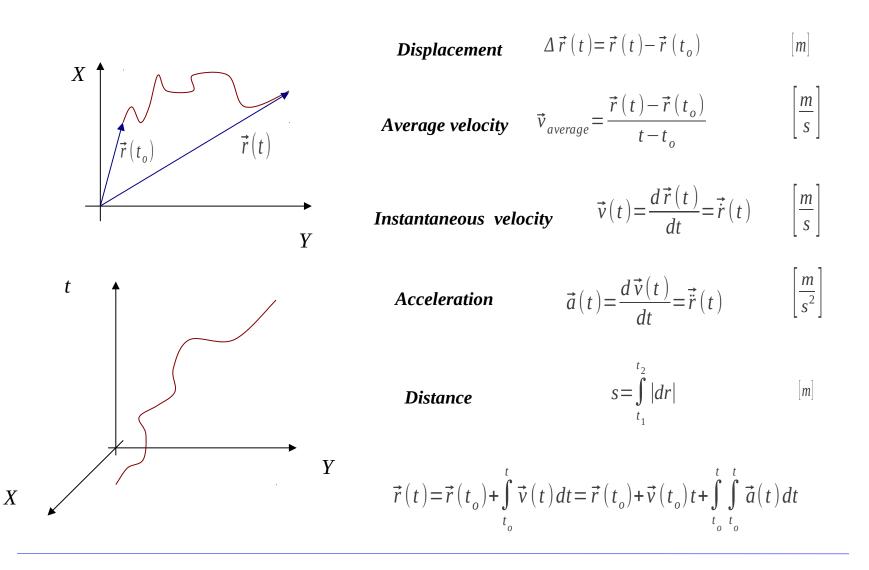


Derivatives

Derivatives

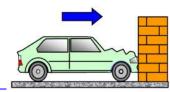


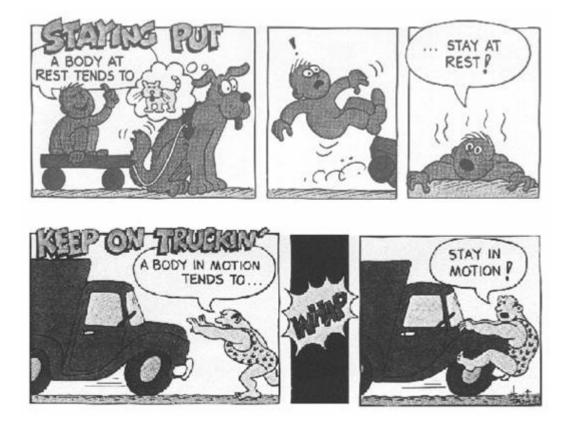
Comparing acceleration, velocity, and altitude for the snowboarder


Differential Equations

The motion of a spring as a function of time

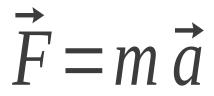
Kinematics

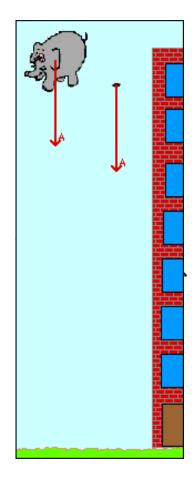




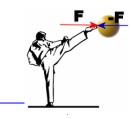
Newtonian Dynamics

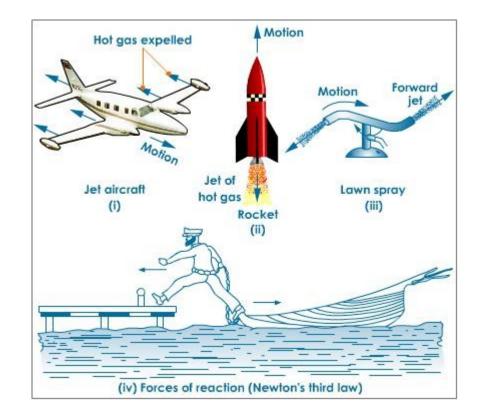
- Newton's three laws of motion
- Some special types of forces—gravitational, friction, centripetal, and spring
- The concept of a force vector
- Force balances and force diagrams


Every body preserves in its state of rest, or of uniform motion in a right line, unless it is compelled to change that state by forces impressed thereon.


Newton's Second Law of Motion: Force, Mass, and Acceleration

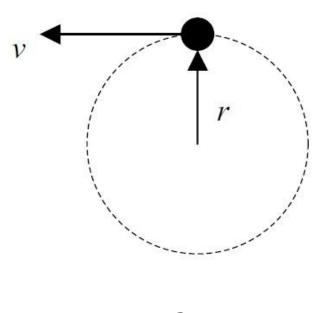
Applied Force (F

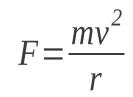


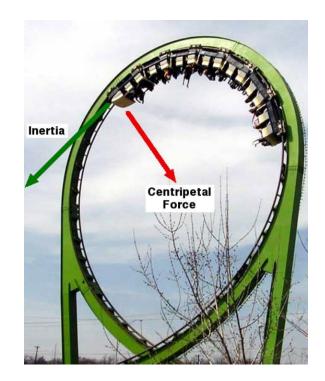


The alteration of motion is ever proportional to the motive force impressed

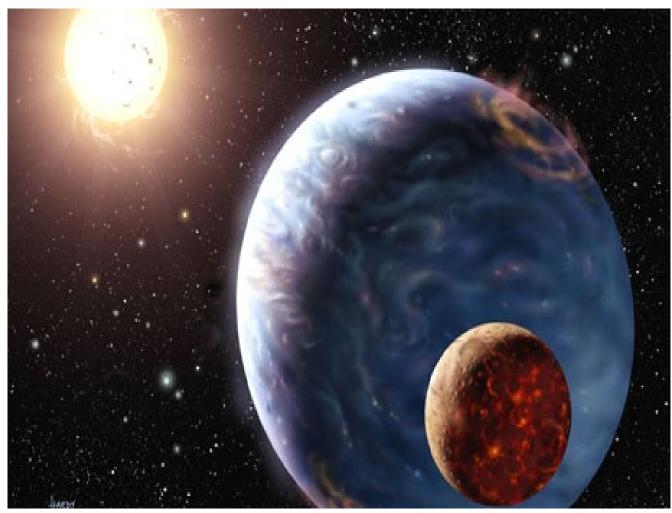
Newton's Third Law of Motion: Equal and Opposite Forces



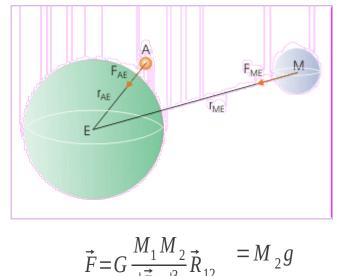

To every action there is always opposed an equal reaction


Types of Forces

Centripetal Force



Types of Forces


Gravitational Force

ender einen einen

Gravitational Force

$$F = G \frac{|\vec{R}_{12}|^3}{|\vec{R}_{12}|^3} R_{12}$$

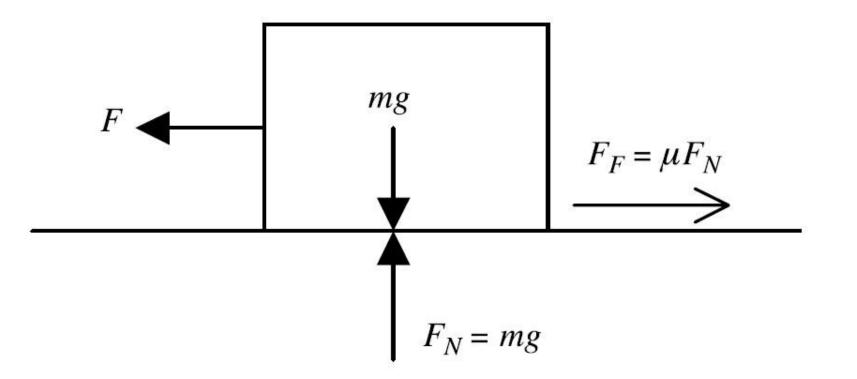
$$G = 6.674 \cdot 10^{-11} \frac{Nm^2}{kg^2}$$

$$g = 6.674 \cdot 10^{-11} \frac{Nm^2}{kg^2} \frac{5.9736 \cdot 10^{24} kg}{(6,375 \cdot 10^6 m)^2} = 9.81 \frac{N}{kg}$$

Gravitation Force

Equations of motion for projections		$X \xrightarrow{Z} \qquad \downarrow \vec{g} \\ Y$
Quantity	Differential Equation	Solution
Acceleration	None	$a_z = -g,$ $a_x = 0, a_y = 0$
Velocity	$\frac{dv_z}{dt} = a_z = -g$	$v_{z} = v_{z0} - gt$, $v_{x} = v_{x0}$, $v_{y} = v_{y0}$
Location	$\frac{d^2 z}{dt^2} = a_z = -g$ $\frac{dz}{dt} = v_z = v_{z0} - gt$	$z = z_{o} + v_{z0} t - \frac{1}{2} g t^{2},$ $x = x_{o} + v_{x0} t,$ $y = y_{o} + v_{y0} t$

Gravitation Force



Equations of motion in $\vec{a}t^2$ 2 \vec{a} vector form $ec{v}_0 t$ XSolution Quantity **Differential Equation** $\vec{a} = \vec{q}$ Acceleration None $\frac{d\vec{v}}{dt} = \vec{a} = \vec{g}$ Velocity $\vec{v} = \vec{v_0} + \vec{g}t$ $\frac{d^2\vec{r}}{dt^2} = \vec{a} = \vec{g}$ $\vec{r} = \vec{r_o} + \vec{v_o}t + \frac{1}{2}\vec{g}t^2$ Location $\frac{d\vec{r}}{dt} = \vec{v} = \vec{v_o} + \vec{g}t$

Friction

$$F_F = \mu F_N$$

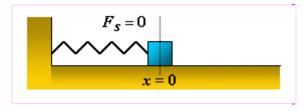
Friction

Friction Coefficients for Some Common Surface Interactions

Materials	μ _s	μ _k	
Steel—steel	0.7-0.74	0.57–0.6	
Steel—steel (lubricated)	0.12	0.07	
Aluminum—steel	0.61	0.47	
Copper—steel	0.53	0.36	
Cast iron—cast iron	1.1	0.15	
Teflon—Teflon	0.04	0.04	
Glass—glass	0.94	0.4	
Wood—wood	0.25-0.5	0.2–0.3	
Rubber—concrete	1.0	0.8	
Rubber—concrete (wet)	0.7	0.5	
Ice—ice	0.1	0.03	
Waxed ski—snow	0.1-0.14	0.05-0.1	

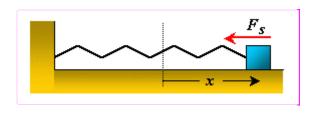
* Source: RoyMech, www.roymech.co.uk

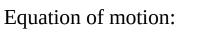
* Raymond Serway and John Jewitt, Physics for Scientists and Engineers, Sixth Edition (Brooks-Cole, 2003)

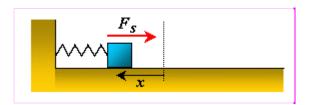

* www.physlink.com/Reference/FrictionCoefficients.cfm

* Encarta.msn.com

Vibration



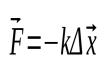

Deformation Springs

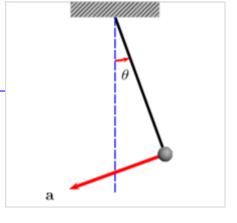

$$\vec{F} = -k\Delta \vec{x}$$

$$m \ddot{x} = -kx$$

$$\ddot{x} + \varpi^2 x = 0$$
 $\varpi^2 = \frac{k}{m}$

Solution:

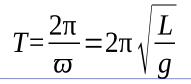

 $x(t) = A \sin(\varpi t + \phi_o)$


$$T = \frac{2\pi}{\varpi} = 2\pi \sqrt{\frac{m}{k}}$$


Vibration

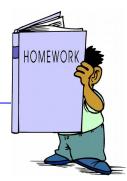
Pendulum

$$\vec{F} = -mg\sin\theta = -\frac{mg}{L}\Delta\vec{x}$$


Equation of motion:

 $m\ddot{x} = -kx$

$$\ddot{x} + \varpi^2 x = 0$$
 $\varpi^2 = \frac{g}{L}$


Solution:

 $x(t) = A\sin(\varpi t + \phi_o)$

Vibration

Boat

Write the equation of motion for a boat in water.

What is the period of the vibration?