Physically Based Modeling

Course Organizer

Andrew Witkin
Pixar Animation Studios

Physically based modeling has become an important new approach to computer animation

and computer graphics modeling. Although physically based modeling is inherently a
mathematical subject, the math involved needn’t be any more difficult nor esoteric than the
math that underlies many other areas of computer graphics, such as ray tracing or surface
modeling. Many papers on the subject have presupposed a specialized mathematical back-
ground that many members of the computer graphics community lack. Consequently, many
capable computer graphics practitioners, despite their interest in the subject, have simply
been put off by the density of the math.

This course addresses the need to make the principles and methods of physically based
modeling accessible to a broader computer graphics audience—those who are familiar with
mainstream computer graphics and have the usual basic computer graphics math, such as
vector/matrix manipulations, but whose first year calculus course may be only dimly re-
mem-bered.

Course topics include modeling the dynamics of particle systems and rigid bodies, basic
numerical methods for differential equations, simulation of deformable surfaces, collision

detection, modeling energy functions and hard constraints, and the dynamics of collision and
contact.

Additional material/updates can be found at:

http://ww. pi xar. com about pi xar/ resear ch/ pbn2001

SIGGRAPH 2001 COURSE NOTES Al PHYSICALLY BASED MODELING

Course Schedule

8:30 am I ntroduction

8:45am Differential Equation Basics Witkin
Vector fields and integral curves; initial value problems; basic numerical
methods; modular implementation of differential equation solvers.

9:30 am Particle Dynamics Witkin
F=ma; phase space; basic forces: gravity, drag, springs, etc. Smple par-
ticle collisions; structured implementation of interactive mass-and-spring
systems.

10:00 am Break
10:15 am Particle Dynamics (Cont'd) Witkin

10:30 am Implicit Methods Baraff
Penalty methods and the problem of stiffness: visualizing the problem; how
to avoid it; what to do if you can’'t; Smulating large systems.

11:15 am Cloth and Fur Energy Functions Kass
Point-volume comparisons, convex and nonconvex polyhedra, coherence
based methods, curved surfaces.

12:00 pm Lunch

1:30 pm Rigid Body Dynamics Baraff
Center of mass and inertia tensor; orientation and angular velocity; force,
torgue, and Newton’s laws; rigid body equations of motion: how to simu-
laterigid bodies.

2:15 pm Constrained Dynamics Witkin
“Tinkertoy” systems: rigid rods instead of springs. Using constraint
forces to avoid stiffness. Lagrange multipliers: solving for constraint
forces. basics of collision and contact.

3:00 pm Break

3:15pm Coallision and Contact Bar aff
Impulses; one-sided constraints; multiple constraint; discontinuities.

4:00 pm Dynamicsin Monsters, Inc. Witkin/Bar aff/K ass

SIGGRAPH 2001 COURSE NOTES A2 PHYSICALLY BASED MODELING

SIGGRAPH 2001 COURSE NOTES A3 PHYSICALLY BASED MODELING

Course Speakers

Andrew Witkin joined Pixar Animation Studiosin 1998 as a Senior Animation Scientist.
He was previously on the faculty of Carnegie Mellon University, from 1988 through 1998.
Prior to joining the faculty at Carnegie Mellon, Andrew Witkin was director of the Percep-
tion and Graphics groups at Schlumberger’s Palo Alto Research Lab. Hereceived aBA in
Psychology from Columbia Collegein 1975 and a PhD in Psychology from MIT in 1980.
Dr. Witkin has published extensively in the areas of Computer Vision and Computer
Graphics. He serves as an associate editor for ACM Transactions on Graphics, has served
on numerous conference program committees, and is afellow of the American Association
for Artifical Intellgience. Hisawardsinclude Best Paper prizes at the National Conference
on Artifical Intellegence and the International Joint conference on Artifical Intellgence, the
Grand Prix for Animation at the 1987 Parigraph competition in Paris, France, and the
Grand Prix for Computer Graphics, Prix Ars Electronica 1992, Linz, Austria. Heisthere-
cipient of this year's ACM SIGGRAPH Computer Graphics Achievement Award.

David Bar aff joined Pixar Animation Studios in 1998 as a Senior Animation Scientist.

Prior to his arrival at Pixar, he was an Associate Professor of Robotics, and Computer Sci-
ence at Carnegie Mellon University. David Baraff received his Ph.D. from Cornell Univer-
sity in 1992, where he was a graduate student in Cornell's Department of Computer Sci-
ence, and Program of Computer Graphics. Before and during his graduate studies, he also
worked at Bell Laboratories' Computer Technology Research Laboratory doing computer
graphics research, including real-time 3D interactive animation and games. After receiving
his Ph.D., he joined the faculty of Carnegie Mellon University. In 1995, he was named an
ONR Young Investigator. His research interests include physical simulation and modeling
for computer graphics, robotics, and animation.

Michael Kassis a Senior Scientist at Pixar Animation Studios where he developed the
tools for physically-based clothing animation that were used on Pixar's Academy Award
winning short film "Geri's game." He received his B.A. from Princeton in 1982, his M.S.
from M.L.T in 1984, and his Ph. D. from Stanford in 1988. Dr. Kass has received numer-
ous awards for his research on physically-based methods in computer graphics and com-
puter vision including several conference best paper awards, the Prix Ars Electronica for
the image "Reaction Diffusion Texture Buttons" and the Imagina Grand Prix for the ani-
mation "Splash Dance." Before joining Pixar in 1995, Dr. Kass held research positions at
Schlumberger Palo Alto Research, Apple Computer, and was Director of Technology at
Live Picture Inc.

SIGGRAPH 2001 COURSE NOTES A4 PHYSICALLY BASED MODELING

SIGGRAPH 2001 COURSE NOTES A5 PHYSICALLY BASED MODELING

Contents

| — Course Notes

A. Preliminaries
B. Differential Equation Basics
C. Particle System Dynamics
D. Implicit Methods
F. Constrained Dynamics
G. Rigid Body Dynamics
Il — Slides
SB. Differential Equation Basics
SC. Particle System Dynamics
SD. Implicit Methods
SE. Cloth and Fur Energy Functions
SF. Rigid Body Dynamics
SG. Constrained Dynamics
SH. Collision and Contact
SIGGRAPH 2001 COURSE NOTES A6

Witkin/Baraff
Witkin

Baraff

Witkin

Baraff

Witkin
Witkin
Baraff
Kass
Baraff
Witkin

Baraff

PHYSICALLY BASED MODELING

Differential Equation Basics

Andrew Witkin and David Baraff
Pixar Animation Studios

1 Initial Value Problems

Differential equations describe the relation between an unknown function and its derivatives. To
solvea differential equation is to find a function that satisfies the relation, typically while satisfying
some additional conditions as well. In this course we will be concerned primarily with a particular
class of problems, calleditial value problems.n a canonical initial value problem, the behavior

of the system is described by an ordinary differential equation (ODE) of the form

x= f(x1),

where f is a known function (i.e. something we can evaluate gixemdt,) x is thestateof the
system, and is x’s time derivative. Typicallyx andx are vectors. As the name suggests, in an
initial value problem we are givex(ts) = Xg at some starting tim&, and wish to followx over
time thereafter.

The generic initial value problem is easy to visualize. ID,Z(t) sweeps out a curve that
describes the motion of a poiptin the plane. At any point the functionf can be evaluated to
provide a 2-vector, sd defines a vector field on the plane (see figure 1.) The vectwiisthe
velocity that the moving poinp must have if it ever moves through(which it may or may not.)
Think of f asdriving p from point to point, like an ocean current. Wherever we initially deposit
the “current” at that point will seize it. Whegeis carried depends on where we initially drop it, but
once dropped, all future motion is determinedfayThe trajectory swept out hythrough f forms
anintegral curveof the vector field. See figure 2.

We wrote f as a function of botkx andt, but the derivative function may or may not depend
directly on time. If it does, then not only the poimbut the the vector field itself moves, so tipe
velocity depends not only on where it is, but on when it arrives there. In that case, the dervative
depends on time itwo ways:first, the derivative vectors themselves wiggle, and second, the point
p, because it moves on a trajectotgt), sees different derivative vectors at different times. This
dual time dependence shouldn’t lead to confusion if you maintain the picture of a particle floating
through an undulating vector field.

2 Numerical Solutions

Standard introductory differential equation courses focusysnbolicsolutions, in which the func-
tional form for the unknown function is to be guessed. For example, the differential equation
X = —kX, wherex denotes the time derivative &f is satisfied by = ekt

In contrast, we will be concerned exclusively withmericalsolutions, in which we take dis-
cretetime stepsstarting with the initial value(tg). To take a step, we use the derivative function

Bl

A The derivative
—.L function

\ x =f(x,t)

forms a vector

o o, |field.
i

7

Figure 1: The derivative functiofi(x, t). defines a vector field.

Vector Field

Start Here

Follow the vectors...

Initial Value Problem

Figure 2. An initial value problem. Starting from a poiy, move with the velocity specified by
the vector field.

SIGGRAPH 2001COURSENOTES B2 PHYSICALLY BASED MODELING

o Simplest numerical
solution method

» Discrete time steps

» Bigger steps, bigger
errors.

X(t+At) = x(ts + At f(x,1)

Euler's Method

Figure 3: Euler's method: instead of the true integral curve, the approximate solution follows a
polygonal path, obtained by evaluating the derivative at the beginning of each leg. Here we show
how the accuracy of the solution degrades as the size of the time step increases.

f to calculate an approximate changeximx, over a time intervalAt, then incremenx by Ax to
obtain the new value. In calculating a numerical solution, the derivative fundtisiregarded as
a black box: we provide numerical values foandt, receiving in return a numerical value fior
Numerical methods operate by performing one or more of tHesgative evaluationat each time
step.

2.1 Euler's Method

The simplest numerical method is called Euler’s method. Let our initial value ber denoted by
Xo = X(tp) and our estimate of at a later timeg + h by X(tg + h), whereh is astepsizgparameter.
Euler's method simply computesty + h) by taking a step in the derivative direction,

X(tg + h) = Xg + hXx(tp).

You can use the mental picture of a 2D vector field to visualize Euler's method. Instead of the
real integral curvep follows a polygonal path, each leg of which is determined by evaluating the
vector f at the beginning, and scaling by See figure 3.

Though simple, Euler's method is not accurate. Consider the case Dffartion f whose
integral curves are concentric circles. A pompgoverned byf is supposed to orbit forever on
whichever circle it started on. Instead, with each Euler giepi)l move on a straight line to a circle
of larger radius, so that its path will follow an outward spiral. Shrinking the stepsize will slow the
rate of this outward drift, but never eliminate it.

Moreover, Euler's method can be unstable. ConsideDdunction f = —kx, which should
make the poinp decay exponentially to zero. For sufficiently small step sizes we get reasonable

SIGGRAPH 2001COURSENOTES B3 PHYSICALLY BASED MODELING

Inaccuracy:
Error turns x(t) from a
circle into the spiral of
7 your choice.

NN
NSz

Instability: off to
\ \ \ / Neptune!

/]

(o
/4
/|

K]
A

Two Problems

|

Figure 4: Above: the real integral curves form concentric circles, but Euler's method always spirals
outward, because each step on the current circle’s tangent leads to a circle of larger radius. Shrinking
the stepsize doesn'’t cure the problem, but only reduces the rate at which the error accumulates.
Below: too large a stepsize can make Euler's method diverge.

behavior, but whem > 1/k, we have|Ax| > |X|, so the solution oscillates about zero. Beyond
h = 2/k, the oscillation diverges, and the system blows up. See figure 4.

Finally, Euler's method isn’t even efficient. Most numerical solution methods spend nearly all
their time performing derivative evaluations, so the computational persstepis determined by
the number of evaluations per step. Though Euler's method only requires one evaluation per step,
the real efficiency of a method depends on the size of the steps it lets you take—while preserving
accuracy and stability—as well as on the cost per step. More sophisticated methods, even some re-
quiring as many as four or five evaluations per step, can greatly outperform Euler's method because
their higher cost per step is more than offset by the larger stepsizes they allow.

To understand how we go about improving on Euler's method, we need to look more closely at
the error that the method produces. The key to understanding what's going ormaytbeseries
Assumingx(t) is smooth, we can express its value at the end of the step as an infinite sum involving
the the value and derivatives at the beginning:

) h2" h3.. hn §"x
X(to + h) = X(tg) + hx(tg) + EX(to) + §X(to) +...+ HW +...
As you can see, we get the Euler update formuldarbpcatingthe series, discarding all but the
first two terms on the right hand side. This means that Euler's method would be correct only if
all derivatives beyond the first were zero, i.e.x{t) were linear. Theerror term, the difference
between the Euler step and the full, untruncated Taylor series, is dominated by the leading term,
(h?/2)%(tg). Consequently, we can describe the erroOdah?) (read“Order h squared”) Suppose

SIGGRAPH 2001COURSENOTES B4 PHYSICALLY BASED MODELING

that we chop our stepsize in half; that is, we take steps ofhzqi;?dthough this produces only about
one fourth the error we got with a stepsizenpive have to take twice as many steps over any given
interval. That means that the error we accumulate over an intgri@t; depends linearly upoh.
Theoretically, using Euler's method we can numerically computger an intervaty to t; with as
little error as we want, by choosing a suitably snialln practice, a great many timesteps might be
required, depending on the error and the function

2.2 The Midpoint Method

If we were able to evaluateas well ast, we could acheiv® (h3) accuracy instead dd (h?) simply
by retaining one additional term in the truncated Taylor series:

2
X(to + h) = X(tg) + hX(tp) + hEii('[o) + O(hd). 1)

Recall that the time derivative is given by a functionf (x(t), t). For simplicity in what follows,
we will assume that the derivative functidndoes depends on time only indirectly throughso
thatx = f (x(t)). The chain rule then gives

X = ﬂx = f’f.
X
To avoid having to evaluaté’,which would often be complicated and expensive, we can approx-
imate the second-order term just in termsfqfand substitute the approximation into equation 1,
leaving us withO(h3) error. To do this, we perform another Taylor expansion, this time of the
function of f,

f (X0 + AX) = f(X0) + AXT'(X0) + O(AX?). 2)
We first introducex into this expression by choosing
AX = h f (Xo)

so that
h h ’ 2 h 2
f(Xo+ > f (X0)) = f(x0) + > f (x0) f'(X0) + O(h*) = f(x0) + EX(tO) + O(h9),

wherexg = X(tg). We can now multiply both sides Hy (turning theO(h?) term into O(h3)) and

rearrange, yielding
2

h h
%+ O) =h(f(xo+ 5 f (x0)) = T (x0).
Substituting the right hand side into equation 1 gives the update formula
h
X(to + h) = x(to) + h(f (xo + > f (X0)).
This formula first evaluates an Euler step, then performs a second derivative evaluation at the mid-
point of the step, using the midpoint evaluation to updatdence the nammidpoint methodThe

midpoint method is correct to withi®(h®), but requires two evaluations df. See figure 5 for a
pictorial view of the method.

SIGGRAPH 2001COURSENOTES B5 PHYSICALLY BASED MODELING

a. Compute an Euler step
Ax = At f(X,1)
b. Evaluate f at the midpoint

f :f(X+AX,t+At
mid 2 2

c. Take a step using the
midpoint value

X(t + At) = X(t) + At fmid

The Midpoint Method

Figure 5: The midpoint method is a 2nd-order solution method. a) an euler step is computed, b) the
derivative is evaluated again at the step’s midpoint, and the second evaluation is used to calculate
the step. The integral curve—the actual solution—is shown as c.

We don't have to stop with an error @(h®). By evaluatingf a few more times, we can
eliminate higher and higher orders of derivatives. The most popular procedure for doing this is a
method called Runge-Kutta of order 4 and has an error per st€qlof). (The Midpoint method
could be called Runge-Kutta of order 2.) We won't derive the fourth order Runge-Kutta method,
but the formula for computing(ty + h) is listed below:

ki = hf(xo, to)

kq h
ky = hf — —
2 (Xo + 2,t0+2)

ko h
ks = hf — —
3 (Xo + 2,t0+2)

ka = hf(xg+Kks, tg+h)

1 1 1 1
hy = —ky 4+ =ko + =k3z + =kj.
X(to + h) X0+61+32+33+6k4

3 Adaptive Stepsizes

Whatever the underlying method, a major problem lies in determing a good stepsize. ldeally, we
want to choosé as large as possible—but not so large as to give us an unreasonable amount of
error, or worse still, to induce instability. If we choose a fixed stepsize, we can only proceed as
fast as the “worst” sections oft) will allow. What we would like to do is to varj as we march
forward in time. Whenever we can makdarge without incurring too much error, we should do

so. Whenh has to be reduced to avoid excessive error, we want to do that also. This is the idea of

SIGGRAPH 2001OURSENOTES B6 PHYSICALLY BASED MODELING

adaptive stepsizing: varyingover the course of solving the ODE.

Here we'll be present adaptive stepsizing for Euler's method. The basic idea is as follows. Lets
assume we have a given stepdizend we want to know how much we can consider changing it.

Suppose we compute two estimates X¢p + h). We compute an estimatg, by taking an
Euler step of sizé from tp to to + h. We also compute an estimatg by takingtwo Euler steps of
sizeh/2, fromtg to to + h. Bothx, andx,, differ from the true value ok(tg + h) by O(h?). That
means thak, andxy, differ from each other byD(h?). As a result, we can write that a measure of
the current erroeis

€= [Xa — Xp|

This gives us a convenient estimate to the error in taking an Euler step df.size
Suppose that we are willing to have an error of as much aé pér step, and that the current
error is only 108, Since the error goes up bS, we can increase the stepsize to

1
1074\ 2

Conversely, if we currently had an error of f0and could only tolerate an error of 19 we would
have to decrease the stepsize to
1
1074\ 2
<—) h ~ .316h.

103
Adaptive stepsizing is a highly recommended technique.

4 Implementation

The ODEs we will want to solve may represent many things—for instance, a collection of masses
and springs, some rigid bodies, or a deformable object. We want to implement ODE solvers and the
models on which they operate in a way that isolates each from the internal details of the other. This
will make it possible to change solvers easily, and also make the solver code reusable. Fortunately,
this kind of modularity is not difficult to acheive, since all solvers can be expressed in terms of
a small, stereotyped set of operations. Presumably, the system of ODE-governed objects will be
embodied in a structure of some kind. The approach is to write type-specific code that operates on
this structure to perform the standard operations, then to implement solvers in terms of these generic
operations.

From the solver’s viewpoint, the system on which it operates is a black-box funttirt).
The solver needs to be able to evaluéteas required, at any values wfandt, and then to install
the updated andt when a time step is taken. To support these operations, the object that represents
the ODE being solved must be able to handle these requests from the solver:

e Return dim(x). Sincex andx may be vectors, the solver must know their length, to allocate
storage, perform vector arithmetic ops, etc.

e Get/sex andt. The solver must be able to install new values at the end of a step. In addition,
a multi-step method must sgtandt to intermediate values in the course of performing
derivative evaulations.

e Evaluatef atthe currenk andt.

SIGGRAPH 2001COURSENOTES B7 PHYSICALLY BASED MODELING

In an object-oriented language, these operations would naturally be implemented as generic
functions that are handled in a type-specific way. In a non-object-oriented language generic func-
tions would be faked by installing pointers to type-specific functions in structure slots, or simply by
passing the function pointers as arguments to the solver. Later on we will consider in detail how
these operations are to be implemented for specific models such as particle-and-spring systems.

References

[1] W.H. Press, B.P. Flannery, S. A. Teukolsky, and W. T. Vetterlimddumerical Recipes in C
Cambridge University Press, Cambridge, England, 1988.

SIGGRAPH 2001COURSENOTES B8 PHYSICALLY BASED MODELING

Particle System Dynamics

Andrew Witkin
Pixar Animation Studios

1 Introduction

Particles are objects that have mass, position, and velocity, and respond to forces, but that have no
spatial extent. Because they are simple, particles are by far the easiest objects to simulate. Despite
their simplicity, particles can be made to exhibit a wide range of interesting behavior. For example, a
wide variety of nonrigid structures can be built by connecting particles with simple damped springs.
In this portion of the course we cover the basics of particle dynamics, with an emphasis on the
requirements of interactive simulation.

2 Phase Space

The motion of a Newtonian patrticle is governed by the famfliar ma, or, as we will write it here,

X = f/m. This equation differs from the canonical ODE developed in the last chapter because it
involves a second time derivative, making isecond ordeequation. To handle a second order
ODE, we convert it to a first-order one by introducing extra variables. Here we create a variable
to represent velocity, giving us a pair of coupled first-order OBESf/m, X = v. The position

and velocityx andv can be concatenated to form a 6-vector. This position/velocity product space is
calledphase spacdn components, the phase space equation of motiaky j§, X3, v1, v2, V3] =

[v1, v2, v3, f1/m, f2/m, f3/m], which, assuming force is a function »fandt, matches our canon-

ical formx = f(x, t). A system ofn particles is described hycopies of the equation, concatenated

to form a G-long vector. Conceptually, the whole system may be regarded as a point moving
through &-space.

We can still visualize the phase-space ODE in terms of a planar vector field, though only for a
1D particle, by letting one axis represent the particle’s position and the other, its velocity. If each
point in the phase plane represents a paiv], then the derivative vector i®[f/m]. All the ideas
of integral curves, polygonal approximations, and so forth, carry over intact to phase space. Only
the interpretation of the trajectory is changed.

3 Basic Particle Systems

In implementing particle systems, we want to maintain two views of our model: from “outside,”

especially from the point of view of the ODE solver, the model should look like a monolith—a

point in a high-dimensional space, whose time derivative may be evaluated at will. From within,
the model should be a structured—a collection of distinct interacting objects. This duality will be
recurring theme in the course.

C1

A particle simulation involves two main parts—the particles themselves, and the entities that
apply forces to particles. In this section we consider just the former, deferring until the next section
the specifics of force calculation. Our goal here is to describe structures that could represent a
particle and a system of particles, and to show in a concrete way how to implement the generic
operations required by ODE solvers.

Particles have mass, position, and velocity, and are subjected to forces, leading to an obvious
structure definition, which in C might look like:

typedef struct{

float m; /* mass */

float *x; [* position vector */

float *v; [* velocity vector */

float *f; [* force accumulator */
} *Particle;

In practice, there would probably be extra slots describing appearance and other properties. A
system of particles could be represented in an equally obvious way, as

typedef struct{

Particle *p; [* array of pointers to particles */
int n; /* number of particles */
float t; /* simulation clock */

} *ParticleSystem;

Assume that we have a functi@alculateForces() that, called on a particle system, adds
the appropriate forces into each particle’slot. Don’t worry for know about what that function
actually does. Then the operations that comprise the ODE solver interface could be written as
follows:

/* length of state derivative, and force vectors */
int ParticleDims(ParticleSystem p){
return(6 * p->n);

|3

[* gather state from the particles into dst */
int ParticleGetState(ParticleSystem p, float *dst){

int i;

for(i=0 ;i < p->n; i++){
*(dst++) = p->pli]->x[0];
*(dst++) = p->pli]->x[1];
*(dst++) = p->p[i]->x[2];
“(dst++) = p->pli]->v[0];
*(dst++) = p->p[i]->Vv[1];
“(dst++) = p->pli]->v[2];

}

SIGGRAPH 2001COURSENOTES Cc2 PHYSICALLY BASED MODELING

[* scatter state from src into the particles */
int ParticleSetState(ParticleSystem p, float *src){

int i;

for(i=0 ;i < p->n; i++){
p->p[i]->X[0] = *(src++);
p->p[i]->x[1] = *(src++);
p->p[i]->x[2] = *(src++);
p->p[i]->v[0] = *(src++);
p->plil->V[1] = *(src++);
p->p[i]->Vv[2] = *(src++);

}
}

/* calculate derivative, place in dst */

int ParticleDerivative(ParticleSystem p, float *dst){

int i;

Clear_Forces(p); /* zero the force accumulators */
Compute_Forces(p); /* magic force function */

for(i=0 ; i < p->n; i++){
(dst++) = p->p[i]->v[0]; / xdo t=v *
*(dst++) = p->p[i]->Vv[1];
“(dst++) = p->pli]->v[2];
(dst++) = p->p[i]->f[0}/m; / vdot = f/Im */
*(dst++) = p->p[i]->f[1]/m;
*(dst++) = p->p[i]->f[2)/m;

Having defined these operations, and assuming some utility routines and temporary vectors, an
Euler solver be written as

void EulerStep(ParticleSystem p, float DeltaT){
ParticleDeriv(p,templ); [* get deriv */

ScaleVector(templ,DeltaT) [* scale it */
ParticleGetState(p,temp?2); /* get state */
AddVectors(templ,temp2,temp2); /* add -> temp2 */
ParticleSetState(p,temp?2); /* update state */
p->t += DeltaT,; [* update time */

The structures representing a particle and a particle system are shown visually in figures 1 and
. The interface between a particle system and a differential equation solver is illustrated in figure

N

4 Forces

All particles are essentially alike. In contrast, the objects that give rise to forces are heterogeneous.
As a matter of implementation, we would like to make it easy to extend the set of force-producing

SIGGRAPH 2001COURSENOTES C3 PHYSICALLY BASED MODELING

Position Position in

Velocity Phase Space

Force Accumulator

3 < X

mass

Particle Structure

Figure 1: A particle may be represented by a structure containing its position, velocity, force, and
mass. The six-vector formed by concatenating the position and velocity comprises the point’s posi-
tion in phase space.

particles time ‘

- < X

Particle Systems

Figure 2: A bare particle system is essentially just a list of particles.

SIGGRAPH 2001COURSENOTES C4 PHYSICALLY BASED MODELING

Solver Interface
Particle System

[particleq [n] [time] I

Im(State)
Sta Diffeq Solver
o6n
X1 V1 X2 Vo -+ Xpn Vp
v f1 v fa v f
lmy "2m; 7 "N T

Figure 3: The relation between a particle system and a differential equation solver.

objects without modifying the basic particle system model. We accomplish this by having the
particle system maintain a list of force objects, each of which has access to any or all particles,
and each of which “knows” how to apply its own forces. T®a culateforces function, used
above, simply traverses the list of force structures, calling each of ApgilyForce functions,
with the particle system itself as sole argument. This leaves the real work of force calculation to the
individual objects. See figures 4 and 5

Forces can be grouped into three broad categories:

e Unary forces, such as gravity and drag, that act independently on each particle, either exerting
a constant force, or one that depends on one or more of particle position, particle velocity, and
time.

e n-ary forces, such as springs, that apply forces to a fixed set of particles.

e Forces of spatial interaction, such as attraction and repulsion, that may act on any or all pairs
of particles, depending on their positions.

Each of these raises somewhat different implementation issues. We will now consider each in
turn.

4.1 Unary forces

Gravity. Global earth gravity (as opposed to particle-particle attraction) is trivial to implement.
The gravitational force on each particld is- mg, wheregis a constant vector (presumably pointing
down) whose magnitude is the gravitational constant. If all particles are to feel the same gravity,
which they need not in a simulation, then gravitational force is applied simply by traversing the

SIGGRAPH 2001COURSENOTES C5 PHYSICALLY BASED M ODELING

particles forces| pforces

XX X

T..F] — EEE- £

il L ek A list of force

il Kt in objects to invoke

Particle Systems, with forces

Figure 4: A patrticle system augmented to contain a ligbafe objectsEach force object points at
the particles that it influences, and contains a function that knows how to compute the force on each
affected particle.

X Tx
V[V
flf

S[—+|< %

mijm

\ I R
Clear Force E| | D

Accumulators Invoke apply_force
/ functions

XX X

V]V \Y E'

flf f § Return|v, f/m,..]
mlim mf to solver.

Deriv Eval Coop

Figure 5: The derivative evaluation loop for a particle system with force objects.

SIGGRAPH 2001COURSENOTES C6 PHYSICALLY BASED M ODELING

Force Law:

I:drag - 'kdra@/

|Particle systen11

] F
5Y'S

X —1— E| apply_fun

o |p->T = F->5K* p->V I

A Force Object: Viscous Drag

Figure 6: Schematic view of a force object implementing viscous drag. The object points at the
particle to which drag is being applied, and also points to a function that implements the force law
for drag.

system’s particle list, and adding the appropriate force into each particles force accumulator. Gravity
is basic enough that it could reasonably be wired it into the particle system, rather than maintaining
a distinct “gravity object.”

Viscous Drag. Ideal viscous drag has the forin= —kqv, where the constardy is called the
coefficient of drag.The effect of drag is to resist motion, making a particle gradually come to rest

in the absence of other influences. It is highly reccommended that at least a small amount of drag
be applied to each patrticle, if only to enhance numerical stability. Excessive drag, however, makes
it appear that the particles are floating in molasses. Like gravity, drag can be implemented as a
wired-in special case. A force object implementing viscous drag is shown in figure 6.

4.2 n-ary forces

Our canonical example of a binary force is a Hook’s law spring. In a basic mass-and-spring simula-
tion, the springs are the structural elements that hold everything together. The spring forces between
a pair of particles at positiorssandb are

faz—[ks(lll—r)JrkdI“%ll] |:—| fo = —fa. @)

wheref, andfp, are the forces om andb, respectivelyl = a— b, r is the rest lengthks is a spring
constant, andy is a damping constant, the time derivative of, is justvy — vp, the difference
between the two particles’ velocities.

In equation 1, the spring force magnitude is proportional to the difference between the actual
length and the rest length, while the damping force magnitude is proportioaardb’s speed of

SIGGRAPH 2001COURSENOTES Cc7 PHYSICALLY BASED MODELING

_ [AVIAX) Ax
f1=-/kf(|Ax|- 1) + ki v }
1 (Ax|- 1) O x| OJAX| Particle systen

fo=-f; i

1| kd Gys| F

- < X

X
v 2 S| gpply_fun
f

Damped Spring

Figure 7: A schematic view of a force object implementing a damped spring that attaches particles
p1 and py.

approach. Equal and opposite forces act on each patrticle, along the line that joins them. The spring
damping differs from global drag in that it acts symmetrically on the two particles, having no effect
on the motion of their common center of mass. Later, we will learn a general procedure for deriving
this kind of force expression.

A damped spring can be implemented straightforwardly as a structure that points to the pair of
particles it connects. The code that applies the forces according to equation 1 fetches the positions
and velocities from the two particle structures, performs its calculations, and sums the results into
the particles’ force accumulators. In an object-oriented environment, this operation would be im-
plemented as a generic function. In bare C, the force object would contain a pointer to an ordinary
C function. A force object for a damped spring is shown in figure 7

4.3 Spatial Interaction Forces

A spring applies forces to a fixed pair of particles. In contrast, spatial interaction forces may act
on any pair (or n-tuple) of particles. For local interaction forces, particles begin to interact when
they come close, and stop when they move apart. Spatially interacting particles have been used
as approximate models for fluid behavior, and large-scale particle simulations are widely used in
physics [1]. A complication in large-scale spatial interaction simulations is that the force calculation
is O(n?) in the number of particles. If the interactions are local, efficiency may be improved through
the use of spatial buckets.

SIGGRAPH 2001COURSENOTES C8 PHYSICALLY BASED MODELING

5 User Interaction

An interactive mass-and-spring simulation is an ideal first implementation project in physically
based modeling, because such simulations are relatively easy to implement, and because interactive
performance can be acheived even on low-end computers. The main ingredients of a basic mass-
and-spring simulation are model construction and model manipulation. Model construction can be
a simple matter of mouse-clicking to create particles and connect them with springs. Interactive ma-
nipulation requires no more than the ability to grab and drag mass points. Although there is barely
any difference mathematically betweeb 2nd D simulations, supporting[3 user interaction is
more challenging.

Most of the implementation issues are standard, and will not be dealt with here. However, we
give a few useful tips:
Controlled particles. Particles whose motion isot governed by forces provide a number of
interesting possibilities. Fixed particles serve as anchors and pivots. Particles whose motion is
procedurally controlled (e.g. moving on a circle) can provide dynamic elements such as motors. All
that need be done to implement controlled particles is to prevent the ODE solver from updating their
positions. One subtle point, though, is that the velocities as well as positions of controlled particles
must be maintained at their correct values. Otherwise, velocity-dependent forces such as damped
spring forces will behave incorrectly.
Structures. A variety of interesting non-rigid structures—beams, blocks, etc.—can be built out
of masses and springs. By allowing several springs to meet at a single particle, these pieces can
be connected with a variety of joints. With some experimentation and ingenuity it is possible to
construct entire mechanisms, complete with motors, out of masses and springs. The topic of regular
mass-and-spring lattices as an approximation to continuum models will be discussed later.[2]
Mouse springs. The simplest way to manipulate mass-and-spring models is to use the mouse
directly to control the positions of grabbed particles. However, this method is not recommended
because very rapid mouse motions can lead to stability problems. These problems can be avoided
by coupling the grabbed particle to the mouse position using a spring.

6 Energy Functions

Generically, the position-, velocity-, and time-dependent formulae that we use to calculate forces
are known agorce laws.Forces laws are not laws of physics. Rather, they form part of our descrip-
tion of the system we are modeling. Some of the standard ones, like linear springs and dashpots,
represent time-honored idealizations of the behavior of real materials and structures. However, if
we wanted to accurately model the behavior of a pair of particles connected by, say, a strand of
gooey taffy, the resulting equations would probably be even messier than the taffy.

Often, we can regard force laws as thingsdesignto hold things in a desired configuration—
for instance a spring with nonzero rest length makes the points it connects “want” to be a fixed
distance apart. In many cases it is possible to specify the desired configuration by giving a function
that reaches zero exactly when things are “happy.” We can call this kind of functiemavior
function.For example, a behavior function that says that two partecksdb should be in the same
place is jusC(a, b) = a — b (which is a vector expression each of whose components is supposed
to vanish.) If instead we warat andb to be distance apart, then a suitable behavior function is
C(a, by = |a — b| — r (which is a scalar expression.)

Later on, when we study constrained dynamics, we will use this kind of function as a way to

SIGGRAPH 2001COURSENOTES C9 PHYSICALLY BASED M ODELING

specify constraints, and we will consider in detail the problem of maintaining such constraints ac-
curately. For now, we will be content to impose forces that pull the system toward the desired state,
but that compete with other forces. These energy-based forces can be used to impose approximate,
sloppy constraints. However, attempting to make them accurate by increasing the spring constant
leads to numerical instability.[3]

Converting a behavior functioi(xz . . ., X,) into a force law is a pure cookbook procedure. We
first define a scalar potential energy function

ks
E= > C-C,
whereks is a generalized stiffness constant. Since the force due to a scalar potential is minus the
energy gradient, the force on particiedue toC is
fi = —9E = —ksCE
0X; 0X;.

In generalC is a vector, and this expression denotes its product with the transposeJafcthi@an
matrix 9C/ax;. We will look much more closely at this kind of expression when we study constraint
methods, and in particular Lagrange multipliers. For now, it is sufficent to think of the fdy@es
generalized spring forces that attract the system to states that satisfy0. When a behavior
function depends on a number of particles’ positions, we get a different force expression for each
by usingC'’s derivative with respect to that particle.

The force we just defined isn’t quite the one we want: in the absence of any damping, this
conservative force will cause the system to oscillate alogt 0. To add damping, we modify the
force expression to be

.. dC
fi = (=ksC — kdc)g, 2)

wherekg is a generalized damping constant, @ the time derivative o€. Note that when you
derive expressions fd, you will be using the fact thag = v;. So, in a trivial case, i€ = x1 — Xo,
it follows thatC = vy — vs.
As an extremely simple example, we taBe= X; — X2, which wants the points to coincide. We
have
ac_ C_
0X1 o 0X2 -
wherel is the identity matrix. The time derivative is

_|’

C = V1 — Vo.
So, substituting into equation 2, we have
f1 = —Ks(X1 —X2) — Kg(V1 —V2), f2=ks(X1 —X2) + Ka(vi — Vv2),

which is just the force law for a damped zero-rest-length spring.
As another example, we use the behavior function

C=ll-r,
wherel = x; — X», which says the two points should be distan@part. Its derivative w.r.d.is

oc_1
al |II”

SIGGRAPH 2001COURSENOTES C10 PHYSICALLY BASED MODELING

a unit vector in the direction df Then, sincé = x; — Xo,

9C _aC aC 9C
axy 9l axe al’

The time derivative of is)
. [-1 . |-(V1—V2)
I 1
These expressions are then substituted into the general expression of equation 2 to get the forces.
You should verify that this produces the damped spring force of equation 1.

7 Particle/Plane Collisions and Contact

The general collision and contact problem is difficult, to say the least. Later in the course we will
examine rigid body collision and contact. Here we only consider, in bare bones form, the simplest
case of particles colliding with a plane (e.g. the ground or a wall.) Even these simple collision
models can add significant interest to an interactive simulation.

7.1 Detection

There are two parts to the collision problem: detecting collisions, and responding to them. Although
general collision detection is hard, particle/plane collision detection is trivifl.idfa point on the

plane, ancN is a normal, pointingnside(i.e. on the legal side of the barrier,) then we need only
test the sign ofX — P) - N to detect a collision of poinX with the plane. A value greater than zero
means it's inside, less than zero means it’s outside (where it isn’t allowed to be) and zero means it's
in contact.

If after an ODE step a collision is detected, tiight thing to do is to solve (perhaps by linear
interpolation between the old and new positions) for the instant of contact, and roll back the whole
system to that time. A less accurate but easier alternative is just to displace the point that has
collided.

7.2 Response

To describe collision response, we need to partition velocity and force vectors into two orthogonal
components, one normal to the collision surface, and the other parallel taNitisithe normal to

the collision plane, then theormal componentf a vectorx is x, = (N - X)X, and thetangential
components X; = X — Xp.

The simplest collision to consider is an elastic collision without friction. Here, the normal
component of the particle’s velocity is negated, whereafter the particle goes its merry way. In an
inelastic collision, the normal velocity component is instead multiplied-bywherer is a constant
between zero and one, called twefficient of restitutionAt r = 0, the particle doesn’t bounce at
all, andr = .9 is a superball.

7.3 Contact

If a particle is on the collision surface, with zero normal velocity, then it isointact.If a particle is
pushednto the contact plane\ - f < 0) acontact force, = —(N - f)f is exerted, exactly canceling

SIGGRAPH 2001COURSENOTES Cl1 PHYSICALLY BASED MODELING

the normal component of. However, if the applied force pointsvayfrom the contact plane, no
contact force is exerted (unless the surface is sticky,) the particle begins to accelerate away from the
surface, and contact is broken.

In the very simplest linear friction model, the frictional force-ik (—f - N)v¢, a drag force
that acts in the tangential direction, with magnitude proportional to the normal force. To model a
perfectly non-slippery surfacg; is simply zeroed.

References

[1] R.W Hocknew and J.W. Eastwoo@omputer Simulation Using Particle®\dam Hilger, New
York, 1988.

[2] Gavin S. P. Miller. The motion dynamics of snakes and wor@smputer Graphics22:169—
178, 1988.

[3] Andrew Witkin, Kurt Fleischer, and Alan Barr. Energy constraints on parameterized models.
Computer Graphic21(4):225-232, July 1987.

SIGGRAPH 2001COURSENOTES C12 PHYSICALLY BASED MODELING

Implicit Methods for Differential Equations

David Baraff
Pixar Animation Studios

1 Implicit Methods

The methods we have looked at for solving differential equations in the first section of these notes
(Euler’s method, the midpoint method) are all called “explicit” methods for solving ODE's. How-
ever, sometimes an ODE can become “stiff,” in which case explicit methods don’'t do a very good
job of solving them. Whenever possible, it is desirable to change your problem formulation so that
you don't have to solve a stiff ODE. Sometimes however that’s not possible, and you have just have
to be ableto solve stiff ODE’s. If that's the case, you'll usually have to use an ODE solution method
whichis“implicit.”

2 Example Stiff ODE

First, what is the meaning and cause of stiff equations? Lets consider an example that arises fre-
guently in dynamics. Suppose that we have a particle, with position (x(t), y(t)), and suppose that
we want the y-coordinate to always be zero. One way of doing this isto add a component —ky(t)
to y(t) where k is alarge positive constant. If k is large enough, then the particle will never move
too far away from y(t) = 0, since the —ky(t) term aways brings y(t) back towards zero. However,
lets assume that there is no restriction on the x-coordinate, and that we want a user to be able to pull
the particle arbitrarily along the x-axis. So lets assume that over some time interval our differential

equation is simply
v O x(t))_(—x(t)) g
XO= dt(yo)\ —ky®)) =)

(We'll also assume that the particle doesn’t start exactly with yp = 0.) What's happening here isthat
the particle is strongly attracted to the line y = 0, and less strongly towards x = 0. If we solve the
ODE far enough forward in time, we expect the particle’s location to converge towards (0, 0) and
then stay there once it arrives.

Now suppose weuse Euler’smethod to solvethe equation. If wetake astep of size h, weget

v Xo —Xo
hew 0 (to) (YO) (—kyo)

Thisyields

X :(Xo — hxo):((1—h)xo)
e Yo — hkyo (1-hkyyo /-

D1

If welook at the y component of this equation, we seethat if |1 — hk| > 1 then the y,e,, We compute
will have an absolute value which islarger than |yg|. In ather words, if |1 — hk| > 1, Euler’s method
will not converge to an answer: each step will result in avalue of yne, Which islarger than the last.
Technically, Euler’smethodisunstablefor |1 — hk| > 1. Thus, webetter havel — hk > —1orhk < 2
if we hope to converge. The largest step we can hope to take is less than 2/ k.

Now, if k is alarge number, we'll have to take very small steps. This means that the particle
didestowards (0, 0) excruciatingly slowly. Even though the particle may nearly satisfy yp = 0, we
have to take such small stepsthat the particles’ progress along the x-axisis pretty much nonexistent.
That's the embodiment of a stiff ODE. In this case, the stiffness arises from making k very largein
order to keep the particle close to theline y = 0. Later on, when we connect particles with second-
order dynamics together with springs, we'll experience exactly the same effect: «iff ODE’'s. Even
if we use amore sophisticated explicit method such as fourth-order Runge-K utta, we may do alittle
better in the size of our steps, but we'll still have major problems.

Now aswe said above, the name of the gameisto pose your dynamics problems so that you don’t
experience stiff ODE’s. However, when you can't, you'll have to turn towards an implicit solution
method. The method we'll show below is the simplest of the implicit methods, and its based on
taking an Euler step “backwards.”

3 Solving Stiff ODE’s

Given adifferential equation

d
0= f(X(®),

the explicit Euler update would be X e, = Xg + hf (X(tg)), to advance the system forward hintime.
For a gtiff problem though, we change the update to instead be

Xnew =X0+hf (Xnew) (3_1)

That is, we're going to evaluate f at the point we're aiming &, rather than where we came from. (If
you think about reversing the world and running everything backwards, the above equation makes
perfect sense. Then the equation says“if youwereat X ey, and took astep —hf (Xpe,), you' d end up
a Xo.” Soif your differential equation represents asystem that is reversible in time, this step makes
sense. It'sjust finding a point X e, such that if you ran time backwards, you'd end up at Xq.) So,
we'relooking for aX e, suchthat f, evaluated there, timesh, points directly back at where we came
from. Unfortunately, we can't in general solve for Xpe,, unless f happens to be alinear function.

To cope with this, we'll replace f (Xney) With alinear approximation, again based on f’s Taylor
series. Letsdefine AX by AX = Xpeyw — Xo. Using this, we rewrite equation (3-1) as

Xo+ AX = Xo + hf (Xg + AX).
or just

AX = hf (Xg+ AX).
Next, lets approximate f (Xo + AX) by

f (Xp) + f'(Xg)AX.

SIGGRAPH 2001 COURSE NOTES D2 PHYSICALLY BASED MODELING

(Notethat since f (Xg) isavector, the derivative f'(Xp) isamatrix.) Using this approximation, we
can approximate AX with

AX =h(f(Xo) + f'(Xg)AX).
or
AX — hf’'(Xg)AX = hf (Xg)

Rewriting this as

(%I — f’(Xo)> AX =f(Xp),

where | isthe identity matrix, we can solve for AX as

-1
AX = (%I — f’(Xo)) f (Xo) (32

Computing X new = Xo + AX isclearly more work than using an explicit method, since we have
to solve a linear system at each step. While this would seem a serious weakness, computationally
speaking, don't despair (yet). For many types of problems, the matrix f’ will be sparse—for exam-
ple, if we are simulating a spring-lattice, f’ will have a structure which matches the connectivity
of the particles. (For a discussion of sparsity and solution techniques, see Baraff and Witkin [1].
Basic materia in Press et al. [2] will also prove useful.) Asaresult, it is usualy possible to solve
equation (3-2) in linear time (i.e. time proportional to the dimension of X). In such cases, the payoff
is dramatic. we can usually take considerably large timesteps without losing stability (i.e. without
divergence, as happens with the explicit case if the stepsize istoo large). The time taken in solving
each linear system isthus morethan offset by the fact that our timesteps are often orders of magnitude
bigger than we could manage using an explicit method. (Of course, the code needed to do al thisis
much more complicated than in the explicit case; like we said, make your problems un-stiff if you
can, and if not, pay the price.)

Lets apply the implicit method to equation (2-1). We have that f (X (1)) is

f(X(t)) =(__é/((tt)))

Differentiating with respect to X yields
, 9 (-1 0
f'X(t) = a_Xf X)) = (0 —k)

Then the matrix £ — f'(Xo) is

h
(P02 2)=(F)

SIGGRAPH 2001 COURSE NOTES D3 PHYSICALLY BASED MODELING

Inverting this matrix, and multiplying by f (Xq) yields

h
-(%) (56)
0 17 —kyo

_h
ht1©
h
T+ kn'°
What isthe limit on the stepsize in this case? The answer is: thereisno limit! Inthis case, if we
let h grow to infinity, we get

h
ha 10 Xo
im ax = fim—| "+t =—(1):—(X°>.
h— oo h— oo h —Kyo Yo

1 k
1+ kh Yo

This means that we achieve Xneyy = Xo + (—Xp) = 0inasingle step! For agenera iff ODE, we
won't be able to take steps of arbitrary size, but we will be able to take much larger steps using an
implicit method than using an explicit method. The extra cost of solving alinear equation is more
than made up by the time saved by taking large timesteps.

4 Solving Second-Order Equations
Most dynamics problems are written in terms of a second-order differential equation:
X(t) = f(x(t), x(1)). (4-1)

Thisequation iseasily converted to afirst-order differential equation by adding new variables. If we
define v = X, then we can rewrite equation (4-1) as

d [/ x(t) v(t)

&(v) ‘(f (XD, V(D)) 2
which is a first-order system. However, applying the backward Euler method to equation (4-2)
resultsinalinear system of size2n x 2nwherenisthedimension of x. A fairly simpletransformation
alows usto reduce the size of the problem to solving ann x n linear system instead. It isimportant
to note that both the 2n x 2n and n x n systems will have the same degree of sparsity, so solving the
smaller system will be faster.

Then x n system that needsto be solved isderived asfollows. Let ussimplify notation by writing

Xo = X(tg) and vg = V(tg). We also define AX = x(tg + h) — X(tg) and Av = v(tg + h) — v(tp). The
backward Euler update, applied to equation (4-2), yields

AX Y\ Vo + AV
(Av)_h<f(xo+Ax,VO+Av))' (4-9)

SIGGRAPH 2001 COURSE NOTES D4 PHYSICALLY BASED MODELING

Applying a Taylor series expansion to f—which in this context is a function of both x and v—
yields the first-order approximation

f (Xg + AX, V, +Av)—f+afo+afAv
0 0 0T o

In this equation, the derivative of /0x is evaluated for the state (Xg, Vo) and similarly for of /av.
Substituting this approximation into equation (4—3) yields the linear system

AX Vo + AV
=h of of : (4-4)
AV (fo + 8—Ax + EAv)

X

Taking the bottom row of equation (4—4) and substituting Ax = h(vg + Av) yields
of of
Av=nh (fo + &h(vo + Av) + WAV> .
Letting | denote the identity matrix, and regrouping, we obtain
of 5 of of

which we then solve for Av. Given Av, wetrivially compute AX = h(vg + AV).

The above assumes that the function f has no direct dependence on time; in the casethat f varies
directly with time (for example, if f describes time-varying external forces, or references moving
points or coordinate frames that are not variables of x) then equation (4-5) needs an additional term
to account for this dependence:

of L of of o
(|_h5_h&)m_h(fo+h&\/o+ﬁ) (4-6)

References

[1] D. Baraff and A. Witkin. Large steps in cloth simulation. Computer Graphics (Proc. SG-
GRAPH), 1998.

[2] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes. Cambridge
University Press, 1986.

SIGGRAPH 2001 COURSE NOTES D5 PHYSICALLY BASED MODELING

Constrained Dynamics

Andrew Witkin
Pixar Animation Studios

1 Beyond penalty methods

The idea of constrained particle dynamics is that our description of the system includes not only
particles and forces, but restrictions on the way the particles are permitted to move. For example,
we might constrain a particle to move along a specified curve, or require two particles to remain
a specified distance apart. The problem of constrained dynamics is to make the particles obey
Newton’s laws, and at the same time obey the geometric constraints.

As we learned earlier, energy functions provide a sloppy, approximate constraint mechanism.
A spring with rest lengthr makes the particles it connects “want” to be distanagpart. How-
ever, the spring force competes with all other forces acting on the particles—gravity, other springs,
forces applied by the user, etc. The constraint can only win this tug-of-war if its spring constant is
large enough to overpower all competing influences, so that very small displacements induce large
restoring forces. As we saw in the last section, this is really no solution because it gives rise to
stiff differential equations which are all but numerically intractible. The use of extra energy terms
to impose constraints is known as tphenalty method.If we want both accurate constraints and
numerical tractibility, then penalty methods will not fill the bill.

Penalty constraints work, to the extent they do, because the restoring forces cancel applied forces
that would otherwise break the constraints. The fundamental difficulty with penalty constraints is
that the applied forces and restoring forces communicate only indirectly, through displacements.
In effect, the displacements produced by applied forces act as signals that tell the constraint what
restoring force is required. This is not a good communication mechanism because it is impossible
to acheive accuracy without stiffness.

The basic approach to avoiding this problem is to directly calculate the forces required to main-
tain the constraints, rather than relying on displacements and restoring forces to do the job. The job
of theseconstraint forcess to cancel just those parts of the applied forces that act against the con-
straints. Since forces influence acceleration, this means specifically that the constraint forces must
convert the particles’ accelerations into “legal” accelerations that are consistent with the constraints.

2 A bead on awire

We introduce the approach using the simple example dd garticle constrained to move on the
unit circle. We can express the constraint by writing a scalar behavior function, as we did in Chapter
C to create energy functions,

C(X) = %(x-x—l), (1)

F1

Point-on-circle constraint:
=1 -
C=1xx -1)

C =0 legal position

C=0 legal velocity

C =0 legal acceleration
Add in a constraint force that
ensures legal acceleration.

Maintaining Constraints Differentially

Figure 1: If the initial position and velocity are consistent with the constraints, then the constraint
can be maintained by ensuring that the acceleration is always legal thereafter.

so that the legal positions af are all those that satisfg(x) = 0. The functionC is animplicit
functionfor the constraint. Ik is a legal position, then the legatlocitiesare all those that satisfy

C=x-x=0. (2

In turn, the legahccelerationsare all those that satisfy

C=%-x+x%-x=0. (3)
If we start out with a legal position and velocity, then to maintain the constraint, in principal, we
need only ensure that equation 3 is satisfied at every instant thereafter. See figure 1 The particle’s
acceleration is)
f+f
X = 4
- (4)
wheref is the given applied force, arfds the as yet unknown constraint force. Substitutingxfor
equation 3 gives
B
cz%.xu.xzo, 5)

or

A

f-x=—-f.-x—mx-x (6)
2.1 The principal of virtual work

We have only one equation and two unknowns—the two componerfts—s@ we cannot solve
for the constraint force without an additional condition. We get that condition by requiring that

SIGGRAPH 2001COURSENOTES F2 PHYSICALLY BASED MODELING

the constraint force never add energy to nor remove energy from the system, i.e. the constraint is
passive and lossless. The kinetic energy is

m
T =—X-X,
2
and its time derivative is
T=mx-x=mf-Xx+mf-Xx,

which is thework done byf andf. Requiring that the constraint not change the energy means that
the last term must be zero, i.e. that the constraint force does no work. A subtle point is that we are
enjoining the constraint force froeverdoing work, rather than saying that it happens not to be at
the moment. We therefore require tiet vanish forevery legak, i.e.

f-x=0,Vx|x-x=0.

This condition simply states th&dmust point in the direction of, so we can rewrite the constraint
force as
f=Ax,

wherex is an unknown scalar. Substituting foin equation 6, and solving for gives

—f-Xx—mx-x
A= —mm—. 7
X (7)
Having solved for, we calculatd = Ax, thenx = (f + f)/m, and proceed with the simulation in
the usual way.
In its general form, the condition we imposedfos known aghe principal of virtual worl2]
See figure 2 for an illustration.

2.2 Feedback

If we were solving the differential equation exactly, this procedure would keep the particle exactly
on the unit circle, provided we began with valid initial conditions. In practice, we know that nu-
merical solutions to ODE’s drift. We must add an extra feedback term to prevent this numerical
drift from accumulating, turning the circle into an outward spiral. The feedback term can be just a
damped spring force, pulling the particle back onto a unit circle. The feedback force needs to be
added inafter the constraint force calculation, or else the constraint force will dutifully cancel it!
We will discuss feedback in more detail in the next section.

2.3 Geometric Interpretation
When the system is at rest, the constraint force given in equation 7 reduces to

R f-x

f= 30 (8)
which has clear geometric interpretation as the vector that orthogonally prbjeuts the circle’s
tangent. This interpretation makes intuitive sense because the force component that is removed by
this projection is the component that points out of the legal motion direction. The orthogonality of
the projection also makes sense, because it ensures that the particle will not experience gratuitous
accelerations in the allowed direction of motion.

SIGGRAPH 2001COURSENOTES F3 PHYSICALLY BASED MODELING

* Restrict constraint
force to the normal
direction.

e Orthogonal to all legal
displacements.

* No work, no energy
gain or loss.

e One DOF: A

Constraint Forces

Figure 2: In the case of a point-on-circle constraint, the principle of virtual work simply requires
the constraint force to lie in a direction normal to the circle.

Whenx is nonzero, we unfortunately lose this simple geometric picture, but we can still interpret
the addition of the constraint force as a projection. Rather than a force projection, it is the projection
of the accelerationonto the set of legal accelerations. The velocity-dependent term in equation 7
ensures that the curvature of the particle’s trajectory matches that of the circle. some effort, we could
try to regain the geometric picture by visualizing a projectiophase spacdyut this is hardly worth
the trouble.

3 The general case

In the last section we derived the constraint force expression for a single particle subject to a single
scalar constraint. Our goal in this section is to extend this special case to the general one of a whole
system of particles, collectively subjected to a number of constraints. The derivation follows the
more detailed one presented in [5].

The key to making this a managable task is to adopt a uniform, monolithic view, much as we
do in solving ODEs. Rather than considering each particle separately, we lump their positions into
a singlestate vectonwvhich we will callg. Unlike the phase-space vector that we hand to the solver,
this one contains positions only, not velocities,so, i & has length 8.

To collapse all the particles’ equations of motion into one global equation, we next defiassa
matrix, M, whose diagonal elements are the particles’ masses, and whose off-diagonal elements are
zero. The diagonal mass matrix fior3D points is a 8 x 3n matrix whose diagonal elements are
[Mm1, m1, mg, My, mp, My, ..., My, My, My]. iMplementation, a diagonal matrix may be represented
as a vector. Multiplication of a vector by the matrix is then just element-by-element multiplication.
Theinverseof a diagonal matrix is just the element-by-element reciprocal.

SIGGRAPH 2001COURSENOTES F4 PHYSICALLY BASED MODELING

Finally, we concatenate the forces on all the particles, just as we do the positions, to create a
global force vector, which we denote . Now we can write the global equation governing the
particle system as

q=Wwa,

whereW is the inverse oM.

We will also use global notation for the constraints, concatenating all the scalar constraint func-
tions to form a single vector functioB(q). If we haven 3D particles, subject ton scalar con-
straints, then the output of this global constraint function isnavector, and its input is arBvector.

At this point, you may well be wondering how all this global notation will ever actually apply
to a real network of particles and constraints. This is an example of just the same kind of duality
that we encountered in applying ODE solvers to mass-and-spring models. On the one hand, we
want to build particle-and-constraint models as networks of distinct interacting objects. On the
other, we want to allow the code that calculates constraint forces to act as if the system on which it
operates really were a structureless monolith, just as an ODE solver does. Soon, we will show very
concretely how this dual view can be maintained.

As in the point-on-circle example, we assume that the configuratiand the velocity are
both initially legal, i.e. tha€ = C = 0. Then our problem is to solve for a constraint fo@ehat,
added to the applied ford®, guarantees th&t = 0.

To do this, we will need to take derivatives Gf In the previous section, we had a specific
algebraic expression for the constraint function, so we were able to derive expressions for their
derivatives as well. Now, since we are regardid@s an anonymous function of state, we will be
writing derivatives generically, using expressions suchsas To keep things down to earth, you
should think of expressions such as these, as wel dtself, as things we are able to evaluate
numerically by invoking functions'

By the chain rule,

aC .

The matrixdC/dq is called theJacobianof C. We will denote it henceforward by Differentiating
again w.r.t. time gives

C =Jg+Jg.
The quantityd, the time derivative of the Jacobian, might be a little puzzling. By the chain rule we
could write it as] = 9J/dq¢. However, taking the derivative of a matrix w.r.t. a vector yields a
rank 3 tensor (essentially, &3array). We can avoid introducing this new kind of object by writing,
equivalentlyJ = 9C/dq. Assuming we have an expression rthis entails only differentiating a
vector expression w.r.t. a vector, which is less menacing.

Next, we use the system’s equations of motion to replplog a force expression, giving

C=J9+IWQ+0).
SettingC to zero and re-arranging gives

IWQ = —Jg — IWQ, (9)

1Speaking of derivatives, it is important to understand what a quantity suél A&y is. Since bothC andq are
vectors, the derivative of one with respect to the other is a matrix, obtained by taking the scalar derivative of each
component o w.r.t. each component of.

SIGGRAPH 2001COURSENOTES F5 PHYSICALLY BASED MODELING

which is the counterpart, in general form, to equation 7. As in the point-on-circle example, we have
more unknowns than equations, and once again we introduce the principle of virtual work. The
legal velocities (i.e. the ones that don’t chargjeare all the ones that satis@k = 0. To ensure

that the constraint force does no work, we therefore require that

Q-x=0, Vx|Jx=0.
All and only vectorsQ that satisfy this requirement can be expressed in the form
Q=J3"x,

where is a vector with the dimension &.

To understand what this expression means, it helps to regard the thatria collection of vec-
tors, each of which is the gradient of one of the scalar constraint functions compZis®igce our
fundamental requirement is th@t= 0, these gradients are normals to the constraint hypersurfaces,
representing the state-space directions in which the systewt jgermitted to move. The vectors
that have the fornd" A are the linear combinations of these gradient vectors, and hence span exactly
the set ofprohibiteddirections. Restricting the constraint force to this set ensures that its dot prod-
uct with anylegal displacement of the system will be zero, which is exactly what the principle of
virtual work demands.

In matrix parlance, the set of vectad$ A is known as thewull space complemertf J. The
null spaceof J is the set of vectors that satisfyJv = 0. The null space vectors are tlegal
displacements, while the null space complement vectors agdhéitedones.

The components of are known ad.agrange multipliers.These quantities, which determine
how much of each constraint gradient is mixed into the constraint force, are the unknowns for which
we must solve. To do so, we repla(éeby JT A in equation 9, which gives

IJWITH = —Jg — IwWQ, (10)

which is a matrix equation in which all butare known. The matridWJT is a square matrix with
the dimensions of. Oncea is obtained, it is multiplied by to obtain®, which is added to the
applied force before calculating acceleration.

We already noted the need for a feedback term to prevent the accumulation of numerical drift.
This term can be incorporated directly into the constraint force calculation. Instead of solving for
C = 0, as we did above, we solve for

C == —ksc - de,

whereks andky are spring and damping constants. By adding this term, we make the constraint
force perform the extra function of returning, with damping, to a valid state should drift occur. The
final constraint force equation, with feedback, is

IWJITH = =g — IWQ — ksC — kqC. (11)

The values assigned kg andky are not critical, since this term only plays the relatively undemand-
ing role of absorbing drift. See [1, 3, 5] for further discussion.

SIGGRAPH 2001COURSENOTES F6 PHYSICALLY BASED MODELING

4 Tinkertoys: Implementing Constrained Particle Dynamics

The general formula of equation 11 is just a skeleton. To actually simulate anything, a specific
constraint functionC(q) must be provided, in a form that lets us evaluate the function itself and
its various derivatives. One way to flesh out the skeleton would be to write down an expression
for such a function, symbolically take the required derivatives, substitute these expressions into
equation 11 and, after simplifying and massaging the resulting mess, write code that performs the
numerical evaluations required for a simulation. This is essentially what we did in section 2, but
only for a trivially simple example. As an exercise, you might try working through a somewhat
more complicated example, say a double pendulum. If you actually do try it, you will probably
be able to carry it through to a working implementation, but it will be readily apparent that this
derive-and-implement methodology does not scale up!

Instead of hand-deriving and hand-coding models, we want to build models interactively by
snapping the pieces together, drawing freely from a set of useful pre-defined constraints, such as
distance and point-on-curve constraints. The main problem we must solve to acheive this goal is
to evaluate the global matrices and vectors that comprise equation 11. The evaluations must be
quick, and also dynamic in the sense that we can freely change the structure of the model on the fly.
Naturally, we want constraints to be modular just as forces are.

In this section we describe an architecture for constrained particle dynamics simulation that
meets these objectives. The approach is to represent individual constraints using objects similar
to those that represent forces. Each constraint object is responsible for evaluating the constraint
function it represents, and also that functions derivatives. These evaluations produce fragments of
the vectors and matrices comprising equation 11. The fragments are then combined dynamically by
the constrained particle system.

4.1 The constrained simulation loop

The machinery required to support constraints fits neatly into our basic particle system architecture.
From the standpoint of the ODE solver, the main job of the particle system, in both the unconstrained
and constrained case, is to perform derivative evaluations. The sequence of steps that the particle
system must perform to evaluate the derivative is nearly the same, with one important addition:
calculating the constraint force. This is how the extra step fits in:

1. Clear forces: zero each particle’s force accumulator.

2. Calculate forces: loop over all force objects, allowing each to add forces to the particles it
influences.

3. Calculate constraint forces: On completion of the previous step, each particle’s force accu-
mulator contains the total force on that particle. In this step, the global equation 11 is set up
and solved, yielding a constraint force on each particle, which is added into the applied force.

4. Calculate the derivative: Divide force by mass to get acceleration, and gather the derivatives
into a global vector for the solver.

In this section, we are concerned exclusively with the third step in this sequence.

SIGGRAPH 2001COURSENOTES F7 PHYSICALLY BASED MODELING

C * Each constraint
contributes one or more
blocksto the matrix.

» Sparsity: many empty
-] blocks.
* Modularity: let each

constraint compute its
own blocks.

Matrix Block Structure

Figure 3: The block-sparse Jacobian matrix. The constraints are shown above, and the particles
along the right side. Each constraint/particle pair corresponds to a block in the matrix. A block is
non-zero only if the constraint depends on the particles. Here, we show a binary constraint, such as
a distance constraint, that connects two particles. The two shaded blocks are that constraint’s only
contributions to the sparse Jacobian.

4.2 Block-structured matrices

Each individual constraint contributes a slice to the global constraint vEgtioist as each particle
contributes a slice to the global state veajoidn addition to a list of particles, and a list of forces,

a constrained particle system must also maintain a list of constraints. Evaluating the global vectors
such a<C andC is straightforward, assuming that each constraint points to a function that performs
its own portion of these evaluations. We simply loop over the constraints, invoking the functions,
and placing the results in the global vectors with appropriate offsets. This is essentially the same
gather operation that we use for communication with the ODE solver.

The main new ingredient is that we must evaluate global matrices as well as vectors. Whereas
constraints and particles each occupy a slice of their respective global vectors;osstfaint-
particle pair occupies @lock of the global derivative matrix. The vector slice that is “owned” by
a constraint can be described by an offset and a lengthi, aagilength. Similarly, a particle’s
global station can be described pyand jlength. While jlengthis always the dimension of the
space that the particles live inength may vary from constraint to constraint. The derivative of a
constraint with respect to a particle occupieslamgth x jlengthblock of the Jacobian matri,
with originn at position(, j). See figure 3.

A typical constraint influences at most just a few particles. The value of the constraint function
depends on only these particles; its derivative with respect to all other particles is zero. This means
that the matrices andJ are typically very sparse. Of theblocks per constraint in an-particle
system, a unary constraint contributes only one non-zero block, a binary one two non-zero blocks,

SIGGRAPH 2001COURSENOTES F8 PHYSICALLY BASED MODELING

etc. Given this structure, a natural way to represent the sparse matrices is by lists of the non-zero
blocks. In this scheme, each matrix block is represented by a structure that specifies the block’s
origin, (i, j), and dimensions(ilength, jlength), and that contains artength x jlength float

array holding the block’s data, e.g.

struct{
int i
int j;
int ilength;
int jlength;
float *data;

3

To support constrained particle dynamics using block-sparse matrices, as we will soon see,
we must implement only two operations: matrix times vector, and matrix-transpose times vector.
Both are simple operations, looping over the matrix blocks, and performing an ordinary matrix
multiplication for each block, using the block'sand | as offsets into the destination and source
vectors.

4.3 Building the matrices

In addition to holding lists of particles and forces, the constrained particle system will hold a list of
constraints, block-sparse matrices to repredemtdJ, and vectors to hol€, C, etc. The structures

that represent the constraints may be similar in many respects to the structures we use to represent
simple forces, i.e. they point to the particles on which they depend and they point to functions that
perform their type-specific operations.

When a constraint is instantiated, matrix blocks must be created for each particle on which the
constraint depends, and the blocks must be added to the global matrices. Since the number and
shape of blocks involved varies with the constraint type, this initialization may be handled by the
constraint in a type-specific way. Thereafter, the constraint must be able to evaluate its portions of
the vector<C andC, and of the matriced andJ. The results of the matrix evaluations are placed in
the matrix blocks that were created by the constraint on initialization.

All the required global quantities can then be computed simply by looping over the constraints,
and invoking the functions that perform these evaluations.

4.4 Solving the linear system

The solution of sparse linear systems is a field unto itself. Of the many available options, we give
one that is simple and readily available. A matrix equation of the fbn= b may be solved
iteratively by finding a vectox that minimizegMx — b) - (Mx — b). A conjugate gradient algorithm

that solves this problem is given in Numerical Recipes [4], Chapter 2. The conjugate gradient
algorithm offers the advantage that it gives a least-squares solution for over-determined systems, and
tolerates redundant constraints. The solver takes as arguments two routines which contitute its only
access the matrix: vector-times-matrix, and vector-transpose-times matrix. Sparsity is exploited
by implementing these routines efficiently. The routine requdés) iterations to solve an x n

matrix, and the cost of each iteration@(m), wherem is the number of non-zero entries in the
matrix.

SIGGRAPH 2001COURSENOTES F9 PHYSICALLY BASED MODELING

The matrix of equation 11 i3WJT, whereld is block-sparse and/ is diagonal. We need never
actually calculate the matrix. Instead we need only calculétd " x, given a vectox. We do this
by calculating " x, using the block-sparse matrix-transpose multiply routine described above, then
performing an element-by-element multiplication of the result by the vector representing the diag-
onalW. Finally, the resulting vector is multiplied bi; Since the compound matrix is symmetric,
we do not need a separate function for multiplication by the transpose.

Evaluating the right hand side vector of equation 11 is a straightforward application of the
block-sparse matrix routines, and standard vector operations.

Finally, once the linear system has been solved, the vedomultiplied byJ" to produce the
global constraint force vect@), which is then scattered into the particles’ force accumulator.

4.5 Summary

To introduce constraints into a particle system simulation, we add the additional step of constraint
force calculation to the derivative evaluation operation. After the ordinary applied forces have been
calculated, but before computing accelerations, we perform the following steps:

e Loop over the constraints, letting each evaluate its own portio@,o@, J andJ. Each
constraint points to one or more matrix blocks that receive its contributions to the global
matrices.

e Form the right-hand-side vector of equation 11.
¢ Invoke the conjugate gradient solver to obtain the Lagrange multiplier vector,

e Multiply A by JT to obtain the global constraint force vector, and scatter this force to the
particles.

5 Lagrangian Dynamics: modeling objects other than particles

In the previous sections we have seen how to constrain the behavior of a particle system through
the use of constraint forces. Our starting point for the derivation was the ursglidit functions—
functions of state that are supposed to be zero—to represent the constraints. Each scalar implicit
function defines a hypersurface in state space, and the legal states of the system are those that lie on
the intersection of all the hypersurfaces.

Suppose instead that we represented the constraints using a parametric function—a function
g(u), with dimu < dimg, so thatq(u) specifies all and only the legal states. In the case of a unit
circle, the parametric function would of coursesbe- [cosd, sind], leavingé as the single degree
of freedom.

In order to use parametric functions to represent constraints, we need to express the constrained
system’s equations of motion in terms of the new, constrained degrees of freedmather than
the unconstrained. These new equations, which we will derive in this section, are known as
Lagrange’s equations of motida].

A clear advantage of the parametric constraint representation is that the extra degrees of freedom
are actually removed from the system, rather than being neutralized through the use of constraint
forces. This, as one would expect, can lead to better performance. However, Lagrangian dynamics
has a very serious drawback: it is often difficult or impossible to find a parametric function that

SIGGRAPH 2001COURSENOTES F10 PHYSICALLY BASED MODELING

captures the desired constraints. Moreover, in contrast to the implicit form, there is no automatic
way to combine multiple constraints. Lagrangian dynamics is therefore unsuitable as a vehicle for
interactive model building. Its important role is as an off-line tool for defining new primitive objects
that are more complex than particles.

As before, we begin with a collection of particles whose positions are described by a global state
vectorq, a diagonal mass matrM, and a global applied force vect@Qr. We also retain the idea of
a constraint force vectd) that satisfies the principle of virtual work. Now, however, tfgare not
independent variables, but are given by a functiom). Our goal is to solve foii, accounting for
the constraint forces.

In developing the constraint force formulation we made extensive use of the Jacobian of the
implicit constraint function. The Jacobian of the parametric function,

_ 99
au

has a different meaning but is equally important. By the chain ruldetied particle velocities are
given by

’

q=Ju.
The principle of virtual work therefore requires that
QTJu=0, Vvu,

which simply means thaITQ = 0. As before, we can write the unconstrained equations of motion
as X

MGg=Q+Q.
Now, however, instead of solving for the constraint force, we can simply make it go away, by
multiplying both sides of the equation By, giving

J™Mg-J"Q =0. (12)

Sinceq is a function ofu, wecan now remové from the expression, leavingas the unknown.
Once again invoking the trusty chain rule,

= Ju + Ju.
Substituting this expression into equation 12 gives
JTMJG+J3™MIu—-J"Q =0. (13)

which is a matrix equation to be solved fir Although you will usually see it expressed in a
superficially quite different form, equation 13 is equivalent to the classical Lagrangian equation of
motion. As we've expressed it here, its close relation to the constraint force formulation should be
strikingly clear.

5.1 Hybrid models

The Lagrangian dynamics formulation is well-suited to creating compound objects off-line, while
constraint force methods are well-suited to creating constrained models on the fly. In [5] we describe
an architecture that combines both methods, allowing constraints to be applied dynamically to com-
plex objects that had been pre-defined using Lagrangian dynamics. In [6], Lagrangian dynamics is
used to create simplified non-rigid bodies.

SIGGRAPH 2001COURSENOTES F11 PHYSICALLY BASED MODELING

References

[1] Ronen Barzel and Alan H. Barr. A modeling system based on dynamic const@iotsputer
Graphics 22:179-188, 1988.

[2] Herbert GoldsteinClassical MechanicsAddision Wesley, Reading, MA, 1950.

[3] John Platt and Alan Barr. Constraint methods for flexible modetsnputer Graphics22:279—
288, 1988.

[4] W.H. Press, B.P. Flannery, S. A. Teukolsky, and W. T. Vetterliddumerical Recipes in C
Cambridge University Press, Cambridge, England, 1988.

[5] Andrew Witkin, Michael Gleicher, and William Welch. Interactive dynamiCemputer Graph-
ics, 24, 1990. Proc. 1990 Symposium on 3-D Interactive Graphics.

[6] Andrew Witkin and William Welch. Fast animation and control of non-rigid structuesmn-
puter Graphics24(4):243-252, July 1990. Proc. Siggraph '90.

SIGGRAPH 2001COURSENOTES F12 PHYSICALLY BASED MODELING

Rigid Body Simulation

David Baraff
Pixar Animation Studios

I ntroduction

This portion of the course notes deals with the problem of rigid body dynamics. To help get you
started simulating rigid body motion, we've provided code fragments that implement most of the
concepts discussed in these notes. Thissegment of the course notesisdivided intotwo parts. Thefirst
part covers the motion of rigid bodies that are completely unconstrained in their allowable motion;
that is, simulations that aren’t concerned about collisions between rigid bodies. Given any external
forces acting on arigid body, we' |l show how to simulate the motion of the body in response to these
forces. The mathematical derivations in these notes are meant to be fairly informal and intuitive.

The second part of the notes tackles the problem of constrained motion that arises when we
regard bodies as solid, and need to disallow inter-penetration. We enforce these non-penetration
constraints by computing appropriate contact forces between contacting bodies. Given values for
these contact forces, simulation proceeds exactly as in the unconstrained case: we simply apply all
the forces to the bodies and | et the simulation unfold as though the motions of bodies are completely
unconstrained. If we have computed the contact forces correctly, the resulting motion of the bodies
will be free from inter-penetration. The computation of these contact forces is the most demanding
component of the entire smulation process.

1Collision detection (i.e. determining the points of contact between bodies) runs a close second though!

Gl

Part I. Unconstrained Rigid Body Dynamics

1 Simulation Basics

Thisportion of the course notes is geared towards afull implementation of rigid body motion. Inthis
section, we' |l show the basic structure for simulating the motion of arigid body. In section 2, we'll
define the terms, concepts, and equations we need to implement a rigid body ssimulator. Following
this, we' Il give some code to actually implement the equations we need. Derivations for some of the
concepts and equations we will be using will be left to appendix A.

Theonly thing you need to be familiar with at this point are the basic concepts (but not the numer-
ical details) of solving ordinary differential equations. If you're not familiar with this topic, you're
in luck: just turn back to the beginning of these course notes, and read the section on “ Differential
Equation Basics.” You also might want to read the next section on “Particle Dynamics’ as well,
although we're about to repeat some of that material here anyway.

Simulating the motion of arigid body is almost the same as simulating the motion of a particle,
S0 let’s start with particle ssmulation. Theway we simulate aparticleisasfollows. Welet afunction
X(t) denote the particle’s location in world space (the space al particles or bodies occupy during
simulation) at timet. The function v(t) = Xx(t) = %x(t) gives the velocity of the particle at time't.
The state of aparticle at timet isthe particle's position and velocity. We generalize this concept by
defining a state vector X (t) for asystem: for asingle particle,

X (t) = < ;‘Eg) . (1-1)

When we' re talking about an actual implementation, we have to “flatten” out X (t) into an array.
For asingle particle, X (t) can be described as an array of six numbers; typically, we'd let the first
three elements of the array represent x(t), and the last three elements represent v(t). Later, whenwe
talk about state vectors X (t) that contain matrices as well as vectors, the same sort of operation is
doneto flatten X (t) into an array. Of course, we'll also have to reverse this process and turn an array
of numbers back into astate vector X (t). Thisall comesdown to pretty simple bookkeeping though,
so henceforth, we'll assume that we know how to convert any sort of state vector X (t) to an array
(of the appropriate length) and vice versa. (For a simple example involving particles, look through
the “Particle System Dynamics’ section of these notes.)

For asystem with n particles, we enlarge X (t) to be

X1 (1)
v1(t)
X(t) = ; (1-2)
Xn(1)
vn(D)

SIGGRAPH 2001 COURSE NOTES G2 PHYSICALLY BASED MODELING

where x; (t) and vj (t) are the position and velocity of the ith particle. Working with n particlesis no
harder than working with one particle, so we'll let X (t) be the state vector for a single particle for
now (and when we get to it later, asingle rigid body).

To actually simulate the motion of our particle, we need to know one more thing—the force
acting on the particle at time t. We'll define F (t) as the force acting on our particle at timet. The
function F(t) isthe sum of all the forces acting on the particle: gravity, wind, spring forces, etc. If
the particle has mass m, then the change of X over timeis given by

d d X(1) v(t)

V= a(u(t)) - (F(t)/m) ' (-9
Given any value of X (t), equation (1-3) describes how X (t) isinstantaneoudly changing at time t.
A simulation starts with some initial conditions for X (0), (i.e. values for x(0) and v(0)) and then
uses a humerical equation solver to track the change or “flow” of X over time, for aslong aswe're
interested in. If all wewant to know isthe particle’ s location one second from now, we ask the solver
to compute X (1), assuming that time units are in seconds. If we're going to animate the motion of
the particle, we' d want to compute X(3io), X (3%) and so on.

The numerical method used by the solver is relatively unimportant with respect to our actual
implementation. Let's look at how we' d actually interact with a numerical solver, in a C++-like
language. Assume we have accessto anumerical solver, which we'll generically write asafunction
named ode. Typicaly, ode has the following specification:

typedef void (*DerivFunc)(double t, double x[], double xdot[]);

voi d ode(doubl e x0[], double xEnd[], int len, double tO,
doubl e t1, DerivFunc dxdt);

We pass an initial state vector to ode asan array X0. The solver ode knows nothing about the
inherent structure of x0. Since solvers can handle problems of arbitrary dimension, we also have to
pass the length | en of x0. (For asystem of n particles, we'd obvioudly havel en = 6n.) We also
pass the solver the starting and ending times of the simulation, t 0 and t 1. The solver’s goal isto
compute the state vector at timet 1 and return it in the array X End.

We also pass afunction Dxdt () toode. Given an array y that encodes a state vector X (t) and
atimet, Dxdt () must compute and return %X(t) in the array xdot . (The reason we must pass
t to Dxdt () isthat we may have time-varying forces acting in our system. In that case, Dxdt ()
would have to know “what timeit is’ to determine the value of those forces.) In tracing the flow of
X(t) fromt O tot 1, the solver ode isalowed to call Dxdt () as often asit likes. Given that we
have such aroutine ode, the only work we need to do isto code up the routine Dxdt () whichwe'll
give as aparameter to ode.

Simulating rigid bodies follows exactly the same mold as simulating particles. The only differ-
enceisthat the state vector X (t) for arigid body holds moreinformation, and the derivative %X (t)is
alittle more complicated. However, we'll use exactly the same paradigm of tracking the movement
of arigid body using a solver ode, which we'll supply with afunction Dxdt () .

SIGGRAPH 2001 COURSE NOTES G3 PHYSICALLY BASED MODELING

2 Rigid Body Concepts

The god of this section is to develop an analogue to equation (1-3), for rigid bodies. The fina
differential equation wedevelopisgiveninsection 2.11. Inorder to do thisthough, we need to define
alot of concepts first and relations first. Some of the longer derivations are found in appendix A. In
the next section, we'll show how to write the function Dxdt () needed by the numerical solver ode
to compute the derivative %X (t) developed in this section.

2.1 Position and Orientation

The location of a particle in space at time t can be described as a vector x(t), which describes the
trandation of the particle from the origin. Rigid bodies are more complicated, in that in addition to
trandating them, we can also rotate them. To locate arigid body in world space, we'll use a vector
X(t), which describes the trandation of the body. We must also describe the rotation of the body,
which we'll do (for now) in terms of a 3 x 3 rotation matrix R(t). We will call x(t) and R(t) the
spatial variables of arigid body.

A rigid body, unlike aparticle, occupies avolume of space and has aparticular shape. Because a
rigid body can undergo only rotation and trandation, we define the shape of arigid body in terms of
afixed and unchanging space called body space. Given a geometric description of the body in body
space, we use x(t) and R(t) to transform the body-space description into world space (figure 1). In
order to simplify some equations we'll be using, we'll require that our description of the rigid body
in body space be such that the center of mass of the body lies at the origin, (0, 0, 0). We'll definethe
center of mass more precisely later, but for now, the center of mass can be thought of asapoint inthe
rigid body that lies at the geometric center of the body. In describing the body’s shape, we require
that this geometric center lieat (0, 0, 0) in body space. If we agree that R(t) specifies arotation of
the body about the center of mass, then a fixed vector r in body space will be rotated to the world-
space vector R(t)r at timet. Likewise, if pg is an arbitrary point on the rigid body, in body space,
then the world-space location p(t) of pg isthe result of first rotating po about the origin and then
trandating it:

P(t) = R(t) po + X(1). (2-1)

Since the center of mass of the body lies at the origin, the world-space location of the center of
mass is always given directly by x(t). Thislets us attach a very physical meaning to x(t) by saying
that x(t) isthe location of the center of massin world space at time t. We can also attach a physical
meaning to R(t). Consider the x axis in body spacei.e. the vector (1, 0, 0). At timet, this vector

has direction
1
RtY| O
0

in world space. If we write out the components of R(t) as
Ixx ryx I'zx

Fxz Fyz Tz

SIGGRAPH 2001 COURSE NOTES G4 PHYSICALLY BASED MODELING

body space world Space y‘

y
A

z A z

B y (D)

0 /
/ X
X / Z
/

Figure 1: The center of massistransformed to the point x(t) in world space, at timet. Thefixed X, y,
and z axes of the body in body space transform to thevectors X' = R(t)X, Y = R(t)yand Z = R(t)z
Thefixed point pg in body space is transformed to the point p(t) = R(t) po + X(t).

1 Ixx
RO[0| =] ry (2-3)
0 M'xz

whichisthefirst column of R(t). The physica meaning of R(t) isthat R(t)’sfirst column givesthe
direction that the rigid body’s x axis pointsin, when transformed to world space at time t. Similarly,
the second and third columns of R(t),

Iyx Izx
My and M2y
lyz Mz

arethe directions of the y and z axes of the rigid body in world space at timet (figure 2).

then

2.2 Linear Velocity

For ssimplicity, we'll call x(t) and R(t) the position and orientation of the body at timet. The next
thing we need to do is define how the position and orientation change over time. This means we
need expressions for x(t) and R(t). Since x(t) is the position of the center of massin world space,
X(t) isthe velocity of the center of massin world space. We'll define the linear velocity v(t) asthis
velacity:

v(t) = X(b). (2-4)

If weimagine that the orientation of the body isfixed, then the only movement the body can undergo
isapure trandation. The quantity v(t) gives the velocity of this trandation.

SIGGRAPH 2001 COURSE NOTES G5 PHYSICALLY BASED MODELING

world space y

RO =[xy z]

Figure 2: Physical interpretation of the orientation matrix R(t). At timet, the columns of R(t) are
the world-space directions that the body-space X, y, and z axes transform to.

2.3 Angular Velocity

In addition to trandating, arigid body can also spin. Imagine however that we freeze the position of
the center of mass in space. Any movement of the points of the body must therefore be due to the
body spinning about some axisthat passes through the center of mass. (Otherwise the center of mass
would itself be moving). We can describe that spin asavector w(t). Thedirection of w(t) givesthe
direction of the axis about which the body is spinning (figure 3). The magnitude of w(t), |w(t)|, tells
how fast the body is spinning. |w(t)| has the dimensions of revolutiongtime; thus, |w(t)| relates the
angle through which the body will rotate over agiven period of time, if the angular velocity remains
congtant. The quantity w(t) is caled the angular velocity.

For Iinear velocity, x(t) and v(t) are related by v(t) = %x(t). How are R(t) and w(t) related?
(Clearly, R(t) cannot be w(t), since R(t) isamatrix, and w(t) isavector.) To answer this question,
let’s remind ourselves of the physical meaning of R(t). We know that the columns of R(t) tell us
the directions of the transformed x, y and z body axes at timet. That means that the columns of R(t)
must describe the velocity with which the x, y, and z axes are being transformed. To discover the
relationship between w(t) and R(t), let’'s examine how the change of an arbitrary vector in arigid
body isrelated to the angular velocity w(t).

Figure 4 shows arigid body with angular velocity w(t). Consider avector r (1) at timet specified
inworld space. Suppose that we consider this vector fixed to the body; that is, r (t) moves along with
the rigid body through world space. Sincer (t) isadirection, it is independent of any trandational
effects; in particular, r(t) isindependent of v(t). To study r(t), we decompose r (t) into vectors a
and b, where a is parald to w(t) and b is perpendicular to w(t). Suppose the rigid body were to
maintain a constant angular velocity, sothat thetip of r (t) traces out acircle centered onthe w(t) axis
(figure 4). Theradius of thiscircleis |b|. Since thetip of the vector r (t) isinstantaneously moving
along this circle, the instantaneous change of r (t) is perpendicular to both b and w(t). Since thetip
of r(t) ismoving in acircle of radius b, the instantaneous velocity of r(t) has magnitude |b||w(t)].

SIGGRAPH 2001 COURSE NOTES G6 PHYSICALLY BASED MODELING

(\) a(t)

v(t)

iy

Figure 3: Linear velocity v(t) and angular velocity w(t) of arigid body.

Since b and w(t) are perpendicular, their cross product has magnitude
lo(t) x bl = |e(t)] |b]. (2-5)

Putting this together, we can writer (t) = w(t) x (b). However, sincer(t) = a+ band aispardld
to w(t), we have w(t) x a= 0 and thus

F(t) = w(t) x b= w(t) x b+ w(t) x a= w(t) x (b+a). (2-6)
Thus, we can simply express the rate of change of avector as
F(t) = w(t) x r(t). (2-7)

Let's put all this together now. At time t, we know that the direction of the x axis of the rigid
body in world space is the first column of R(t), whichis

Ixx
er .
I'xz

Attimet, the derivative of thefirst column of R(t) isjust the rate of change of this vector: using the
cross product rule we just discovered, this change is

I'xx
w(t) x Iy | -
I'xz

SIGGRAPH 2001 COURSE NOTES G7 PHYSICALLY BASED MODELING

w(t)

w(t)x b

Figure 4: Therate of change of arotating vector. Asthetip of r(t) spinsabout the w(t) axis, it traces
out acircle of diameter |b|. The speed of thetip of r(t) is|w(t)||b].

The same obviously holds for the other two columns of R(t). This meansthat we can write

) I'xx Iyx Izx
R=1w) x| Iy o) x| ry o) x| ry . (2-8)
I'xz lyz Mz

Thisistoo cumbersome an expression to tote around though. To simplify things, we'll use the
following trick. If a and b are 3-vectors, then a x b isthe vector

ayb, — bya,
—ayxb; + byay
ayby — byay

Given the vector a, let us define a* to be the matrix

0 -a ay
ay 0 —ay
—ay ay 0
Then?
0 -—-a, ay by ayb, — bya,
a*b = a.z O —a.x by = —a.xbz + bxa.z =axX b (2—9)
—ay ay 0 b, ayby — byay

2This looks a little too “magical” at first. Did someone discover this identity accidentally? Is it a relation that just
happens to work? This construct can be derived by considering what's known as infinitesimal rotations. The interested
reader might wish to read chapter 4.8 of Goldstein[10] for a more complete derivation of the a* matrix.

SIGGRAPH 2001 COURSE NOTES G8 PHYSICALLY BASED MODELING

Using the “«” notation, we can rewrite R(t) more simply as

Ixx Fyx Fzx
Rt = | o®* [ryy wo®* | ry o®* | ry . (2-10)
I'xz ryz Iz

By the rules of matrix multiplication, we can factor this into

I'xx Iyx I'zx
R(t) = w(t)* Fxy My 2y (2-11)
M'xz lyz Mz

whichisamatrix-matrix multiplication. But sincethe matrix ontherightis R(t) itself, we get smply
that

R(t) = w(H)*R(t). (2-12)
This, at last, gives us the relation we wanted between R(t) and w(t). Note the correspondence
between r (t) = w(t) x r(t) for avector, and R(t) = w(t)*R(t) for the rotation matrix.
24 Massof a Body

In order to work out some derivations, we'll need to (conceptually) perform some integrations over
the volume of our rigid body. To make these derivations simpler, we' re going to temporarily imagine
that a rigid body is made up of alarge number of small particles. The particles are indexed from
1to N. The mass of the ith particle is m;, and each particle has a (constant) location rq; in body
gpace. The location of the ith particle in world space at time t, denoted r; (t), is therefore given by
the formula

ri(t) = R(Hrg; + x(t). (2-13)
Thetotal mass of the bady, M, isthe sum
N
M=>"m. (2-14)
i=1

(Henceforth, summations are assumed to be summed from 1 to N with index variablei.)

2.5 Veocity of a Particle

Thevelocity ri(t) of theith particleis obtained by differentiating equation (2—-13): using therelation
R(t) = w*R(t), we obtain

ri(t) = 0" R()ro; + v(t). (2-15)
We can rewrite this as

Fi(t) = ()" RMro; + v(t)
= w(®)" (RM)ro; + x(t) — x(1)) + v(t) (2-16)
= o))" (rit) — x(®) + v(t)

SIGGRAPH 2001 COURSE NOTES G9 PHYSICALLY BASED MODELING

w(t)

ﬁ

y v J
w(t) x (ri(t) — (1))
/ Z
X V(t) + co(t) x (rj(t) — x(t)) AK

Figure 5: The velocity of the ith point of arigid body in world space. The velocity of r;(t) can be
decomposed into alinear term v(t) and an angular term w(t) x (rj(t) — x(t)).

using the definition of r;(t) from equation (2-13). Recall from the definition of the " operator that
w(t)*a= w(t) x afor any vector a. Using this, we can simply write
Fi (1) = w(t) x (ri(t) — X(1)) + v(t). (2-17)

Note that this separates the velocity of a point on arigid body into two components (figure 5): a
linear component v(t), and an angular component w x (ri(t) — x(t)).

2.6 Center of Mass

Our definition of the center of massisgoing to enable usto likewise separate the dynamics of bodies
into linear and angular components. The center of massof abody inworld space isdefined to be

> miri(t)
= - 2-1
v (2-18)
where M is the mass of the body (i.e. the sum of the individual masses m;). When we say that we
are using a center of mass coordinate system, we mean that in body space,

0
ZmirOi_ _ _
M_O_(g). (2-19)

Note that thisimpliesthat)~ mjro; = 0 aswell.

We have spoken of x(t) as being the location of the center of mass at time t. Isthis true? Yes:
sincetheith particle haspositionr; (t) = R(t)ro; + x(t) at timet, the center of massattimetis

> mr(t) _ > mi(R(Oro; + x(1)) _ Rt > mirgi + > mix(t) xm

M M M = X0~ =*O.

SIGGRAPH 2001 COURSE NOTES G10 PHYSICALLY BASED MODELING

5i(t) = (ri®) — x(t)) x Fi(t)

vl

4

el

X

Figure 6: Thetorque 7;(t) due to aforce F(t) acting at r;(t) on arigid body.

Additionally, the relation

YoM —x(®) =Y m(R®rg + X —X(1) = R®) Y _mirg; =0 (2-20)
isalso very useful.

2.7 Forceand Torque

When we imagine aforce acting on arigid body due to some external influence (e.g. gravity, wind,
contact forces), we imagine that the force acts on a particular particle of the body. (Remember that
our particlemodel isconceptua only. We can have aforce act at any geometrical location on or inside
the body, because we can aways imagine that there happens to be a particle at that exact location.)
The location of the particle the force acts on defines the location at which the force acts. We will let
F; (1) denote the total force from externa forces acting on the ith particle at time t. Also, we define
the external torque 7 (t) acting on the ith particle as

Ti () = (ri(t) — x(1)) x K (). (2-21)

Torqgue differs from force in that the torque on a particle depends on the location ri(t) of the
particle, relative to the center of mass x(t). We can intuitively think of the direction of z;(t) as
being the axis the body would spin about dueto F;(t), if the center of mass were held firmly in place
(figure 6).

Thetotal external force F(t) acting on the body is the sum of the F;(t):

Fty=> R (2-22)
while the total externa torque is defined similarly as
M) =Y Tty =Y (i) —x1) x K. (2-23)

SIGGRAPH 2001 COURSE NOTES G111 PHYSICALLY BASED MODELING

Notethat F(t) conveys no information about where the various forces acted on the body; however,
7(t) does tell us something about the distribution of the forces F(t) over the body.

2.8 Linear Momentum

The linear momentum p of a particle with mass mand velocity v is defined as
p = mo. (2-24)

Thetotal linear momentum P(t) of arigid body is the sum of the products of the mass and velocity
of each particle:

P(t) = miri(t). (2-25)

From equation (2-17), the velocity r;(t) of the ith particle isfj(t) = v(t) + w(t) x (ri(t) — x(t)).
Thus, the total linear momentum of the body is

P(t) =) mii(t)
=Y (mu® + me® x r® - X)) (2-26)
=Y mut) + o) x Y m i) —xb).

Because we are using a center of mass coordinate system, we can apply equation (2-20) and ob-
tain

Pt =Y mu(t) = (Z mi> V() = Mu(t). (2-27)

This gives us the nice result that the total linear momentum of our rigid body is the same as if the
body was simply a particle with mass M and velocity v(t). Because of this, we have asimple trans-
formation between P(t) and v(t): P(t) = Mu(t) and v(t) = P(t)/M. Since M isaconstant,
P
v(t) = IR (2-28)
The concept of linear momentum lets us express the effect of the total force F (t) on arigid body
quite simply. Appendix A derivestherelation

P(t) = F(t) (2-29)

which saysthat the change in linear momentum is equivalent to the total force acting on abody. Note
that P(t) tells us nothing about the rotational velocity of a body, which is good, because F(t) adso
conveys nothing about the change of rotational velocity of a body!

Since the relationship between P(t) and v(t) issimple, wewill be using P(t) as astate variable
for our rigid body, instead of v(t). We could of course let v(t) be a state variable, and use the
relation

. F®

o(t) = M (2-30)
However, using P(t) instead of v(t) asastate variable will be more consistent with the way we will
be dealing with angular velocity and acceleration.

SIGGRAPH 2001 COURSE NOTES G12 PHYSICALLY BASED MODELING

2.9 Angular Momentum

Whilethe concept of linear momentum ispretty intuitive (P(t) = Mu(t)), the concept of angular mo-
mentum (for arigid body) isnot. The only reason that one even bothers with the angular momentum
of arigid body isthat it lets you write ssmpler equations than you would get if you stuck with angular
velocity. With that in mind, it's probably best not to worry about attaching an intuitive physical
explanation to angular momentum—all in al, it's a most unintuitive concept. Angular momentum
ends up simplifying equations because it is conserved in nature, while angular velocity isnot: if you
have a body floating through space with no torque acting on it, the body’s angular momentum is
congtant. Thisisnot true for abody’s angular velocity though: even if the angular momentum of a
body is constant, the body’s angular velocity may not be! Consequently, a body’s angular velocity
can vary even when no force acts on the body. Because of this, it ends up being simpler to choose
angular momentum as a state variable over angular velocity.

For linear momentum, we havetherelation P(t) = Mu(t). Similarly, we define the total angular
momentum L (t) of arigid body by the equation L(t) = I (t)w(t), where | (t) isa3 x 3 matrix (tech-
nically arank-two tensor) called theinertia tensor, which wewill describe momentarily. Theinertia
tensor | (t) describes how the massin abody isdistributed relative to the body’s center of mass. The
tensor | (t) depends on the orientation of abody, but does not depend on the body’s trandation. Note
that for both the angular and the linear case, momentum isalinear function of velocity—it'sjust that
in the angular case the scaling factor is a matrix, while it's simply a scalar in the linear case. Note
alsothat L(t) isindependent of any trandational effects, while P(t) isindependent of any rotational
effects.

Therelationship between L (t) and thetotal torque z(t) isvery smple: appendix A derives

L(t) = (b), (2-31)

analogous to the relation P(t) = F(t).

210 Thelnertia Tensor

The inertia tensor 1(t) is the scaling factor between angular momentum L(t) and angular veloc-
ity w(t). At agiventimet, let r{ be the displacement of the ith particle from x(t) by defining
ri =ri(t) — x(t). Thetensor I (t) is expressed in terms of r; as the symmetric matrix

(p/2 y pr2 ! r! et
mi(riy +riy) —mir,ri, —mir{,r{,
_ el /2 2 L
I(t) = E —Mirri, M+ —mirgr, (2-32)
!y a (p12 12
—IMili Ly _mlrizriy ml(rix-i_riy)

For an actual implementation, we replace the finite sums with integrals over abody’s volumein
world space. The mass terms m; are replaced by a density function. At first glance, it seems that
we would need to evaluate these integrals to find | (t) whenever the orientation R(t) changes. This
would be prohibitively expensive to do during a simulation unless the body’s shape was so simple
(for example, a sphere or cube) that that the integrals could be evaluated symbolically.

Fortunately, by using body-space coordinates we can cheaply compute the inertia tensor for any
orientation R(t) interms of a precomputed integral in body-space coordinates. (Thisintegral istyp-
icaly computed before the simulation begins and should be regarded as one of the input parameters

SIGGRAPH 2001 COURSE NOTES G13 PHYSICALLY BASED MODELING

describing aphysical property of the body.) Using thefact that r{Tr/ = r/% + {2+ r{2, we can rewrite

| (t) asthe difference

100 mirs mirl el mirf
IO =>"mr/| 010 || mrir, mr2 mrir, (2-33)
001 ML e mrd o mir
Taking the outer product multiplication of r{ with itself, that is
2
e\ (et 1) oy T,
T 2
ri/ri/ = ri/y = ri/yri/x ri/y ri/xri/z (2-34)
ri 2
'z ri/zri/x ri/zri/y ri/z
and letting 1 denote the 3 x 3 identity matrix, we can express | (t) simply as
=Y m{TrHi-rir") (2-35)

How does this help?
Sincer;(t) = R(t)ro; + x(t) whererg; isaconstant, r{ = R(t)rg;. Then, since RORMT =1,

L©) =Y m(tHi-rir")
=Y m((RMro" (RO — (R®Iop) (RHIro) ™)
=Y mi(ro! RO TRl — RM®roirof RHT)
=Y mi((roro)1— RHroirgf RMT).

(2-36)

Since o] ro; isascalar, we can rearrange things by writing
I(t) =Y mi((rof o)1 — R(WYroirof R(HT)
=Y m(R)(ro o) RHT1— R(b)rgire! RHT) (2-37)
= RO (Y- m((rolr0)1—roire)) ROT.
If we define lyoqy asthe matrix
lbody = Z mi((roj foi)1 — roiroj) (2-38)
then from the previous equation we have
1(t) = R(®) lhoay R (2-39)

Since Ipoqy is specified in body-space, itisconstant over thesimulation. Thus, by precomputing lpody
for abody before the simulation begins, we can easily compute I (t) from Ipqy and the orientation
matrix R(t). Section 5.1 derives the body-space inertia tensor for arectangular object in terms of an
integral over the body’s volume in body space.

SIGGRAPH 2001 COURSE NOTES Gl4 PHYSICALLY BASED MODELING

Also, theinverse of | (t) isgiven by the formula
_ -1
174(t) = (R(t) IpoayRD)T)
-1,_ _
= R(1) lpoayRDT
since, for rotation matrices, R(t)" = R(t)~! and (R(t)T)T = R(t). Clearly, |b—0}jy is also a constant
during the simulation.

211 Rigid Body Equations of Motion

Finally, we have covered al the concepts we need to define the state vector X (t)! For arigid body,
we will define X (t) as

X(t)
R(t)
P(t)
L(t)

X(t) = (2-41)

Thus, the state of arigid body isits position and orientation (describing spatial information), and its
linear and angular momentum (describing velocity information). The mass M of the body and body-
space inertia tensor |poqy are constants, which we assume we know when the simulation begins. At
any given time, the auxiliary quantities I (t), w(t) and v(t) are computed by

v(t):%, I(t) = RMIpoayRM)T and o(t) = (1) 1LO). (2-42)
The derivative $X(t) is

X(t) v(t)

d _d| RO | | o®m*R®)
Ex(t) “a| P | T F(t) ' (2-43)
L(t) ()

The next section gives an implementation for the function Dxdt () that computes %X(t).

One final note: rather than represent the orientation of the body as a matrix R(t) in X(t), itis
better to use quaternions. Section 4 discusses using quaternions in place of rotation matrices. Briefly,
aquaternion is atype of four element vector that can be used to represent arotation. If we replace
R(t) in X(t) with a quaternion q(t), we can treat R(t) as an auxiliary variable that is computed
directly from q(t), just as w(t) is computed from L(t). Section 4 derives a formula analogous to
R(t) = w(t)*R(t), that expresses q(t) in terms of q(t) and w(t).

; d
3 Computing 5X(t)
Lets consider an implementation of the function Dxdt () for rigid bodies. The code is written

in C++, and we'll assume that we have datatypes (classes) called matri x and tri pl e which
implement, respectively, 3 x 3 matrices and pointsin 3-space. Using these datatypes, we' |l represent

SIGGRAPH 2001 COURSE NOTES G15 PHYSICALLY BASED MODELING

arigid body by the structure

struct Ri gi dBody {
/* Constant quantities */

doubl e nmass; [* mass M */
matri x | body, I'* lpogy */
| bodyi nv; I* lpegy (inverse of lpoy) */

/* State vari abl es */

triple x; [* x(t) */
matrix R, [* R(t) */
triple P, [* P@) */

L; [* L) */

/* Derived quantities (auxiliary variables) */

matrix |inv; I* 171 */
triple v, [*) */
omega; I* o) */

/* Conputed quantities */
triple force, [* F@) */
t or que; [* () */
};

and assume agloba array of bodies
Ri gi dBody Bodi es[NBODI ES] ;

The constant quantities mass, | body and | bodyi nv are assumed to have been calculated for
each member of the array Bodi es, before simulation begins. Also, the initial conditions for each
rigid body are specified by assigning values to the state variables x, R, P and L of each member of
Bodi es. Theimplementation in this section represents orientation with arotation matrix; section 4
describes the changes necessary to represent orientation by a quaternion.

We communicate with the differential equation solver ode by passing arrays of real numbers.
Severa bookkeeping routines are required:

/* Copy the state information into an array */
void StateToArray(R gi dBody *rb, double *y)

{
y++ = rb->x[0]; / x conponent of position */
y++ = rb->x[1]; [etc. */
*y++ = rb->x[2];
for(int i =0; i <3; i++) [/* copy rotation matrix */

for(int j =0; j < 3; j++)
*y++ = rb->R[i,j];

SIGGRAPH 2001 COURSE NOTES G16 PHYSICALLY BASED MODELING

*y++ = rb->P[0] ;
*y++ = rb->P[1];
*y++ = rb->P[2] ;
*y++ = rb->L[0];
*y++ = rb->L[1] ;
*y++ = rb->L[2];

and

/* Copy information froman array into the state variables */
void ArrayToSt at e(R gi dBody *rb, double *y)

{
rb->x[0] = *y++;
rb->x[1] = *y++,
rb->x[2] = *y++
for(int i =0; i < 3; i++)
for(int j =0; j < 3; j++)
rb->Rli,j] = *y++
rb->P[0] = *y++;
rb->P[1] = *y++
rb->P[2] = *y++,
rb->L[0] = *y++;
rb->L[1] = *y++;
rb->L[2] = *y++;
/* Compute auxiliary variables... */
1% vty =E0 */
rb->v = rb->P / nass;
I* 175t = RO lpoa, RO ™/
rb->linv = R * Ibodyinv * Transpose(R);
I* wt)=1"1t)Lt) */
rb->onmega = rb->linv * rb->L;
}

Note that Arr ay ToSt at e is responsible for computing values for the auxiliary variables | i nv,
v and onega. We'll assume that the appropriate arithmetic operations have been defined between
real numbers, t ri pl e’sand mat ri x's, and that Tr anspose returns the transpose of a matrix.

SIGGRAPH 2001 COURSE NOTES G17 PHYSICALLY BASED MODELING

Examining these routines, we seethat each rigid body’s stateisrepresented by 34+ 9+ 3+ 3 =18
numbers. Transfers between al the members of Bodi es and an array y of size 18- NBODI ES are
implemented as

#defi ne STATE_SI ZE 18

voi d ArrayToBodi es(double x[])

{
for(int i = 0; i < NBODIES; i++)
ArrayToState(&Bodies[i], &[i * STATE_SI ZE]);

and

voi d Bodi esToArray(double x[])
{
for(int i = 0; i < NBCDIES; i++)
St at eToArray(&Bodies[i], &[i * STATE_SI ZE]);
}

Now we can implement Dxdt () . Let's assume that the routine

voi d Comput eFor ceAndTor que(doubl e t, Ri gi dBody *rb);
computes the force F(t) and torque t(t) acting on the rigid body *r b at timet , and stores F(t)
and t(t)inr b- >f or ceandr b- >t or que respectively. Conrput eFor ceAndTor que takesinto

account all forces and torques. gravity, wind, interaction with other bodies etc. Using this routine,
we'll define Dxdt () as

voi d Dxdt (doubl e t, double x[], double xdot[])

{
/* put data in x[] into Bodies[] */
ArrayToBodi es(Xx);
for(int i = 0; i < NBCODIES; i++)
{
Conput eFor ceAndTor que(t, &Bodies[i]);
Ddt St at eToArray(&Bodi es[i],
&dot[i * STATE_SI ZE]);
}
}

The numerical solver ode callscallsDxdt () andisresponsible for allocating enough space for the
arraysy, and xdot (STATE_SI ZE- NBODI ES worth for each). The function which does the red
work of computing %X(t) and storing it in the array xdot isddt St at eToAr r ay:

SIGGRAPH 2001 COURSE NOTES G18 PHYSICALLY BASED MODELING

voi d Ddt St at eToArray(Ri gi dBody *rb, double *xdot)
{

/* copy 4x(t)=v(t) into xdot */

*xdot ++ = rb->v[0];

*xdot ++ = rb->v[1];

*xdot ++ = rb->v[2];

/* Compute R(t)=w()*R(t) */
matrix Rdot = Star(rb->onmega) * rb->R,

/* copy R(t) into array */
for(int i =0; i < 3; i++)
for(int j =0; j < 3; j++)
*xdot ++ = Rdot[i,j]:

xdot ++ = rb->force[0] ; I SPM) =F(@) */
*xdot ++ = rb->force[1];
*xdot ++ = rb->force[2];
xdot ++ = rb->t or que[0] ; 1 dL) =) */
*xdot ++ = rb->torque[1];
*xdot ++ = rb->torque[2];

}

The routine St ar , used to calculate R(t) is defined as

mat ri x Star(triple a);

0 —a[2] al 1]
al 2] 0 —al0] .
—a[1] al 0] 0

and returns the matrix

Given al of the above, actualy performing asimulation is simple. Assume that the state vari-
ables of al NBODI ESrigid bodies areinitialized by aroutine |l ni t St at es. We'll have our simu-
lation run for 10 seconds, calling aroutine Di spl ayBodi es every 2i4th of asecond to display the
bodies:

voi d RunSi nul ation()

{
doubl e xO[STATE_SI ZE * NBODI ES] ,

xFi nal [STATE_SI ZE * NBODI ES] ;

InitStates();
Bodi esToArray(xFi nal) ;

SIGGRAPH 2001 COURSE NOTES G19 PHYSICALLY BASED MODELING

for(doublet =0; t <10.0; t +=1./24.)

{
/* copy xFinal back to x0 */
for(int i = 0; i < STATE_SIZE * NBODI ES; i ++)
{
x0[i] = xFinal[i];
ode(x0, xFinal, STATE_SIZE * NBODI ES,
t, t+1./24., Dxdt);
[* copy 3X(t +2) into state variables */
ArrayToBodi es(xFi nal) ;
Di spl ayBodi es() ;
}

4 Quaternionsvs. Rotation Matrices

There is a better way to represent the orientation of arigid body than using a3 x 3 rotation matrix.
For anumber of reasons, unit quaternions, atype of four element vector normalized to unit length,
are a better choice than rotation matrices[16].

For rigid body simulation, the most important reason to avoid using rotation matrices is because
of numerical drift. Suppose that we keep track of the orientation of arigid body according to the
formula

R(t) = w(H)*R(t).

As we update R(t) using this formula (that is, as we integrate this equation), we will inevitably
encounter drift. Numerical error will build up in the coefficients of R(t) so that R(t) will no longer
be precisely arotation matrix. Graphically, the effect would be that applying R(t) to a body would
cause a skewing effect.

This problem can be alleviated by representing rotations with unit quaternions. Since quater-
nions have only four parameters, there is only one extra variable being used to describe the three
freedoms of therotation. In contrast, arotation matrix uses nine parameters to describe three degrees
of freedom; therefore, the degree of redundancy is noticeably lower for quaternions than rotation
matrices. Asaresult, quaternions experience far less drift than rotation matrices. If it does become
necessary to account for drift inaquaternion, it is because the quaternion haslost its unit magnitude.®
This is easily correctable by renormalizing the quaternion to unit length. Because of these two
properties, it is desirable to represent the orientation of a body directly as a unit quaternion q(t).
Wewill still express angular velocity as avector w(t). The orientation matrix R(t), which is needed
to compute 1 ~1(t), will be computed as an auxiliary variable from q(t).

3Any quaternion of unit length corresponds to a rotation, so quaternions deviate from representing rotations only if
they lose their unit length. These notes will deal with that problem in avery simplistic way.

SIGGRAPH 2001 COURSE NOTES G20 PHYSICALLY BASED MODELING

We will write a quaternion s+ vyi + vyj + v-K asthe pair
[s, v].

Using this notation, quaternion multiplication is

[S1, vi][S2, v2] = [S1S2 — v1 - V2, S1v2 + SHvg + v1 X Vo). (4-1)

A rotation of 6 radians about a unit axis u is represented by the unit quaternion

[cos(6/2), sin(6/2)4].

In using quaternions to represent rotations, if g; and g, indicate rotations, then g.q; represents the
composite rotation of g; followed by g,.* In a moment, we'll show how to change the routines of
section 3 to handle the quaternion representation for orientation. Before we can make these changes
though, we'll need aformulafor ¢(t). Appendix B derives the formula

4(t) = 3()q(t). (4-2)

where the multiplication w(t)q(t) isashorthand for multiplication between the quaternions [0, w(1)]
and q(t). Note the similarity between equation (4-2) and

R(t) = w()*R(t).
To actualy use a quaternion representation, we'll need to redefine the type Ri gi dBody:

struct Ri gi dBody {
/* Constant quantities */

doubl e nass; /* mass M */
matri x | body, I'* lpogy */
| bodyi nv; I* lpeay (inverse of lpoy) */

/* State vari abl es */

triple x; [* x(t) */
guat erni on q; [* qt) */
triple P, [* P@) */
L; /* L(t) */
/* Derived quantities (auxiliary variables) */
matrix |inv, [* 171) */
R; /* R(t) */
triple v, [*) */
onega; [* w() */

/* Conputed quantities */

4This is according to the convention that the rotation of a point p by a quaternion g is qpg~. Bewarned! Thisis
opposite the convention for rotationin the original paper Shoemake[16], but it isin correspondence with some more recent
versions of Shoemake's article. Writing a composite rotation as g.q; paralels our matrix notation for composition of
rotations.

SIGGRAPH 2001 COURSE NOTES G21 PHYSICALLY BASED MODELING

triple force, [* F@) */
t or que; [* () */
¥

Next, intheroutine St at e ToAr r ay, we'll replace the double loop

for(int i =0; i < 3; i++) /* copy rotation matrix */
for(int j =0; j < 3; j++)
*y++ = rb->R[i,]j];
with

/*
* Assune that a quaternion is represented in
* ternms of elenments ‘r’ for the real part,

*and ‘i’, 'j’, and 'k’ for the vector part.
*/

*y++ = rb->q.r;

*y++ = rb->q.1;

*y++ = rb->q.j;

*y++ = rb->q. k;

A similar changeismadein Ar r ay ToSt at e. Also, sinceAr r ay ToSt at e isresponsible for com-
puting the auxiliary variable | ~1(t), which depends on R(t), Ar r ay ToSt at e must also compute
R(t) asan auxiliary variable: in the section

/* Compute auxiliary variables... */
1% vty =F0 */
rb->v = rb->P / nmss;

I* 175t) = R(1) lpog, RO T/
rb->linv = R * |bodyinv * Transpose(R);

I* wt)=1"1t)Lt) */

rb->onmega = rb->linv * rb->L;
we add the line

rb->R = QuaterionToMatri x(normalize(rb->q));
prior to computing r b- > i nv. The routine nor mal i ze returns g divided by its length; this

unit length quaternion returned by nor mal i ze isthen passed to Quat eri onToMat ri x which
returns a3 x 3 rotation matrix. Given aquaternion q = [s, v], Quat eri onToMat r i x returns the

SIGGRAPH 2001 COURSE NOTES G22 PHYSICALLY BASED MODELING

matrix

2ugvy +2sv, 1-— 2U)2(— 2v§ 2vyv; — 2Svy

1- 2v§, — 2v§ 2ugvy — 2Sv; 2vxvz + 2Svy
2ugv; — 280y 2vyvz+2Svx 1-— 2v§ — 2v§,

In case you need to convert from arotation matrix to a quaternion,
guat erni on nmatri xToQuat er ni on(const matri x &m

{

guat er ni on q;
doubl e tr, s;

tr = nf0,0] + n1,1] + nf2 2];

if(tr >=0)
{
s = sqrt(tr + 1);
qg.r = 0.5 * s;
s =0.5/ s;
q.i =(nm2,1] - n1,2]) * s;
q.j = (nf0,2] - nf2,0]) * s;
\ q.-k = (n1,0] - n0,1]) * s;
el se
{
int i =0

if(n{1,1] > nf0,0])

I = 1;
if(mM2,2] >nfi,i))
i = 2;
switch (i)
{
case O
s =sqrt((nf0,0] - (n{1,1] + n{22])) + 1);
g.i =0.5* s;
s =0.5/ s;
q.j = (nf0,1] + nf1,0]) * s;
q.k = (nf2,0] +nf0,2]) * s;
q.r = (nf2,1] - nf1,2]) * s;
br eak;
case 1:
s =sqrt((nf1,1] - (n{2,2] +n{0,0])) + 1);
q.] = 0.5 * s;
s =0.51/ s;

SIGGRAPH 2001 COURSE NOTES G23 PHYSICALLY BASED MODELING

(ni1,2] +n(21]) * s;
(n{0,1] + nf1,0]) * s;
(nf0,2] - n{2,0]) * s

’

oo aao
o= = x

_‘
Q
=

case 2:
sqrt((nf2,2] - (nf0,0] + n{1,1])) + 1);
0.5 * s;

.5/ s;

(m2,0] +nf0,2]) * s;

(rf1,2] +nl21]) * s;

(r{1,0] - n{0,1]) * s

== ==
noun

OO0 0 nw.on

}

return q;

}

The matrix mis structured so that n{ 0, 0], nf O, 1] and n{ 0, 2] form the first row (not column)
of m

Theroutines Ar r ay ToBodi es and Bodi esToAr r ay don’t need any changes at all, but note
that the constant STATE_SI ZE changes from 18 to 13, since aquaternion requiresfivelesselements
than arotation matrix. The only other change we need isin ddt St at eToAr r ay. Instead of

matri x Rdot = Star(rb->onega) * rb->R;

/* copy R(t) into array */
for(int i =0; i < 3; i++)
for(int j =0; j < 3; j++)
*xdot ++ = Rdot[i,j]:

we'll use
guat er ni on qdot = .5 * (rb->omega * rb->Q);
*xdot ++ = qdot . r;
*xdot ++ = qdot . i ;
*xdot ++ = qdot. | ;
*xdot ++ = qdot . k;

We're assuming here that the multiplication between the triple r b- >onega and the quaternion
r b- >q is defined to return the quaternion product

[0, r b- >onegalq.

SIGGRAPH 2001 COURSE NOTES G24 PHYSICALLY BASED MODELING

T% Yo ~%0 /
U2 2" 210

Figure 7: A rectangular block of constant unit density, with center of mass at (0,0,0).

5 Examples

5.1 InertiaTensor of a Block

L et uscalculate theinertiatensor .4y Of the rectangular block infigure 7. Theblock has dimensions
Xo X Yo X Zg. Asrequired, the center of mass of the block is at the origin. Thus, the extent of the
block isfrom —% to % aong the x axis, and similarly for the y and z axes. To calculate theinertia
tensor, we must treat the sums in equation (2—-32) as integrals over the volume of the block. Let us
assume that the block has constant unit density. This means that the density function p(X, y, 2) is
aways one. Since the block has volume XgYoZ, the mass M of the block is M = XgYoZg. Then, in

SIGGRAPH 2001 COURSE NOTES G25 PHYSICALLY BASED MODELING

body space,

[l
—
B
.
<o
N l\)
I
w]

Yo (5-1

oZO Zgyo

+

=1 Raxo ZyoXo xOyozo
B tm - (Vo + %) = <y%+z%>.

Similarly, lyy = 203 + Z8) and 1, = %.(x3 + y3). Now, the off-diagonal terms, such as Iy,

are
0% % 0o % %
2 2 2 2 2 2
IXy:/XO /yo /20 o(X, Y, 2)(Xy) dxdydz = /XO /yo /20 xydxdydz =0 (5-2)
2 Y2 Y2 2 Y2 Y2

(and similarly for the others) because the integrals are all symmetric. Thus, the inertia tensor of the
block is

v %ot+% 20 0
0 0 X+

5.2 A Uniform Force Field

Suppose a uniform force acts on each particle of a body. For example, we typically describe a
gravitational field asexerting aforce m; g on each particle of arigid body, where g isavector pointing
downwards. The net force Fy acting due to gravity on the body thenis

Fg=) _mg= Mg (5-4)

which yields an acceleration of % = g of the center of mass, as expected. What is the torque due
to the gravitational field? The net torque is the sum

> i) —x®) xmg= (Y mri® —x1)) x g=0 (5-5)
by equation (2—20). We see from this that a uniform gravitational field can have no effect on the

angular momentum of a body. Furthermore, the gravitational field can be treated as a single force
Mg acting on the body at its center of mass.

SIGGRAPH 2001 COURSE NOTES G26 PHYSICALLY BASED MODELING

y
/ |

|
X0 o

~ X

~

— ~

e oA
ﬂ (-3,0-2) (3,0-2) *

7

Figure 8: A block acted on by two equal forces F at two different points.

5.3 Rotation Free Movement of a Body

Now, let us consider some forces acting on the block of figure 8. Suppose that an externa force
F = (0,0, f) actsonthebaody at points x(t) + (—3, 0, —2) and x(t) + (3, 0, —2). Wewould expect
that this would cause the body to accelerate linearly, without accelerating angularly. The net force
acting on the body is (0, 0, 2), so the acceleration of the center of massis

2f
M
aong the z axis. The torque due to the force acting at x(t) + (—3,0, —2) is

-3 -3
xty+| 0o h-xt)xF=| o |xF
—2 —2

while the torque due to the force acting at x(t) + (3,0, —2) is

3 3
(xty+| o PHh—-xtnxF=| 0 |xF
2 —2

Thetotal torque t istherefore

(D33

But this gives

SIGGRAPH 2001 COURSE NOTES G27 PHYSICALLY BASED MODELING

y
/Z
|
X(t)

— ~
— ~

A A
A (-30,-2) (30-2) o
F - /

Figure 9: A block acted on by two opposite forces F; and F, = —F, a two different points.

As expected then, the forces acting on the block impart no angular acceleration to the block.

5.4 Trandation Free Movement of a Body

Suppose now that an external force F, = (0, 0,) actsonthebody at point x(t) + (—3, 0, —2) andan
external force F, = (0, 0, — f) actson the body at point x(t) + (3, 0, 2) (figure9). Since F, = — F,
the net force acting onthe block is F, + F», = 0, so thereis no accel eration of the center of mass. On
the other hand, the net torque is

SIGGRAPH 2001 COURSE NOTES G28 PHYSICALLY BASED MODELING

F F

—> | ©® (tensecondslater) —p (@ | —p
\Y
Energy: Energy:
0 %MVTV

Figure 10: A rectangular block acted on by aforce through its center of mass.

-3
((x() + (0))X(t)) x F1+
-2
3 -3 0 3 0
(X +1 0 |)—x(t) x /= 0 | x 0|+ 0 | x 0 (5-6)
2 -2 f -2 —f
0 0 0
0 0 0

Thus, the net torque is (0, 6 f, 0), which is parallel to the y axis. The final result is that the forces
acting on the block cause it to angularly accelerate about the y axis.

5.5 Forcevs. Torque Puzzle

In considering the effect of aforce acting at apoint on abody, it sometimes seems that the forceis
being considered twice. That is, if aforce F actson abody at apoint r + x(t) in space, then we first
consider F as accelerating the center of mass, and then consider F asimparting a spin to the body.

This givesriseto what at first seems a paradox: Consider the long horizontal block of figure 10
which isinitially at rest. Suppose that a force F acts on the block at the center of mass for some
period of time, say, ten seconds. Since the force acts at the center of mass, no torque is exerted on
the body. After ten seconds, the body will have acquired some linear velocity v. The body will not
have acquired any angular velocity; thus the kinetic energy of the block will be % M|vl2.

Now suppose that the sameforce F isapplied off-center to the body as showninfigure 11. Since
the force acting on the body is the same, the acceleration of the center of mass is the same. Thus,

SIGGRAPH 2001 COURSE NOTES G29 PHYSICALLY BASED MODELING

o (ten seconds later)

Energy: Energy:

1
“MVIV+HE ' lw
2 2

Figure 11: A block acted on by aforce, off-center of the center of mass.

after ten seconds, the body will again have linear velocity v. However, after ten seconds, the body
will have picked up some angular velocity w, sincetheforce F, acting off center, now exertsatorque
on the body. Since the kinetic energy is (see appendix C)

%Mlvlz-l—%lew

the kinetic energy of the block is higher than when the force acted through the center of mass. But
if identical forces pushed the block in both cases, how can the energy of the block be different?
Hint: Energy, or work, istheintegral of force over distance.

SIGGRAPH 2001 COURSE NOTES G30 PHYSICALLY BASED MODELING

o (ten seconds later)

Energy: 0 Energy: 1
“MVVHZ W lw
2 2

Figure 12: The path the force acts over islonger than in figure 10. Asaresult, the force does more
work, imparting alarger kinetic energy to the block.

Figure 12 shows why the force acting off center results in a higher kinetic energy. The kinetic
energy of the block is equivalent to the work done by the force. The work done by the force is the
integral of theforce over the path traveled in applying that force. Infigure 11, where theforce acts off
the center of mass, consider the path traced out by the point where the force is applied. This pathis
clearly longer than the path taken by the center of massin figure 10. Thus, when the force is applied
off center, more work is done because the point p at which the force is applied traces out alonger
path then when the force is applied at the center of mass.

SIGGRAPH 2001 COURSE NOTES G31 PHYSICALLY BASED MODELING

Part I1. Nonpenetration Constraints

6 Problems of Nonpenetration Constraints

Now that we know how to write and implement the equations of motion for arigid body, let’s consider
the problem of preventing bodies from inter-penetrating as they move about an environment. For
simplicity, suppose we simulate dropping apoint mass(i.e. asingle particle) onto afixed floor. There
are several issuesinvolved here.

Because wearedealing withrigid bodies, that aretotally non-flexible, wedon't want to allow any
inter-penetration at all when the particle strikes the floor. (If we considered our floor to be flexible,
we might allow the particle to inter-penetrate some small distance, and view that asthe floor actually
deforming near where the particle impacted. But we don’t consider the floor to be flexible, so we
don’'t want any inter-penetration at all.) Thismeansthat at theinstant that the particle actually comes
into contact with the floor, what wewould like isto abruptly change the vel ocity of the particle. This
is quite different from the approach taken for flexible bodies. For aflexible body, say arubber ball,
we might consider the collision asoccurring gradually. That is, over some fairly small, but non-zero
span of time, aforce would act between the ball and the floor and change the ball’s velocity. During
thistime span, the ball would deform, due to the force. The more rigid we made the ball, the lessthe
ball would deform, and the faster this collision would occur. Inthelimiting case, the ball isinfinitely
rigid, and can't deform at al. Unless the bal’s downward velocity is halted instantaneously, the
ball will inter-penetrate the floor somewhat. In rigid body dynamics then, we consider collisions as
occurring instantaneously.

This means we have two types of contact we need to deal with. When two bodies are in contact
at some point p, and they have avelocity towards each other (asin the particle striking the floor), we
call thiscolliding contact. Colliding contact requires an instantaneous change in velocity. Whenever
a collision occurs, the state of a body, which describes both position, and velocity, undergoes a
discontinuity in the velocity. The numerical routines that solve ODE’s do so under the assumption
that the state X (t) always varies smoothly. Clearly, requiring X (t) to change discontinuously when
acollision occurs violates that assumption.

We get around this problem asfollows. If acollision occurs a timet., wetell the ODE solver to
stop. We then take the state at thistime, X(t¢), and compute how the velocities of bodies involved
in the collision must change. WE'll call the state reflecting these new velocities X (t;) ™. Note that
X(te) and X (to)™ agree for al spatial variables (position and orientation), but will be different for
the velocity variables of bodies involved in the collision at time t.. We then restart the numerical
solver, with the new state X (t¢), and instruct it to simulate forward from time t..

Whenever bodies are resting on one another at some point p (e.g. imagine the particle in contact
with the floor with zero velocity), we say that the bodies are in resting contact. In this case, we
compute aforce that prevents the particle from accelerating downwards; essentially, thisforceisthe
weight of the particle due to gravity (or whatever other external forces push on the particle). We call
the force between the particle and the floor a contact force. Resting contact clearly doesn’t require
us to stop and restart the ODE solve at every instant; from the ODE solver’s point of view, contact
forces are just a part of the force returned by Conput eFor ceAndTor que.

SIGGRAPH 2001 COURSE NOTES G32 PHYSICALLY BASED MODELING

tc

\' t, + At

(inter-penetration detected)

Figure 13: At time to + At, the particle is found to lie below the floor. Thus, the actua time of
collision t¢ lies between the time of the last known legal position, tg, and tg + At.

So far then, we have two problems we'll need to deal with: computing velocity changes for
colliding contact, and computing the contact forces that prevent inter-penetration. But before we can
tackle these problems we have to deal with the geometric issue of actually detecting contact between
bodies. Let's go back to dropping the particle to the floor. Aswe run our simulation, we compute
the position of the particle as it drops towards the floor at specific time values (figure 13). Suppose
we consider the particle at timestg, tg + At, tg + 2At etc.®> and suppose the time of collision, t, at
which the particle actually strikes the floor, lies between tg and tg + At. Then at timetg, we find that
the particle lies above the floor, but at the next time step, tg + At, we find the particle is beneath the
floor, which means that inter-penetration has occurred.

If we're going to stop and restart the simulator at time t¢, we' [l need to compute tc. All we know
so far is that tc lies between tg and tg + At. In general, solving for t. exactly is difficult, so we
solve for tc numerically, to within a certain tolerance. A simple way of determining t. isto use a
numerical method called bisection[14]. If at timetg + At we detect inter-penetration, weinform the
ODE solver that we wish to restart back at time tg, and simulate forward to time tg + At/2. If the
simulator reaches tg + At/2 without encountering inter-penetration, we know the collision time t¢
liesbetweenty + At/2and tg + At. Otherwise, t; islessthanty + At/2, and wetry to ssimulate from
to to tg + At/4. Eventually, the time of collision t. is computed to within some suitable numerical
tolerance. The accuracy with which t; is found depends on the collision detection routines. The
collision detection routines have some parameter €. We decide that our computation of t; is“good
enough” when the particle inter-penetrates the floor by no more than ¢, and is less than ¢ above the
floor. At this point we declare that the particle isin contact with the floor (figure 14).

The method of bisection is a little slow, but its easy to implement and quite robust. A faster
method involves actually predicting the time t; of the collision, based on examining X (tg) and
X(to + At). Baraff[1, 2] describes how to make such predictions. How to actually implement al of

5The ODE solver doesn't have to proceed with equal size time steps though.

SIGGRAPH 2001 COURSE NOTES G33 PHYSICALLY BASED MODELING

t. found (within tolerance)

(inter-penetration detected)

Figure 14: When the particle is found to be within some tolerance e of contacting the floor, then t.
is considered to have been computed to within sufficient accuracy.

this depends on how you interact with your ODE routines. One might use exception handling code
to signal the ODE of various events (collisions, inter-penetration), or pass some sort of messages to
the ODE solver. We Il just assume that you have some way of getting your ODE solver to progress
just up to the point t..

Once you actually reach the time of a collision, or whenever you're in a state X (t) where no
inter-penetration has occurred, a geometric determination has to be made to find all the points of
contact. (Just because you may be looking for the time of collision between two bodies A and B
doesn’'t mean you get to neglect resting contact forces between other bodies C and D. Whenever
you're trying to move the simulation forward, you’'ll need to compute the point of contact between
bodies and the contact forces at those points.) Thereis avast amount of literature dealing with the
collision detection problem. For instance, some recent SIGGRAPH papers dealing with the subject
are Von Herzen, Barr and Zatz[17] and Moore and Wilhelmg[12]; in robotics, a number of papers of
interest are Canny[4], Gilbert and Hong[6], Meyer[11] and Cundall[5]. Preparata and Shamos[13]
describes many approaches in computational geometry to the problem. In the next section, we'll
briefly describe acollision detection “philosophy” that leadsto very efficient algorithms, for the sorts
of ssimulation these course notes are concerned with. Actual code for the algorithms isfairly easy to
write, but alittle too lengthy to fit in these notes. Following this, we'll move on to consider colliding
and resting contact.

7 Collision Detection

The callision detection algorithm begins with apreprocessing step, in which abounding box for each
rigid body is computed (a box with sides parallel to the coordinate axes). Given n such bounding
boxes, we will want to quickly determine all pairs of bounding boxes that overlap. Any pair of rigid
bodies whose bounding boxes do not overlap need not be considered any further. Pairs of rigid

SIGGRAPH 2001 COURSE NOTES G34 PHYSICALLY BASED MODELING

bodies whose bounding boxes do overlap require further consideration. We'll first describe how
to efficiently check for inter-penetration or contact points between rigid bodies defined as convex
polyhedra. Then we'll show how to perform the bounding box check efficiently.

As described in section 1, the simulation process consists of the repeated computation of the
derivative of the state vector, %X (1), at various times t. The numerical ODE solver is responsible
for choosing the values of t at which the state derivative is to be computed. For any reasonably
complicated simulation, the values of t chosen are such that the state X does not change greatly be-
tween successive values of t. Asaresult, there isamost always great geometric coherence between
successive time steps. At atime step to + At, theideaisto take advantage of the collision detection
results computed at the previous time step tg.

7.1 Convex Polyhedra

Our primary mechanism for expl oiting coherence will bethrough the use of witnesses. Inour context,
given two convex polyhedra A and B, a witness is some piece of information that can be used to
quickly answer the “yes/no” question “are A and B digoint”? Wewill utilize coherence by caching
witnesses from one time step to the next; hopefully a witness from the previous time step will be a
witness during the current time step.

Sincewe are considering convex polyhedra, two polyhedra do not inter-penetrate if and only if a
separating plane between them exists. A separating plane between two polyhedraisaplane such that
each polyhedron lies on adifferent side of the plane. A given plane can be verified to be aseparating
plane by testing to make sure that al of the vertices of A and B lie on opposite sides of the plane.
Thus, aseparating plane is awitness to the fact that two convex polyhedra do not inter-penetrate. If
a separating plane does not exist, then the polyhedra must be inter-penetrating.

The cost of initidly finding awitness (for the very first time step of the smulation, or the first
time two bodies become close enough to require more than a bounding box test) is unavoidable.
A simple way to find a separating plane initially is as follows. If a pair of convex polyhedra are
digoint or contacting (but not inter-penetrating), then a separating plane exists with the following
property: either the plane contains aface of one of the polyhedra, or the plane contains an edge from
one of the polyhedraand is parallel to an edge of the other polyhedra. (That is, the separating plane's
normal isthe cross product of the two edge directions, and the planeitself contains one of the edges.)
We will cal the face or edges in question the defining face or edges. Initialy, we simply check all
possible combinations of faces and edges to see if one such combination forms a separating plane
(figure 15). Although thisisinefficient, it's done so infrequently that the inefficiency isunimportant.
For subsequent time steps, al we need to do isform aseparating plane from the defining face or edges
found during the previous time step, and then verify the plane to see that it is still valid (figure 16).

Onthose (rare) occasions when the cached face or two edgesfailsto form avalid separating plane
(figure 17), faces or edges adjacent to the previoudy cached face or edges can be examined to seeiif
they form a separating plane; however, this happens infrequently enough that it may be smpler to
start from scratch and compute a new separating plane without using any prior knowledge.

Once the separating place has been found, the contact region between the two polyhedra is
determined, assuming the polyhedra are not digoint. Contact points between the two polyhedra can
only occur on the separating plane. Given the separating plane, the contact points can be quickly and
efficiently determined by comparing only those faces, edges, and vertices of the polyhedra that are
coincident with the separating plane.

However, if no separating plane can be found, then the two polyhedra must be inter-penetrating.
When two polyhedra inter-penetrate, it is aimost aways the case that either a vertex of one poly-

SIGGRAPH 2001 COURSE NOTES G35 PHYSICALLY BASED MODELING

\ 2
separating
plane

Figure 15: Exhaustive search for a separating plane. Only one face of the two polygons forms a
separating plane.

@ (b)
\

\ \
\ \

\ \
\ \
defining
44— face
\
\ \
\
\
\

Figure 16: (a) Atthistimestep, the separating planeisdefined by aface of one of the polygons. (b) At
the next time step, the polygons have moved, but the same face till defines a separating plane.

SIGGRAPH 2001 COURSE NOTES G36 PHYSICALLY BASED MODELING

(@

. (b)
\ \\
. \i\
\ @
\)

\

\ \

\

Figure 17: Thefacethat has been defining aseparating plane no longer does so, and anew separating
plane must be found.

hedron is inside the other, or an edge of one polyhedron has intersected a face of the other.® In
this case, the inter-penetrating vertex, or intersecting edge and face are cached as a witness to the
inter-penetration. Sincethisindicates acollision at some earlier time, the simulator will back up and
attempt to compute % X(t) at someearlier time. Until the collision timeisdetermined, thefirst action
taken by the collision/contact determination step will be to check the cached vertex or edge and face
to see if they indicate inter-penetration. Thus, until the collision time is found, states in which the
inter-penetration still exists are identified as such with aminimum of computational overhead.

7.2 Bounding Boxes

To reduce the number of pairwise collision/contact determinations necessary, abounding box hierar-
chy isimposed on the bodies in the smulation environment. If two bounding boxes are found not to
overlap, no further comparisons involving the contents of the boxes are needed. Given acollection
of n rectangular bounding boxes, aigned with the coordinate axes, we would like to efficiently
determine all pairs of boxes that overlap. A naive pairwise comparison of all pairs requires O(n?)
work and istoo inefficient, unlessthe number of bodiesissmall. Computational geometry algorithms
exist that can solve this problem in time O(nlogn + k) where k isthe number of pairwise overlaps; a
general result isthat the problem can be solved intime O(nlog®~2n + k) for d-dimensional bounding
boxeq13]. Using coherence, we can achieve substantially better performance.

6An exception is the following. Stack two cubes of equal size atop one another so that their contacting faces exactly
coincide. Lower the top one. This produces an inter-penetration such that no vertex is inside either cube, and no edge
penetrates through any face.

SIGGRAPH 2001 COURSE NOTES G37 PHYSICALLY BASED MODELING

I I I NN N A NN |
| L I

| | |
b3 be bl € €1 b5 bz €3 b4 €5 71 (57}

Figure 18: The sweep/sort algorithm. (&) When b, is encountered, the active list contains intervals
3 and 6; interval 1 isreported to overlap with these two intervals. Interval 1 is added to the active
list and the algorithm continues. (b) When e; is encountered, the active list contains intervals 2, 3
and 5. Interval 3 isremoved from the active list.

7.2.1 Theone-dimensional case

Consider the problem of detecting overlap between one-dimensiona bounding boxes, aligned with
the coordinate system. Such a bounding box can be described simply as an interval [b, €] where b
and e are real numbers. Let us consider alist of n such intervals, with theith interval being [b;, €].
The problem is then defined to be the determination of al pairsi and j such that theintervals[b;, €]
and [bj, e;] intersect.

The problem can be solved initially by a sort and sweep algorithm. A sorted list of al the b;
and g valuesis created, from lowest to highest. Thelist isthen swept, and alist of active intervals,
initially empty, ismaintained. Whenever somevalue by is encountered, al intervals on the active list
areoutput asoverlapping withinterva i, and interval i isthen added tothelist (figure 18a). Whenever
somevalue g isencountered , interval i isremoved from the active list (figure 18b). The cost of this
processis O(nlog n) to create the sorted list, O(n) to sweep through thelist, and O(K) to output each
overlap. This gives atotal cost of O(nlogn + k), and is an optimal agorithm for initially solving
the problem.

Subsequent comparisons can be improved asfollows. First, thereisno need to usean O(nlogn)
algorithm to form the sorted list of b; and g values. It is considerably more efficient to start with
the order found for b; and g values from the previous time step; if coherence is high, this ordering
will be nearly correct for the current time step. A sorting method called an insertion sort[15] isused
to permute the “nearly sorted” list into a sorted list. The insertion sort algorithm works by moving
items towards the beginning of the list, until a smaller item is encountered. Thus, the second item
isinterchanged with thefirst if necessary, then the third item is moved towards the beginning of the
list until its proper place is found, and so on; each movement of an item indicates a change in the
ordering of two values. After the last item on the list has been processed, the list isin order. Such

SIGGRAPH 2001 COURSE NOTES G38 PHYSICALLY BASED MODELING

I IR I I I I I
1T T 1T 1 [

| | |
by bg bg e € bg by e3 e; by €4 €

Figure 19: A coherence-based method of detecting overlaps. The order produced in figure 18 is
nearly correct for this arrangement of intervals. Only b, and es need to be exchanged. When the
exchange occurs, the change in overlap status between interval 4 and 5 is detected.

a sort takes time O(n + ¢) where ¢ is the number of exchanges necessary. For example, the only
difference between figures 19 and 18 is that interval 4 has moved to the right. Starting from the
ordered list of b; and g values of figure 18, only a single exchange is hecessary to sort the list for
figure 19. The insertion sort is not recommendeded as a sorting procedure in general, since it may
require O(n?) exchanges, however, it is a good agorithm for sorting a nearly sorted list, which is
what occursin our highly coherent environment. To complete the algorithm, notethat if twointervals
i and j overlap at the previous time step, but not at the current time step, one or more exchanges
involving either ab; or e value and abj or e; value must occur. The converse istrue as well when
intervalsi and j change from not overlapping at the previous time step to overlapping at the current
time step.

Thus, if we maintain atable of overlapping intervals at each time step, the table can be updated
at each time step with atotal cost of O(n + ¢). Assuming coherence, the number of exchanges c
necessary will be close to the actual number k of changes in overlap status, and the extra O(c — k)
work will be negligible. Thus, for the one-dimensiona bounding box problem, the coherence view
yields an efficient algorithm of extreme (if not maximal) simplicity that approaches optimality as
coherence increases.

7.2.2 Thethree-dimensional case

Efficient computational geometry algorithms for solving the bounding box intersection problem in
IR® are much more complicated than the sort and sweep method for the one-dimensional case. How-
ever, these agorithmsall havein common astep that isessentially asort along acoordinate axis, asin
the one-dimensional case. Each bounding box isdescribed asthreeindependent intervals [bi(x), e,
[bY, e¥], and [b™, e®] which represent the intervals spanned on the three coordinate axes by
the ith bounding box. Thus, our first thought towards improving the efficiency of a computational
geometry agorithm for coherent situations would beto sort alist containing the b™ and e values,
and similarly for the y and zaxes. Again, such astep will invalve O(n+ ¢) work, where cisnow the

SIGGRAPH 2001 COURSE NOTES G39 PHYSICALLY BASED MODELING

total number of exchanges involved in sorting al three lists. However, if we observe that checking
two bounding boxes for overlap is a constant time operation, it follows that if we simply check
bounding boxesi and j for overlap whenever an exchange is made between values indexed by i and
j (on any coordinate axis), we will detect all changesin overlap statusin O(n+ c) time.

Again, we can maintain atable of overlapping bounding boxes, and update it at each time step
in O(n+ c¢) time. The extrawork involved isagain O(c — k). For the three-dimensiona case, extra
work can occur if the extents of two bounding boxes change on one coordinate axis without an actual
change of their overlap status. In practice, the extra work done has been found to be completely
negligible, and the algorithm runs essentialy in time O(n + k).

8 Calliding Contact

For the remainder of these notes, we're going to be concerned with examining the bodies in our
simulator at a particular instant of time ty. At this time ty, we assume that no bodies are inter-
penetrating, and that the simulator has already determined which bodies contact, and at which points.
Tosimplify matters, we' Il imaginethat all bodies are polyhedra, and that every contact point between
bodies has been detected. We'll consider contacts between polyhedra as either vertex/face contacts
or edge/edge contacts. A vertex/face contact occurs when a vertex on one polyhedra is in contact
with a face on another polyhedra. An edge/edge contact occurs when a pair of edges contact; it is
assumed in this case that the two edges are not collinear. (Vertex/vertex and vertex/edge contacts
are degenerate, and are not considered in these notes.) Asexamples, acube resting on aplanewould
be described as four vertex/face contacts, one contact at each corner of the cube. A cube resting on
atable, but with its bottom face hanging over the edge of the table would still be described as four
contacts; two vertex/face contacts for the vertices on the table, and two edge/edge contacts, one on
each edge of the cube that crosses over an edge of the table.
Each contact is represented by a structure

struct Contact {

Ri gi dBody *a, /* body containing vertex */
D; / body containing face */
triple p, /* world-space vertex |ocation */
n, /* outwards pointing nornal of face
ea, /* edge direction for A */
eb; /* edge direction for B */
bool v /[* true if vertex/face contact */
3
i nt Ncont act s;

Cont act *Cont acts;

If the contact is a vertex/face contact, then the variable a points to the rigid body that the contact
vertex is attached to, while b points to the body the face is attached to. We'll call these two bodies
A and B respectively. For vertex/face contacts, the variable n is set to the outwards pointing unit
normal of the contact face of body B, and the variables ea and eb are unused.

For edge/edge contacts, ea isatriple of unit length, that pointsin the direction of the contacting
edge of body A (pointed to by a). Similarly, eb isaunit vector giving the direction that the contact

SIGGRAPH 2001 COURSE NOTES G40 PHYSICALLY BASED MODELING

*/

Pa(t) A
Pa(to)

(1) P (to)

Figure 20: (a) The points pa(t) and py(t) for avertex/face contact. (b) At timetg, the bodies come
into contact at pa(tg) = pp(to).

edge on body B points. For edge/edge contacts, n denotes a unit vector in the ea x eb direction.
WEe'll adopt the convention that the two contacting bodies are labeled A and B such that the normal
direction ea x eb points outwards from B, towards A, asit does for vertex/face contacts.

For both types of contact, the position of the contact in world space (which is either the contact
vertex, or the point where the two edges intersect) is given by p. The collision detection routines
are responsible for discovering al the contact points, setting Ncont act s to the number of contact
points, and allocating space for and initializing an array of Cont act structures.

Thefirst thing we' Il need to do is examinethe datain each Cont act structure to seeif colliding
contact istaking place. For agiven contact point, the two bodies A and B contact at the point p. Let
pa(t) denote the particular the point on body A that satisfies pa(tg) = p. (For vertex/face contacts,
this point will be the vertex itself. For edge/edge contacts, it is some particular point on the contact
edgeof A.) Similarly, let py(t) denote the particular point on body B that coincides with pa(tg) = p
at timetg (figure20). Although pa(t) and py(t) arecoincident at timetg, the vel ocity of thetwo points
at time to may be quite different. We will examine this velocity to see if the bodies are colliding or
not.

From section 2.5, we can calculate the velocity of the vertex point, pa(tg) by the formula

Pa(to) = va(tg) + wa(to) X (Pa(to) — Xa(to)) (8-1)

where v, (1) and w,(t) are the velocities for body A. Similarly, the velocity of the contact point on
theface of Bis

Po(to) = vp(to) + wp(to) x (Pp(to) — Xp(to)). (82

Let’s examine the quantity

vre = N(to) + (Palto) — Po(to)), (83

SIGGRAPH 2001 COURSE NOTES G41 PHYSICALLY BASED MODELING

Pa(to) = Po(to)

Figure21: Thevector pa(tg) — Pu(to) pointsinthe samedirection asn(ty); the bodies are separating.

which isascaar. In thisequation, fi(ty) isthe unit surface normal, described by the variable n, for
each contact point. The quantity v, gives the component of the relative velocity pa(to) — Pp(to)
in the fi(tg) direction. Clearly, if v,q is positive, then the relative velocity pa(to) — pp(to) a the
contact point isin the positive A(tp) direction. This meansthat the bodies are moving apart, and that
this contact point will disappear immediately after timet (figure 21). Wedon't need to worry about
this case. If v,q IS zero, then the bodies are neither approaching nor receding at p (figure 22). This
is exactly what we mean by resting contact, and we'll deal with it in the next section.

In this section, we're interested in the last possibility, which is v,g < 0. This means that the
relative velocity at p isopposite N(tp), and we have colliding contact. If the velocities of the bodies
don't immediately undergo a change, inter-penetration will result (figure 23).

How do we compute the change in velocity? Any force we might imagine acting at p, no matter
how strong, would require at least a small amount of time to completely halt the relative motion
between the bodies. (No matter how strong your car brakes are, you still need to apply them before
you hit the brick wall. If you wait until you've contacted the wall, it's too late...) Since we want
bodies to change their velocity instantly though, we postulate a new quantity J called an impulse.
An impulse is a vector quantity, just like a force, but it has the units of momentum. Applying an
impulse produces an instantaneous change in the velocity of a body. To determine the effects of a
given impulse J, weimagine alarge force F that acts for asmall timeinterval At. If welet F goto
infinity and At go to zero in such away that

FAt=J (84
then we can derive the effect of J onabody’svelocity by considering how the velocity would change

if we let theforce F act on it for At time.
For example, if we apply an impulse J to arigid body with mass M, then the change in linear

SIGGRAPH 2001 COURSE NOTES G42 PHYSICALLY BASED MODELING

ba(to) - pb(to)

contact force

Figure 22: Thevector p,(tg) — pu(to) isperpendicular to fi(ty); the bodies are in resting contact. A
contact force may be necessary to prevent bodies from accelerating towards each other.

Pa(to) = Po(to)

Figure 23: Colliding contact. The relative velocity pa(tg) — Pp(to) is directed inwards, opposite
A(tg). Unlesstherelative velocity isabruptly changed, inter-penetration will occur immediately after
timetg.

SIGGRAPH 2001 COURSE NOTES G43 PHYSICALLY BASED MODELING

velocity Avissimply

J
Equivalently, the changein linear momentum AP issimply AP = J. If theimpulse acts at the point

p, then just as aforce produces atorque, J produces an impulsive torque of

Timpulse = (P — X(1)) x J. (8-6)

Asonewould imagine, theimpulsive torque zjmpuise 8l SO givesriseto achangein angular momentum
AL of AL = Timpuse- Thechangeinangular velocity issmply | *1(to)rimpu|se, assuming theimpulse
was applied at timety.

When two bodies collide, we will apply an impulse between them to change their velocity. For
frictionless bodies, the direction of the impulse will be in the normal direction, fi(ty). Thus, we can
write theimpulse J as

J = jA(ty) (8-7)

where j isan (as yet) undetermined scalar that gives the magnitude of the impulse. We'll adopt the
convention that theimpulse J actspositively onbody A, thatis, Aissubject toanimpulseof + jf(ty),
whilebody B issubject to an equal but oppositeimpulse — ji(ty) (figure 24). We compute j by using
an empirical law for collisions. Let’slet p; (tp) denote the velocity of the contact vertex of A prior
to the impulse being applied, and let p7 (to) denote the velocity after we apply the impulse J. Let
P, (to) and Py (to) be defined similarly. Using thisnotation, theinitial relative velocity inthe normal
direction is

vreg = N(to) « (P5 (to) — Py (t0)); (8-8)

after the application of the impulse,

vy = A(to) « (P (to) — P (to)). (8-9)

The empirica law for frictionless collisions says simply that

Uy = —€lpy. (8-10)

The quantity ¢ is called the coefficient of regtitution and must satisfy 0 < € < 1. If € = 1, then
vy = —v;y, and the callision is perfectly “bouncy”; in particular, no kinetic energy islost. At the
other end of the spectrum, € = O resultsin v, = 0, and amaximum of kinetic energy is lost. After
this sort of collision, the two bodies will be in resting contact at the contact point p (figure 25).

Calculating themagnitude j of theimpulse J = ji(ty) isfairly simple, athough the equations are
ahit tedious to work through. Let’s definethe displacementsry andrp as p — Xa(tg), and p — Xy (tp).
If welet vy (tp) and wj (to) be the pre-impulse velocities of body A, and v (tp) and wf (to) be the
post-impul se velocities, we can write

i (to) = vZ (to) + w3 (to) X ra (8-11)

SIGGRAPH 2001 COURSE NOTES G44 PHYSICALLY BASED MODELING

Figure 24: Theimpulse between two bodies at acontact point. Animpulse of jfi(tg) actson A, while
an impulse of — jA(tp) acts on B.

@ (b) Pa(to) = Py (to)

=)

Pa(to) = P> (%)

(©

Ca (d) . .
P (to) = (L) Pa(to)— Py (o)

Figure 25: (a) The relative velocity before application of the impulse. (b) The component of the
relative velocity in the fAi(tg) direction is reversed for an € = 1 collision. The reative velocity
perpendicular to N(ty) remains the same. (c) A collision with 0 < € < 1. The bodies bounce away
in the Ai(ty) direction with less speed than they approached. (d) A collision with € = 0. The bodies
do not bounce away from each other, but the relative velocity perpendicular to fi(tg) is unaffected by

the collision.

SIGGRAPH 2001 COURSE NOTES G45 PHYSICALLY BASED MODELING

aong with
jn(to)
Ma

where M, isthe mass of body A, and 14(tg) isitsinertiatensor. Combining the two previous equa-
tionsyields

vg (to) = v; (to) + and of (t) = w5 (to) + 151 (to) (ra x jA(to)) (8-12)

jA(to)
Ma

i (to) = <v;<to> +) + (37 (to) + 131 (to) (ra x jA(ty))) x ra
jh(to)
Ma

=va<to>+wa<to>xra+<)+(lal<to>(raxm<to>))xra (8-13)

=Py +] (,fAO) + 17 (to) (rax n(to))) X Ia.

It isimportant to note the form of P (to): itisasimplelinear function of j. For body B, an opposite
impulse — jA(ty) acts, yielding

08 19 = B — (2 + 1500 1 x)) o (814
Thisyields
t t
Pl ~ B = (pdt0) =) + (g +

(8-15)
(131 (to) (ra x A(to))) x ra+ (151 (to) (rp x A(to))) x rb>.

Tocalculate vty , wedot thisexpression with fi(tg). Sincefi(to) isof unitlength, A(ty) - Ai(tg) =1,
and we obtain

vy = A(to) - (PL (to) — Pp)

A~ . 1 1
=N(tg) - (P5 (to) — Pp) + J<_+V+

Ato) - (17 (to) (ra x A(to))) x ra+ficto) - (157 (to) (b x Alto))) x fb) (8-16)

= Vg +] 1+i+
= Upg 1| Ma '~ Mg

A(to) - (13 (to) (ra x A(to))) x ra+A(to) - (15 (to) (rp x A(ty))) x rb>.

By expressing v}l intermsof j and v, we can compute j according to equation (8-10). If we
substitute equation (8-16) into equation (8-10), we get

1 1
Urg J< + My +A(to) - (137 (to) (ra x A(to))) x rat

(8-17)
A(to) - (15 (to) (rp x A(ty))) x rb) = —€Vygq.

SIGGRAPH 2001 COURSE NOTES G46 PHYSICALLY BASED MODELING

Finally, solving for j,

. —(1+e)vy
= . (8-18
: Mi + Mib +f(to) - (172(t0) (ra x A(t))) x ra+ fA(to) - (152(to) (rp x A(t))) x 'y (8-18)

Let'sconsider some actual code (written for clarity, not speed). First, wedetermineif two bodies
arein colliding contact.

/*

* Qperators: if ‘x and ‘y’ are triples,

* assume that ‘x ©~ y’ is their cross product,
*and ‘x * y' is their dot product.

*/

/* Return the velocity of a point on a rigid body */
triple pt_velocity(Body *body, triple p)
{

}

/*

* Return true if bodies are in colliding contact. The
* parameter ‘ THRESHOLD is a snmall nunerical tolerance
* used for deciding if bodies are colliding.

return body->v + (body->onega = (p - body->x));

*/
bool colliding(Contact *c)
{
triple padot = pt_velocity(c->a, p), [* p;(to) */
pbdot = pt_velocity(c->b, p); [* p,(to) */
double vrel = c->n * (padot - pbdot); /* vy */
i f(vrel > THRESHOLD) /* nmoving away */
return fal se;
if(vrel > - THRESHOLD) /* resting contact */
return fal se;
el se /* vrel < -THRESHOLD */
return true;
}

Next, we'll loop through al the contact points until all the collisions are resolved, and actually
compute and apply an impulse.

void col lision(Contact *c, double epsilon)

{
triple padot = pt_velocity(c->a, c->p), /* p;(to) */
pbdot = pt_velocity(c->b, c->p), /* p,(to) */
n = c->n, [* f(tg) */

SIGGRAPH 2001 COURSE NOTES G47 PHYSICALLY BASED MODELING

ra = p - c->a->X, [* rg */
rb = p - c->b->x; I* 1y */
double vrel = n * (padot - pbdot), I* vy */
numerator = -(1 + epsilon) * vrel
/* We'll calculate the denominator in four parts */

double ternml =1/ c->a->nmsSs,

term2 = 1/ c->b->mass,
term8B = n* ((c->a->linv* (ra” n)) ~ ra),
termd = n* ((c->b->linv* (rb ™ n)) ° rb);

/* Conpute the inpulse magnitude */

double | = nunmerator / (ternl + ternm2 + ternB + ternd);
triple force =j * n;

/* Apply the inpulse to the bodies */
c->a->P += force;

c->b->P -= force;
c->a->L +=ra = force;
c->b->L -=rb ~ force;

/* reconpute auxiliary variables */
c->a->v = c->a->P / c->a->nmss;
c->b->v = c->b->P / c->b->nmss;

c->a->linv * c->a->L;
c->b->linv * c->b->L

c- >a- >onega
c- >b- >onega

}

void FindAl |l Collisions(Contact contacts[], int ncontacts)

{

bool had_col l'i sion
double epsilon = .5;
do {
had_col lision = fal se;
for(int i = 0; i < ncontacts; i++)
if(colliding(&ontacts[i]))
{

collision(&ontacts[i], epsilon);
had_col l'i sion = true;

[* Tell the solver we had a collision */
ode_di sconti nuous();

SIGGRAPH 2001 COURSE NOTES G48 PHYSICALLY BASED MODELING

}

} while(had _collision == true);

}

Note severa things. First, e = .5 was chosen arbitrarily. In areal implementation, we'd allow the
user to use different values of € depending on which two bodies were colliding. Also, every timewe
find acallision, we have to rescan the list of contacts, since bodies that were at rest may no longer be
s0, and new collisions may develop. If there areinitialy severa collisions to be resolved (such asa
cube dropped flat onto a plane, with all four vertices colliding at once), the order of the contact list
may have an effect on the simulation. Thereis away to compute impulses at more than one contact
point at atime, but it more complicated, and is based on the concepts used for resting contact in the
next section. For further information, see Baraff[1].

Incidentally, if you want to have certain bodies that are “fixed”, and cannot be moved (such as
floors, or walls), you can use the following trick: for such bodies, let ﬁ be zero; also let the
inverse inertia tensor also be the 3 x 3 zero matrix. You can either special-case the code to check if
abody is supposed to be fixed, or you can recode the definition of Ri gi dBody to have the variable
i nvmass instead of nass. For ordinary bodies, i nvimass is the inverse of the mass, while for
fixed bodies, i nvmass is zero. The same goes for the inertia tensor. (Note that nowhere in any of
the dynamics computations (including the next section) is the mass or inertia tensor ever used; only
their inverses are used, so you won't have to worry about dividing by zero.) The same trick can be
used in the next section on resting contact to simulate bodies that can support any amount of weight
without moving.

9 Resting Contact

The case of resting contact, when bodies are neither colliding nor separating at a contact point, isthe
last (and hardest) dynamics problem we'll tackle in these notes. To implement what’sin this section,
you'll have to obtain afairly sophisticated piece of numerical software, which we'll describe below.

At this point, let’s assume we have a configuration with n contact points. At each contact point,
bodies are in resting contact, that is, the relative velocity v,g, from section 8, is zero (to within the
numerical tolerance THRESHOL D). We can say that thisis so, because colliding contact iseliminated
by theroutineFi ndAl | Col | i si ons(), and any contact pointswith v, larger than THRESHOLD
can be safely ignored, since the bodies are separating there.

As was the case for calliding contact, at each contact point, we have a contact force that acts
normal to the contact surface. For the case of colliding contact, we had an impulse ji(tg) where |
was an unknown scalar. For resting contact, at each contact point thereissomeforce fifj(tg), where
fi isan unknown scalar, and 1y (tp) is the normal at the ith contact point (figure 26). Our god isto
determine what each fj is. In computing the f;’s, they must al be determined at the sametime, since
the force at the ith contact point may influence one or both of the bodies of the j contact point. In
section 8, we wrote how the velocity of the contact points pa(to) and py(tg) changed with respect to
j. We'll do the same thing here, but now we'll have to describe how the acceleration of pa(tg) and
Po(to) depends on each f;.

For colliding contact, we had an empirical law which related theimpulse strength j totherelative
velocity and acoefficient of restitution. For resting contact, we compute the f;’'s subject to not one,
but three conditions. First, the contact forces must prevent inter-penetration; that is, the contact

SIGGRAPH 2001 COURSE NOTES G49 PHYSICALLY BASED MODELING

P1 P Ps

Figure 26: Resting contact. This configuration has five contact points; a contact force acts between
pairs of bodies at each contact point.

forces must be strong enough to prevent two bodies in contact from being pushed “towards’ one
another. Second, wewant our contact forcesto berepulsive; contact forces can push bodies apart, but
can never act like “glue” and hold bodies together. Last, we require that the force at a contact point
become zero if the bodies begin to separate. For example, if ablock isresting on atable, someforce
may act at each of the contact points to prevent the block from accelerating downwards in response
to the pull of gravity. However, if avery strong wind were to blow the brick upwards, the contact
forces on the brick would have to become zero at the instant that the wind accelerated the brick off
the table.

Let's deal with the first condition: preventing inter-penetration. For each contact point i, we
congtruct an expression d; (t) which describes the separation distance between the two bodies near the
contact point at timet. Positive distance indicates the bodies have broken contact, and have separated
a the ith contact point, while negative distance indicates inter-penetration. Since the bodies are in
contact at the present time tg, we will have d; (tp) = 0 (within numerical tolerances) for each contact
point. Our goa isto make sure that the contact forces maintain d;(t) > O for each contact point at
futuretimest > to.

For vertex/face contacts, we can immediately construct avery simple function for d; (t). If pa(t)
and py (t) arethe contact points of theith contact, between bodies A and B, than the distance between
the vertex and the face at future timest > tg is given by

di (1) = fAi(t) - (Pa(t) — Po(1)). (9-1)

At time t, the function d(t) measures the separation between A and B near pa(t). If di(t) is zero,
then the bodies are in contact at the ith contact point. If d;(t) > 0, then the bodies have lost contact
at the ith contact point. However, if d;(t) < 0, then the bodies have inter-penetrated, which iswhat
we need to avoid (figure 27). The same function can a so be used for edge/edge contacts; since 1 (t)

SIGGRAPH 2001 COURSE NOTES G50 PHYSICALLY BASED MODELING

@ (b) ©)

A
Pa(t) A

U m(t) Pa(t () b ()

(1) (1)
pa(t)

Figure 27: (@) The displacement p4(t) — pp(t), indicated by an arrow, points in the same direction
as A(t). Thus, the distance function d(t) would be positive. (b) The distance function d(t) is zero.
(c) The displacement pa(t) — pp(t) points in the opposite direction as A(t). The distance function
d(t) is negative, indicating inter-penetration.

points outwards from B towards A (by convention), fi(t) - (pa(t) — pp(t)) will be positive if the
two contacting edges move so as to separate the bodies.

Since d;(tg) = 0, we have to keep d;(tg) from decreasing at time tg; that is, we have to have
di(tg) > 0. What is di (tp)? Differentiating,

di(t) = fi(t) - (Pa(t) — Po(t)) +Ni(t) « (Pa(t) — Po(t)). (9-2
Since d; (t) describes the separation distance, di (t) will describe the separation velocity at time t.
However, at time tg, pa(to) = Pp(to), Which means that di (tg) = fii(tp) - (Pa(to) — Po(ty)). This
should look familiar: its v, from the previous section! The function di(to) is a measure of how
the bodies are separating, and for resting contact, we know that d (tp) iszero, because the bodies are
neither moving towards nor away from each other at a contact point.
At this point then, we have dj(ty) = di(tg) = 0. Now we'll look at dj(tp). If we differentiate
equation (9-2), we get

6,0 = (H(® - (Pa®) = Po®) + A1) - (Pa(t) = Po(1)) +
(Aic) - (Pa®) = o)+ (1) - (PalD) — Bo(D)) G
= Bi(1) - (Pa(t) = Po() + 20 (V) - (Pa(t) = Po(t) + Ai(t) - (Ba(t) — Po(1)).
Since pa(ty) = Po(to), we can write di (to) as

d(to) = fi(to) - (Palto) — Po(to)) + 2Mi(to) - (Palto) — Po(to)). (9-9)

SIGGRAPH 2001 COURSE NOTES G5h1 PHYSICALLY BASED MODELING

The quantity d; (tg) measures how the two bodies are accelerating towards each other at the contact
point p. If d;(tg) > 0, the the bodies have an acceleration away from each other, and contact will
break immediately after to. If d; (tg) = O, then contact remains. Thecase d; (ty) < 0 must be avoided,
for this indicates the bodies are accelerating towards each other. Note that if f;(t) is aconstant (if
body B isfixed), then fAi (to) is zero, leadi ng to further simplifications.

Thus, we satisfy our first condition for contact forces by writing the constraint

di(tp) >0 (9-5)

for each contact point. Since the acceleration dj(to) depends on the contact forces, thisis readly a
constraint on the contact forces.

Let's turn our attention to the second and third constraints. Since contact forces must always
be repulsive, each contact force must act outward. This means that each f; must be positive, since
aforce of fifij(tg) acts on body A, and fj(tg) is the outwards pointing norma of B. Thus, we
need

fi>0 (9-6)

for each contact point. The third constraint is expressed simply interms of f; and di(tp). Since the
contact force fin; (tg) must become zero if contact isbreaking at theith contact, thissaysthat f; must
be zero if contact is breaking. We can express this constraint by writing

fidi (to) = O; (9-1)

if contact isbreaking, d; (tg) > 0and equation (9-7) is satisfied by requiring f; = 0. If contact is not
breaking, then di(ty) = 0, and equation (9-7) is satisfied regardless of f;.

In order to actualy find f;’swhich satisfy equations (9-5), (9-6), and (9—7), we need to express
each d; (tp) asafunction of the unknown f;’s. It will turn out that wewill be ableto write each di (to)
inthe form

di(to) = a1 fr+aifo+ - + ainfn + by (-8
In matrix parlance, this means we will be able to write

di (to) f1 bi
dn(to) fr bn

where A isthe n x n matrix of the a;j coefficients of equation (9-8). Although the code needed to
calculate the aj;’s and the b;’s is not too complicated, working out the derivations on which the code
is based is somewhat tedious. The derivations are worked out in appendix D, along with code to
compute the matrix of a;;’sand b;’s.

Appendix D gives an implementation of the routines

voi d conmpute_a matri x(Contact contacts[], int ncontacts,
bi gmatri x &a);

SIGGRAPH 2001 COURSE NOTES G52 PHYSICALLY BASED MODELING

voi d compute_b_vector(Contact contacts[], int ncontacts,
vector &b);

wherethetypesbi gmat ri x andvect or represent matrices and vectors of arbitrary size. Thefirst
routine computes the a;j’s, while the second routine computes the b;’s.

Once we' ve computed al this, we can think about solving equations (9-5), (9-6), and (9-7).
Thissystem of equationsformswhat iscalled aquadratic program (QP); that is, f;’sthat satisfy these
three equations are found by an algorithm called quadratic programming. Not al quadratic programs
can be solved efficiently, but because our contact forces are all normal to the contact surfaces (that is,
they do not involvefriction), it turns out that our QP can always be solved efficiently. Oneinteresting
thing to note is that QP codes can easily handle the case di (ty) = O instead of dj(ty) > 0. We use
di (tg) = 0 (and also drop the constraint f; > 0) if we wish to constrain two bodies to never separate
a a contact point. This enables us to implement hinges, and pin-joints, as well as hon-penetration
constraints during simulation.

Quadratic programming codes aren’t terribly common though; certainly, they are not nearly as
common as linear equation codes, and are much harder to implement. The quadratic programming
routines used by the author were obtained from the Department of Operations Research at Stanford
University. See Gill et al.[7, 8, 9] for further details. More recently, we have been using code
described by Baraff[3] to solve the quadratic programs. If you are determined to really implement
this, we suggest a thorough study of this paper (excepting for the section on contact with friction).

At any rate, let's assume that you've got aworking QP solver at your disposal. We'll assume
that you pass the matrix A, and the vector of b;’s to the QP solver, and you get back the vector of

fi's. Let’s pretend the interface is

voi d gp_sol ve(bigmatri x &, vector &b, vector &f);

Let's see how to compute al the resting contact forces. The following routine is presumably called
from Conput eFor ceAndTor que(), ater Fi ndAl | Col |'i si ons() hasbeen caled.

voi d Conput eCont act For ces(Contact contacts[], int ncontacts, double t)
{

/* We assunme that every el ement of contacts[]

* represents a contact in resting contact.

Al so, we' |l assune that for each el enent of Bodies[],
the ‘force’ and ‘torque’ fields have been set to the
net external force and torque acting on the body, due
to gravity, wind, etc., perhaps by a call to

Conmput eExt er nal For ceAndTor queFor Al | Bodi es(t);

* ok ok k% X ¥ *

/
/*

* Allocate nxn matri x ‘amat’ and n-vectors ‘fvec’, and ‘ bvec’.
*f

SIGGRAPH 2001 COURSE NOTES G53 PHYSICALLY BASED MODELING

new bi gmatri x(ncontacts, ncontacts);
new vect or (ncont acts),
new vect or (ncont acts);

bi gmatri x amat
vect or bvec
fvec

/* Compute aj and b coefficients */

compute_a_matrix(contacts, ncontacts, amat);
conpute_b vector(contacts, ncontacts, bvec);

/* Solve for fi's */
gp_sol ve(amat, bmat, fvec);

/* Now add the resting contact forces we just conmputed into
the ‘force’ and ‘torque’ field of each rigid body. */

for(int i = 0; i < ncontacts; i++)
{
doubl e f = fvec[i]; [* fi */
triple n = contacts[i]->n; I* hi(tg) */
Ri gi dBody *A = contacts[i]->a, /* body A */
B = contacts[i]->b; / body B */

/* apply the force ‘f n” positively to A... */

A->force += f * n;
A->torque += (contacts[i].p - A->x) * (f*n);

/* and negatively to B */

B->force -=f * n;
B->torque -= (contacts[i].p - B->x) * (f*n);

}

That's pretty much it! Now that the resting forces have been computed and combined with the
external forces, we return control to the ODE solver, and each body goes merrily along itsway, in a
physically correct manner, without inter-penetration.

SIGGRAPH 2001 COURSE NOTES G54 PHYSICALLY BASED MODELING

Appendix A Motion Equation Derivations

In this appendix, we'll fill in some of the missing details from section 2, with regards to the equa-
tions P(t) = F(t), L(t) = z(t), and L(t) = I (t)w(t). The derivation method used here is some-
what nonstandard, and was proposed by Andy Witkin. The derivation in this appendix is (we
feel) much shorter and considerably more elegant than the one found in traditional sources such as
Goldstein[10].

We' ve described the external force acting on arigid body in terms of forces F; (t), where F; (1)
is the external force acting on the ith particle. However, for arigid body to maintain its shape,
there must be some “internal” constraint forces that act between particles in the same body. We will
make the assumption that these constraint forces act passively on the system and do not perform any
net work. Let F;(t) denote the net internal constraint force acting on the ith particle. The work
performed by F;; on theith particle fromtimetg toty is

t1
/ Foi (1) - () dit

to

wherer;(t) isthe velocity of theith particle. The net work over all the particles isthe sum

t]_ t1
Fei(t) - i) dt = Fei (1) - Fi(t) dt,
Z/t M - 1i(t) /IOZ) - Fi(t)

which must be zero for any interval tg to t;. This means that the integrand
> Fei(®) - Fi() (A-1)
i

isitself always zero for any timet. (Henceforth we'll just write these expressionsas) _ F¢; - fj = 0.)

We can use this fact to eliminate any mention of the constraint forces F; from our derivations.
First, some quick notes about the “x" operator defined in section 2.3: since a*bh = a x b, and
axb=—bxa, weget

—a*b=bx a=b*a (A-2)
Since a* is an antisymmetric matrix,
(@)’ =—a*. (A-3)
Finally, since the “x" operator isalinear operator,
@* = (@) = %@) (A-4)
and for a set of vectors a;

>a=(2a) (a-5)

SIGGRAPH 2001 COURSE NOTES G55 PHYSICALLY BASED MODELING

Recall that we can writethe velocity ri astf; = v+ w x (rj — X) wherer; isthe particle’slocation,
X isthe position of the center of mass, and v and w arelinear and angular velocity. Lettingr{ =r; — x
and using the “«” notation,

Substituting thisinto) F; - rj, which is always zero, yields

> Fei- (v—r{"w) =0. (A7)

Note that this equation must hold for arbitrary values of v and w. Since v and w are completely
independent, if we choose w to be zero, then) K - v = 0 for any choice of v, from which we
conclude that in fact Y F; = 0 is always true. This means that the constraint forces produce no
net force. Similarly, choosing v to be zero we see that Y —F¢; - (r{*w) = 0 for any w. Rewriting
Fei + (r*w) as Fg T (r*w) we get that

> —Fifo= () -F*)0=0 (A-8)
Tpr*

for any o, s0 Y —F¢; Tr{* = OT. Transposing, we have

Y - TFRi=) ()Fi=) rixF=0 (A-9)

which means that the internal forces produce no net torque.

We can use the above to derive therigid body equations of motion. The net force on each particle
isthe sum of theinternal constraint force F;; and the external force F. The acceleration 1 of theith
particleis
%r’i = %(v— Mw)=v—r"o—r1"o. (A-10)
Since each individual particle must obey Newton's law f = ma, or equivdently ma— f =0, we
have

i =

mfi— K —Fi=m@-— I"f*a) — I‘i/*d)) —F—F;=0 (A-11)

for each particle.
Toderive P = F = Y F, we sum equation (A—11) over al the particles. We obtain

> om@ -t w—r{"o) - F— Fy =0. (A-12)
Breaking the large sum into smaller ones,
Y om@—o—ro) - F— Fy =
Zmiv — Zmir'{*w— Zmiri’*cb— Z F— Z Fo =
> mv— (Z mir'{)*a)— (Z miri/)*cb—z F—) Fi=
Zmio_<%zmir;) o= (Xmr) - FR-Y Fi=o

(A-13)

SIGGRAPH 2001 COURSE NOTES G56 PHYSICALLY BASED MODELING

Since we are in a center-of-mass coordinate system, equation (2—20) from section 2.6 tells us that
> mir{ =0, which also meansthat % > mir{ = 0. Removing termswith) mr{, and theterm) F;
from the above equation yields

> mv—) F=0 (A-14)
or simply Mo = P =Y F, as advertised.

Toobtain L = 7 = Y_r/ x Fj, we again start with equation (A—11). Multiplying both sides by
ri* yields

i mi — "o —r*o) —r"F —r{*Fi =r{"0=0. (A-15)
Summing over al the particles, we obtain

dorrmo =Y i = Y i mirt o - Y r*R = > "Ry =0. (A-16)

Since Y _r{*F¢ = 0, we can rearrange this to obtain

(Z mir> v — (Z mir!*r ’*) (Z mir!r ’*) ; Zri’* F=0. (A-17)

Using > mir{ = 0, we areleft with

(Z mirlr) w— (Z mirlT) b= 1F—=0 (A-18)

or, recognizing that Y ri*F =>"ri x f =,

(Z mir!*r ’*) (Z mir!r ’*) w=r. (A-19)

WEe reamost done now: if werefer back to the matrix defined by the " " notation, one can easily
verify the relation that the matrix —a*a* is equivalent to the matrix (a'a)l — aa” where 1 is the
3 x 3identity matrix. (Thisrelation is equivalent to the vector rule a x (b x ¢) = ba’c —ca'b.)
Thus

Y —mir =Y mia - = 1. (A-20)

Substituting into equation (A—19), thisyields

(Z —mrlr) o+ 1o =1 (A-21)
The above expression is almost acceptable, as it gives an expression for @ in terms of , ex-
cept that it requires us to evaluate the matrix > mir/*r¥, which is as expensive as computing the

inertia tensor from scratch. We'll use one last trick here to clean things up. Since r{ = w x r{ and
r*ow = —w x r{, we can write

Zm.r/*r/*a) - Zmi(a) X I)*(—w x r]) = Z—mi(a) x 1) x (wxr/)=0. (A-22)

SIGGRAPH 2001 COURSE NOTES G57 PHYSICALLY BASED MODELING

Thus, we can add —) mif{*r{*@ = 0 to equation (A—21) to obtain

(Z CmirE - mir'{*r{*) o+ (o=t (A-23)
Finally, since
: d T Pk 2% L
I(t)=aZ—miri (= i — e (A-24)
we have
. o d
O+ 1D = (o) =T (A—25)

Since L(t) = | (D)w(t), thisleaves us with the final result that

Lt) = (A—26)

Appendix B Quaternion Derivations

A formulafor ¢(t) isderived asfollows. Recdl that the angular velocity w(t) indicates that the body
isinstantaneoudly rotating about the w(t) axis with magnitude |w(t)|. Suppose that a body were to
rotate with a constant angular velocity w(t). Then the rotation of the body after a period of time At
is represented by the quaternion

Cos|a)(t)|At in lo(t)|At w(t)

[2 2 |w(t)|]'

Let us compute ¢(t) at some particular instant of time to. At times tg + At (for smal At), the
orientation of the body is (to within first order) the result of first rotating by q(tp) and then further
rotating with velocity w(tg) for At time. Combining the two rotations, we get

lw(to)|AL . |w(to)|Al w(to)

to + At) = [cos .sin
q(to)= > 2 Tol)]

19(to). (B-1)

Making the substitution t = to + At, we can express this as

_ lo(to)|(t—to) . |w(to)|(t—1p) w(lp)
q(t) = [cos 5)

to). B2
sin > |w(to)|]Q(0) (B-2)

Let us differentiate q(t) at timety. First, since q(tp) isaconstant, let us differentiate

JeM)lt—to) . |o(o)|(t—1o) o(lo)

[co 2 2 et
Attimet = tg,
d_ Jo@lt-t) __|ot) oot 1{)
_ _7""(;0)' $n0=0.

SIGGRAPH 2001 COURSE NOTES G58 PHYSICALLY BASED MODELING

Similarly,

gsin [t)[t—t) _ o)l lo(to)[(t—T1o)

dt 2 2 2
(B4)
_ |o(to)] _ |o(to)]
=5 cos0 = —

Thus, at timet = tg,
4t = dg <[Coslw(to)|(t—to) S‘.mlw(to)l(t—to) w(lp)]q(to)>

t 2 ’ 2 |l (to)]
_d lw(to)|(t—1to) . [@(o)|(t—10) w(lo)
=4 ([cos > ,sin > |a)(to)|]) q(to) 65

1 |w(to)| w(to)
T2 o(t)l

= [0, 30(to)] ato) = 3[0, w(to)] q(to).

1 a(to)

The product [0, w(tg)] q(to) is abbreviated to the form w(tg)q(tp); thus, the general expression for
qis

at) = etq). (B-6)

Appendix C Some Miscellaneous Formulas

C.1 Kinetic Energy
Thekinetic energy T of arigid body is defined as

T=Y imer. (C-D)
Lettingr{ =r;i — X, we haver; = v(t) + r{*w. Thus

T=> smrl

= Z %mi(v +rl* o) T (v 41" w)

=3 molvty vimrle+ 3y mw) (1w “
=57 (Z mi) vto' (Z miri’>*w +io" (Z mi(ri’*)Tr{*) w.
Using Y- mir{ =0and (r{")" = —r{*, we have
T=3"Mu+ 30" (3 -mri'rf") o= 10 Mo+ o"le) (C-3)

since | = > —mr{*r{* from appendix A. Thus, the kinetic energy can be decomposed into two
terms: alinear term 2v" M, and an angular term 30" lw.

SIGGRAPH 2001 COURSE NOTES G59 PHYSICALLY BASED MODELING

C.2 Angular Acceleration
It is often necessary to compute a(t). Since L(t) = | (t)w(t), we know w(t) = | ~1(t)L(t). Thus,

o) = 7T OL®) + 172 L. (C-4)
Since we know that L(t) = z(t), let us consider | ~1(t). From equation (2—40),

171(t) = ROy RO,

I71(t) = R(®)Ipeay RD T + R(®) lpgqy R (C-5)
Since R(t) = w(t)*R(1),
ROT = (w®*R)T = RO ()" (C-6)

Since w(t)* is antisymmetric, (i.e. (w(1)*)T = —w(t)*),

Rt =—R® o(t)". (C-7)
Thisyields
1711 = RO sy RO T + R() ey (—RD T (D))
= 0(1)* RO oy ROT = 17 Do (1) (C-9)
=o®* 1710 — 1T Do®*.
Then

o) =TT OL®) + 17 Lt
= (0@®* 171 — 1T O ®)*) L) + 17O L) (C-9)
=o®*17YOLE) — 110w @) L) + 1710 L(t).

Butsince | ~1(t)L(t) = w(t), thefirstterm, w(t)*1 ~1(t) L(t) isequivalent to w(t)*w(t), or w(t) x w(t),
which is zero. Thisleaves the final result of

o) = =171 Mw®)*LE) + 171 L)
= — 1 w(t) x L)+ 72t L(t)
(C-10)
= 171)(LM) x o) + 1 71O L(b)

= 1710 (L(t) x w(t) + Lb)).

SIGGRAPH 2001 COURSE NOTES G60 PHYSICALLY BASED MODELING

We can seefrom thisthat even if no forces act, so that L(t) iszero, (t) can still be non-zero. (Infact,
thiswill happen whenever the angular momentum and angular velocities point in different directions,
which in turn occurs when the body has arotational velocity axis that is not an axis of symmetry for
the body.)

C.3 Accderation of a Point

Givenapoint of arigid body with world space coordinate p(t), it isoften necessary to compute p(t).
Let the body space coordinate that transforms at time t to p(t) be po; then

p(t) = R(t) po + X(t)
If weletr(t) = p(t) — x(t), then

p(t) = R(t) po + X(t) = w(t)*R(t) po + v(t)

= w(t) x (R(1) po + X(t) — X(1)) + v(t)

(C11)
= w(t) x (p(t) — x(1)) + v(1)
=w(t) xr() +v().
Then
P(t) = w(t) x 1) + w(t) x r(t) + v(t)
(C-12)

— (1) X 1(t) + w(t) x (@(t) x r(t)) + v(t).

We caninterpret thisasfollows. Thefirst term, @(t) x r(t) isthetangential acceleration of the point;
that is, w(t) x r(t) isthe acceleration perpendicular to the displacement r (t) as aresult of the body
being angularly accelerated. The second term, w(t) x (w(t) x r(t)) isthe centripetal acceleration of
the point; this centripetal acceleration arises because the body isrigid, and points on the body must
rotate in a circular orbit about the center of mass. Thelast term, v(t) isthe linear acceleration of the
point due to the linear acceleration of the center of mass of the body.

Appendix D Resting Contact Derivations

If you' re determined to implement resting contact in your simulator, you' I need the derivations and
the code in this appendix. This is probably not a fun appendix to work through; then again, this
wasn't afun appendix to write! The derivations in here are somewhat terse, but the code at the end
of the appendix will hopefully make things clearer.

D.1 Derivations

We negd to express di (to) intermsof al theunknown f;’s. It will turn out that we'll be able to write
each dj(tp) intheform

di(to) = &1 f1 + a2 fo + - - - 4 a&in fn + bi. (D-1)

SIGGRAPH 2001 COURSE NOTES G61 PHYSICALLY BASED MODELING

Giveni and j, we need to know how dj(to) depends on fj, that is, we need to know &;j. Also, we
need to compute the constant term by;.

Let's start by determining &;; and ignoring the constant part bj. We'll assume the ith contact
involves two bodies A and B. From equation (9-4), we can write d; (tg) as

d(to) = fi(to) - (Palto) — Pn(to)) + 2Ai(to) - (Palto) — Po(to)) (D-2)

where pa(tg) = pi = pp(te) is the contact point for the ith contact at time tg. The right-most
term 2A; (to) - (Pa(to) — Po(to)) isavelocity dependent term (i.e. you can immediately calculate
it without knowing the forces involved), and is part of b;, so we'll ignore this for now.

So we only need to know how [, (tp) and P (tg) depend on f;, the magnitude of the jth contact
force. Consider the jth contact. If body A is not one of the bodies involved in the jth contact, then
Pa(to) isindependent of f;, because the jth contact force does not act on body A. Similarly, if Bis
also not one of the two bodies involved inthe jth contact, then pp(to) isalso independent of f;. (For
example, in figure 26, the acceleration of the contact points at the first contact is completely unaf-
fected by the contact force acting at the fifth contact. Thus, d1 (tg) would be completely independent
of fs. Conversely, ds(to) is completely independent of f;.)

Suppose though that in the jth contact, body Aisinvolved. For definiteness, suppose that in the
jth contact, aforce of jn;(tp) acts on body A, as opposed to — jAj(tg). Let's derive how Pa(to) is
affected by the force ji;(tp) acting on A.

From equation (C-12), we can write

Pa(t) = va(t) + wa(t) X ra(t) + wa(t) x (wa(t) x ra(t)) (D3

wherera(t) = pa(t) — Xa(t), and Xa(t), va(t), and w4 (t) are dl the variables associated with body
A. We know that v,4(t) isthe linear acceleration of body A, and isequal to the total force acting on
A divided by the mass. Thus, aforce of jfi;(tp) contributes

fifjto) _ f_ﬁj(to)
My P m,
to va(t) and thus pa(t). Similarly, consider wa(t), from equation (C-10):

(D-4)

wa(t) = 1710 Ta(t) + 1710 (La(t) x wa(t))

where t4(t) is the total torque acting on body A. If the jth contact occurs at the point p;, then the
force jn;(tp) exerts atorque of

(Pj — Xa(to)) x fjn;(to).

Thus, the angular contribution to pa(to) is

fi (131 (to) ((pj — Xa(to)) x Aj(tp))) x ra. (D-5)

The total dependence of Pa(tp) on f; istherefore

Ai(t
f (% + (12" (o) ((pj = Xat0)) x Aj(to))) x ra) '

a

SIGGRAPH 2001 COURSE NOTES G62 PHYSICALLY BASED MODELING

Now, if aforce of — f;A(tp) had acted on A instead, we'd get the same dependence, but with aminus
signin front of f;. Clearly, Py (tp) depends on f; in the same sort of manner. Once we compute
how Pa(to) and Py (to) depend on fj, we combine the results together and take the dot product with
fii (to), to see how di (to) depends on f;. Thisgives us ajj. Confused? See the code below.

We still need to compute b;. We know that di (t) contains the constant term

26i (to) - (Pa(to) — Pu(to)).

But we aso have to take into account the contributions to pa(tg) and Py (ty) due to known ex-
ternal forces such as gravity, as well as the force-independent terms wa(tg) x (wa(ty) x ra) and
(17 1(to) (La(to) x wa(tp))) x ra. If we let the net external force acting on A be Fa(tp), and the net
external torque be z;(tp), then from equations (D—4) and (D-5), weget that F4(tg) contributes

Fa(to)
My

and that 74(tg) contributes

(121 (to)a(to)) X ra.
Thus, the part of Pa(tp) that isindependent from al the f;’sis

Fa(to)

a

+ (121 (to)Ta(to)) X ra+ walto) x (wa(to) x ra) + (151 (to) (La(to) x wa(to))) x ra

and similarly for fip(tp). To compute bj, we combine the constant parts of pa(to), Pr(to), dot with
fi (to), and add the term 2f; (to) « (Pa(to) — Po(to)).

SIGGRAPH 2001 COURSE NOTES G63 PHYSICALLY BASED MODELING

D.2 Code

Here's the code to implement the above derivations. Let’s start by computing the constant b; terms.

/* return the derivative of the nornmal vector */
triple conmputeNdot (Contact *c)

{
i f(c->vf) /* vertex/face contact */
{
/* The vector ‘n’ is attached to B, so... */
return c->b->onega ~ c->n;
}
el se
{
/* Thisis alittle trickier. The unit normal ‘n’ is
A — -a x eb
— jJea x ep|-
Differentiating A with respect to tine is left
as an exercise... but here's sone code */
triple eadot = c->a->onega =~ ea, [* e */
ebdot = c->b->onega ~ eb; [* ép */
nl = ea * eb,
z = eadot * eb + ea * ebdot;
double | = length(nl);
nl = nl / |ength; [* normalize */
return (z - ((z *n) *n)) / |;
}
}

voi d conpute_b_vector(Contact contacts[], int ncontacts, vector &b)

{
for(int i = 0; i < ncontacts; i++)
{
Contact *c = &contacts[i];
Body *A = c->a,

*B = c->b;

triple n = c->n, [* fi(tg) */
ra = c->p - A->X, I* p—Xa(ty) */
rb = c->p - B->x; [* p—xp(tg) */

/* Get the external forces and torques */
triple f_ext_a = A->force,

f _ext_b = B->force,

t _ext _a A- >t or que,

SIGGRAPH 2001 COURSE NOTES G64 PHYSICALLY BASED MODELING

}

t _ext_b = B->torque;

triple a ext_part, a_vel part,
b_ext_part, b_vel part;

/* Qperators: ‘"’ is for cross product, ‘*', is for
dot products (between two triples), or matri x-vector
mul tiplication (between a matrix and a triple). */

/* Conpute the part of pa(ty) due to the external
force and torque, and simlarly for py(tg). */

a_ext_part =

b ext part =

[* Conpute the part of pa(tp) due to velocity,
and simlarly for py(tg). */

a_vel _part = (A->onega = (A->onmega "~ ra)) +
((A->linv * (A->L = A->onega)) ~ ra);

b _vel _part = (B->onega = (B->onega " rb)) +
((B->linv * (B->L ~ B->omega)) ~ rb);

/* Combi ne the above results, and dot with fi(ty) */
double k1 =n * ((a_ext_part + a vel _part) -

(b_ext_part + b_vel part));
triple ndot = conputeNdot(c);

/* See section 8 for ‘pt_velocity definition */
double k2 = 2 * ndot * (pt_velocity(A c->p) -
pt _velocity(B, c->p));

b[i] = k1 + k2;

Computing the a;j terms is a little more tricky, because we have to keep track of how the jth
contact force affects the ith contact point. The following routine is not the most efficient way to do
things, because with a good data structure, you can tell in advance which of the a;j’'s are going to
be zero. Still unless you' re working with really huge numbers of contacts, not too much extrawork

will be done.

SIGGRAPH 2001 COURSE NOTES G65 PHYSICALLY BASED MODELING

f ext_a/ A->mass + ((A->linv * t_ext_a) ~ ra),
f ext_ b/ B->mass + ((B->linv * t_ext_b) ~ rb);

void conpute_a matri x(Contact contacts[],

{
for(int i = 0; i < ncontacts;
for(int j = 0; |
ali,j] = conmpute_aij
}

doubl e compute_aij (Contact ci,

{

int ncontacts, bigmatrix &a)

i ++4)

< ncontacts; j++)

(contacts[i], contacts[j]);

Contact cj)

/* |If the bodies involved in the ith and jth contact are
distinct, then a; is zero. */

if((ci.al=cj.a) & (ci.b!

(ci.a'!'=<cj.b) & (ci.b!
return 0.O0;
Body *A = ci.a,
*B = ci.b;
triple ni = ci.n, /*
nj =cj.n, /*
pi = ci.p, /*
pj =cj.p, 1>
ra = pi - A >Xx,
rb = pi - B->Xx;

/* What force and torque does contact

triple force_on_a = 0,
torque_on_a = 0;

if(cj.a == ci.a)

{
/* force direction of
force on_a nj;

/* torque direction */

cj.b) &&
cj.a))

fi(to) */
Nj(to) */
ith contact point
jth contact point

| ocation */
| ocation */

j exert on body A? */

jth contact force on A */

torque_on_a = (pj - A->x) " nj;
}
else if(cj.b == ci.a)
{
force_on_a = - nj;
torque_on_a = (pj - A->x) ~ nj;
}
SIGGRAPH 2001 COURSE NOTES G66 PHYSICALLY BASED MODELING

/* What force and torque does contact j exert on body B? */
triple force_on_b = 0,
torque_on_b = 0;

if(cj.a ==rci.Db)

{
/* force direction of jth contact force on B */
force_on b = nj;
/* torque direction */
torque_on_ b = (pj - B->x) "~ nj;
}
else if(cj.b == ci.b)
{
force_on_b = - nj;
torque_on_b = (pj - B->x) " nj;
}

/* Now conpute how the jth contact force affects the |linear
and angul ar accel eration of the contact point on body A */

triple a_linear = force_on_a / A->mass,
a_angular = (A->linv * torque_on_a) " ra;

/* Sane for B */

triple b_linear = force_on_b / B->nass,
b _angular = (B->linv * torque_on_b) "~ rb;

return ni * ((a_linear + a_angular) - (b_linear + b_angular));

SIGGRAPH 2001 COURSE NOTES G67 PHYSICALLY BASED MODELING

References

[1]

[2]

[3]

[4]

[3]

6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]
[16]

[17]

D. Baraff. Anaytical methods for dynamic simulation of non-penetrating rigid bodies. In
Computer Graphics (Proc. SGGRAPH), volume 23, pages 223-232. ACM, July 1989.

D. Baraff. Curved surfaces and coherence for non-penetrating rigid body simulation. In
Computer Graphics (Proc. SGGRAPH), volume 24, pages 19-28. ACM, August 1990.

D. Baraff. Fast contact force computation for nonpenetrating rigid bodies. Computer Graphics
(Proc. SGGRAPH), 28:23-34, 1994,

J. Canny. Collision detection for moving polyhedra. |EEE Transactions on Pattern Analysis
and Machine Intelligence, 8(2), 1986.

PA. Cundal. Formulation of athree-dimensional distinct element model—Part 1. A scheme
to represent contacts in a system composed of many polyhedral blocks. International Journal
of Rock Mechanics, Mineral Science and Geomechanics, 25, 1988.

E.G. Gilbert and S.M. Hong. A new agorithm for detecting the collision of moving objects.
In International Conference on Robotics and Automation, pages 8-13. |EEE, 1989.

P. Gill, S. Hammarling, W. Murray, M. Saunders, and M. Wright. User’s guide for LSSOL: A
Fortran package for constrained linear |east-squares and convex quadratic programming. Tech-
nical Report Sol 86-1, Systems Optimization Laboratory, Department of Operations Research,
Stanford University, 1986.

P. Gill, W. Murray, M. Saunders, and M. Wright. User’s guide for QPSOL : A Fortran package
for quadratic programming. Technical Report Sol 84-6, Systems Optimization Laboratory,
Department of Operations Research, Stanford University, 1984.

P. Gill, W. Murray, M. Saunders, and M. Wright. User’s guide for NPSOL: A Fortran package
for nonlinear programming. Technical Report Sol 86-2, Systems Optimization Laboratory,
Department of Operations Research, Stanford University, 1986.

H. Goldstein. Classical Mechanics. Addison-Wesley, Reading, 1983.

W. Meyer. Distance between boxes: Applications to collision detection and clipping. In
International Conference on Raobotics and Automation, pages 597—602. IEEE, 1986.

PM. Moore and J. Wilhelms. Collision detection and reponse for computer animation. In
Computer Graphics (Proc. SGGRAPH), volume 22, pages 289-298. ACM, August 1988.

F.P. Preparata and M.I. Shamos. Computational Geometry. Springer-Verlag, New York, 1985.

W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes. Cambridge
University Press, 1986.

R. Sedgewick. Algorithms. Addison-Wesley, 1983.

K. Shoemake. Animating rotation with quaternion curves. In Computer Graphics (Proc.
S GGRAPH), volume 19, pages 245-254. ACM, July 1985.

B. Von Herzen, A. Barr, and H. Zatz. Geometric collisions for time-dependent parametric
surfaces. In Computer Graphics (Proc. SGGRAPH), volume 24, pages 39-48. ACM, August
1990.

SIGGRAPH 2001 COURSE NOTES G68 PHYSICALLY BASED MODELING

Differential Equation Basics

Andrew Witkin

GRAPH 2001 COURSE NOTES

A Canonical
Differential Equation

e X(t): @ moving point.
e f(x,t): X’svelocity.

Vector Field

Thedifferential
equation

% =f(x,1)

defines a vector
fleld over x.

Integral Curves

Start Here
NN

Pick any starting point,
and follow the vectors.

| nitial Value Problems

Given the starting point,

follow the integral curve.

Euler’'s M ethod

..... o Simplest numerical

solution method
* Discretetime steps

e Bigger steps, bigger
errors.

X(t + At) = x(t) + Atf(X,t)

Problem |: |naccuracy

Error turnsx(t) from a
circleinto the spiral of
your choice.

Problem |1: Instability

to Neptune!

The Midpoint M ethod

a. Compute an Euler step
AX = Atf(x,1)
b. Evaluatef at the midpoint
[(X+AX t+At[

fmia =P 05 [

c. Takeastep using the
midpoint value

X(t +At) = x(t) + Atf 4

More methods...

Euler’s method is 1st Order.
The midpoint method is2nd Order.

Just thetip of theiceberg. See
Numerical Recipesfor more.

Helpful hints:

— Don’t use Euler’s method (you will
anyway.)

— Do use adaptive step size.

Modular | mplementation

e Generic operations:

— Get dim(x)

— Get/set x and t

— Deriv Eval at current (x,t)
 Writesolversin termsof these.

— Re-usable solver code.

— Simplifies model implementation.

Solver I nterface

=
- Dim(state) -

<+—>
Get/Set State

ﬁ
Deriv Eval

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

A Code Fragment

voi d eul erStep(Sys sys, float h) {
float t = getTi me(sys);
vect or <f| oat > x0, deltaX;

t = getTinme(sys),;

X0 = get St at e(sys);

deltaX = derivEval (sys, x0, t);

set St ate(sys, x0 + h*deltaX, t+h);

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

Particle Systems

Andrew:Witkin

Overview

« OnelLousy Particle

e Simplecollisons

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

A Newtonian Particle

e Differential equation: f = ma
e [orces can depend on:
— Position, Velocity, Time

. (X, x,1)

X

m

Second Order Equations

. T(x,x,1) Not in our standard form
X=— - because it has 2nd
m derivatives

ddanew variable, v, toge
Nal -~

pled 1st orc

uations.

SIGGRAPH 2001 COURSE NOTES

Phase Space

Concatenate x and v to make

Dncitinn in Phaco
DI LG O

. N)
wi® 1 FA5e oUaAlC

another 6-vector.

A vanilla 1st-order differential

a's — ala
CuUuUucCcui o .

d5d IO K

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

Particle Structure

Position in
Phase Space

Force Accumul ator

Mass

Solver Interface

Dim(state)

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

Particle Systems

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

Particle System Solver I nterface

Diffeq Solver

Deriv Eval L oop

o Clear forces
— Loop over particles, zero force accumulators.

destination array.

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

e Position/time depen

e Velocity-Dependent

drag

* n-ary

SPrings

SIGGRAPH 2001 COURSE NOTES

PHYSICALLY BASED M ODELING

[] ' -

;
JC

Force Structures

.
,

T ‘Y T,
. o C

LI
neter ogeneous.

~or ce Obj ects:

— black boxes

— point to the particles they influence

— adg

N t

nelr own

‘orces (type d

epend

e Globa

force calculation:

DRI 1C

[]
oS

SIGGRAPH 2001 COURSE NOTES

PHYSICALLY BASED M ODELING

Particle Systems, with forces

partiles| | ime] forces] [rforces] |

v

_ist of fo_r ce

‘ectsto Invoke

Force lLaw:

Particle system

Tgray = MG f

v
m B

Viscous Drag

ForceLaw:
1:drag = _kdragV

Particle system

Damped
Spring

Particle system

X [X
V|V
fof
m

X
Y
f

m

m

Clear Force 2

Accumulators .
functions

P
o

Return [v, f/m,..]
to solver.

SIGGRAPH 2001 COURSE NOTES

Solver Interface

Bouncing off the Walls

'

e Later: rigid body

 Add-onsfor aparticle

ssmulator.

Normal and Tangential Components

Collision Detection

(X -P)MN <¢

NIV <0

. e Within € of the wall.
e Heading In.

Collision Response

Conditionsfor Contac

(X - P)I| <

INVIAVARSSES

e On the wall
* Moving along the wall .
* Pushing against the wall

Contact Force
F' =F+

Thewall pushes back,

cancelling the normal
omponent O

(An example of a
constraint force.)

SIGGRAPH 2001 COURSE NOTES

B3asic 2-D Interaction

Oper ations:

Try thisat home!

simulator—try It.

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

Implicit Methods

David Baraftt.

stability is all stability is all stability is all

* |f your step size Istoo big, your ssmulation
blows up. It isn’t pretty.

e Sometimes you have to make the step size so
small that you never get anyplace.

* Nasty cases. cloth, constrained systems.

stability is all stability is all stability is all

* |f your step size Istoo big, your simulation
blows up. It isn’t pretty.

e Sometimes you have to make the step size so
small that you never get anyplace.

» Nasty cases. cloth, constrained systems.
e Solutions;
—Now: use explosion-resistant methods.
—L_ater: reformulate the problem.

A very simple equation

A 1-D particle governed by x = —kx wherek is
a stiffness constant.

Euler's method has a speed limit

AX = —hkx

VAR
A
|
[
|
e
o |l
S
[
L

X=0
[
[
:
!
:
!
:

=|
HII

IIII IIII!!II I

2

oy

“h= 51K h=1

h> 1/k: oscillate. h > 2/k: explode!

Stiff Equations

* |n more complex systems, step size is limited
by the largest k. One stiff spring can screw it
up for everyone else.

e Systems that have some big k's mixed in are
calledstiff systems.

A Stiff Energy Landscape

Example: particle-on-line

e A particle P in the plane. [fX,fy]
e Interactive “dragging” = /

force f, f,].
e A penalty force [0,—kyj

triesto keep P on the x-

axis.

Example: particle-on-line

e A particle P in the plane. [fX,fy]
* Interactive “dragging” E /

force f, f,].
e A penalty force [0,—kyj

triesto keep P on the x-

axis. [O, —ky]

e Suppose you war? to stay within a miniscule of the
X-axis when you try to pull it off with a huge for€e, .

 How big doexk have to be? Howmall musth be?

Really big k. Really small h.

P

2001 CoURSE NOTES

Really big k. Really small h.

P

Answer: h has to be so small thEtwill
never move more than per step.
Result: Your simulation grinds to a halt.

2001 CoURSE NOTES

Explicit Integration

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

(Explicit) Euler Method

X(to +h) = x(ty) + hX(to)

Implicit Euler Method

X(ty +h) = X(tg) + hX(tg + At)

Implicit Euler for x=—kx

X(t + h) = x(t) + hx(t + h)
= X(t) — hkx(t + h)

_ X(t)
1+ hk

One Step: Implicit vs. Explicit

1
Implicit Euler Step: ~ X(h) = ——
mplicit Euler Step (h) TohK

2001 CoURSE NOTES

d
o

AX(tp) =

Large Systems

X(t) =).((t) = f (X(t))

q§<(to +At) = h f (X(ty + At))

1 f(X(tg) + AX(to))

Implicit Integration

Implicit Integration

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

Implicit Integration (Big Step)

(Linearized) Implicit Integration

).((t) = f (X(t))

AX =hf(Xq+AX)

AX =hf(Xg)+

]

of [
ox

=

Single-Step Implicit Euler Method

AX = hf(Xo)+ %S—LQAX

a ° °
H —h— X(to) X = hX(t
o 2 (o))

. /
v

Nxn sparse matrix

o |Vlatiix structure refilects fiorce-coupling:
(I5))th entryexists i f; depends on X J-

e Conjugate gradient agoeod fiirst cholce

e [sthis alot of work?

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED MODELING

Clothiand Eur
Energy Eunctions

Vichael Kass

GRAPH 2001 COURSE NOTES

Hair Model

Limp hair: Just a set of springs.

P

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

Hair Model

Hair Model

Alternative: More Linear Springs

Difficulty:
Each spring constant affects both
bending and stretching

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

Discretization
Make sure energy independent of sampling.
. 2
Total energy: == %kZ (1-1)

DLD2

Stretch 100%: % E_E

Constant energy implies.

L
kon or k,DIi

Note: High sampling --> stiffness

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

Discretization

N

circle.

/ E=1kS &

Again, constant energy implies:

ot

Clothing

e Start with warp and weft threads.

* Weave them together.

» Add angular springs so threads want
to stay perpendicular.

Cloth Properties

Cloth Resists
e Stretching

e Shearing

e Bending

Warp and Weft directions
are special.

A andB
will move
differently

Rest Mesh Options

Model in 3D
» Clothing already on characters.
e Can directly craft desired 3D shape.
 Annotate warp/wetft directions.
e Clothing probably will not locally flatten.

Model in 2D
e Must put clothing on characters
* Hire a tallor to get the pattern right.
e Sew parts together.
» Clothing guaranteed to flatten locally.
e Greater realism.

Non-flat Cloth

Non-flat cloth is strange stuff:
A baseball with no seams?
Wrinkles give strength?

Clothing cut out of a volume?
Convexities that pop?

\ Even 4 Triangles are over-constrained:
16 rest angles, 8 rest lengths.
24 constraints on 15 dofs.
Must be consistent!

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

Stretch (Continuum Version)

E = K[(S} +))dudy

Shear (Continuum Version)

Bend (Continuum Version)

ChY

%kf(/(+k&)dudy

Discretization

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

Triangle Energy

First, compute the affine transformation
Tthatmaps. T:a - C

b Db
C > C

Triangle Stretch Energy

S =TE)] -1

Now compute the
stretch energy.

Egtretch = %k(SE +S)A

Triangle Shear Energy

Next compute the 6= cos (T (0)-T (V))
shear energy.

S

Triangle Bend Energy

Finally compute the
bend energy.

Rigid Body Dynamics

David Baraftt.

Particle State

X(t) =

X(t)

X(t)

(1)

Vv(t)

Particle Motion

X(1)

/ S

State Derivative

d _dIxMO_ O v(t)
a W= i) H HE(t)/m

Particle Dynamics

State Derivative

[(1)
()

(D)
r (D)

.

==+ BN elements - --

Multiple Particles

ODE solution

ODE solver

voi d Dxdt (doubl e t, double x[],
doubl e xdot[])

Rigid Body State

x(t)

Rigid Body Equation of Motion

X(t)

?

)
2

LI T

-

Net Force

Orientation

We represent orientation as a rotation matrixJr
R(t). Points are transformed from body-space to
world-space as:

p(t) =R(t) pg + X(t)

n

He’s lying. Actually, we use guaternions.

s
world space

SIGGRAPH '99 COURSE NOTES PHYSICALLY BASED M ODELING

Angular Velocity

We represent angular velocity as a vector aft),
which encodes both the axis of the spin and the
speed of the spin.

How are R(t) and a(t) related?

Angular Velocity Definition

F) ot

Angular Velocity

R(t) and a(t) are related by:

0 —w,(t) ay (t)
w,(ty 0 —afl)
—ay () a () 0

= a(t) R(t)

Rigid Body Equation of Motion

1 V(t)

%w(t)DR(t)
F(t)
?

X(t)
R(t)
Mv(t)

20)

%<

Need to relate c(t) and mass distribution to F(t).

Inertia Tensor

O=Ow 1y Iy
o
[|z ZZ

diagonal terms off-diagonal terms

|XX:|\/|I'(y2+z2)oN | :—Ml'xydv
\/ V

Rigid Body Equation of Motion

X(t)
R(t)
Mv(t)

(t)et)

P(t) — linear momentum
L(t) — angular momentum

Net Torque

Inertia Tensors Vary in World Space...

.. but are Constant in Body Space

o o

[(t) = R()! pogyR(t)"

Approximating I, : Bounding Boxes

Pros. Simple.
Cons. Bounding box may not be a good fit.
Inaccurate.

Approximating l,.: Point Samping

Pros; Simple, fairly accurate, no B-rep needed.
Cons. Expensive, requires volume test.

Computing |,,,: Green’s Theorem (2x!)

Pros; Simple, exact, no volumes needed.
Cons. Requires boundary representation.
Code: http://www.acm.org/jgt/papers/Mirtich96

What's in the Course Notes

1. Implementation of Dxdt () for rigid bodies
(bookkeeping, data structures, computations)
2. Quaternions—derivations and code

3. Miscellaneous formulas and examples

4. Derivations for force and torque equations
center of mass, Inertia tensor, rotation
eguations, velocity/acceleration of points

Constrained Dynamics

Andrew:Witkin

BeyendPﬂmsandspHﬂgs

“e

OI JOOpPY SU

— Waysto make inter esting contraptions.

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

A bead on awire

L } . |] .
e Desired benavia

—Thebead can slide freely

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

Penalty Constraints

A\YAa ara aalle N ala aNalalla ala
J \ \/ \J W [\ J W W \JI1 \UJ

bead on the wire?
e Problem:
— Weak springs = goopy

constraints

— Strong springs = neptune
express!

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

[he basictrick (f = mv version)

C|rcle (N V= O)
e Project applleo forcef onto

forcef.: constraint force.
* No tug-of-war, no stiffness.

fr=f +f,

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

Same idea, but...
Curvature (K) hasto match.
K depends on both a and v:

—the faster you're going, the
faster you have to turn.

Calculatef_ toyield a legal
combination of a and v.

Blechh!

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

Now for the Algebra ...

« Fortunately, there’s a general recipe
for calculating the constraint force.

RAPH 2001 COURSE NOTES

Representing Constraints

|. Implicit:
C(x)=|x|-r =0

Maintaining Constraints Differentially

C art with legal positior
and velocity.

Use constraint forcesto
ensure legal curvature.

egal position
egal velocity
egal curvature

Constraint Gradient

Implicit:

Differentiating C gives
a normal vector.
Thisisthedirection

our constraint force
will point in.

SIGGRAPH 2001 COURSE NOTES

Constraint Forces

Constraint force: gradient
vector timesa scalar, A.

Just one unknown to solve

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

C(x(1))

Constraint forceis AN.

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

Example: Point-on-circle

Write down the constraint

Takethederivatives.

Substitute into generic
template, smplify.

HINSNERE

RAPH 2001 COURSE NOTES

Drift and Feedback

* |In principle, clamping C at zero is enough.
e Two problems:

o A feedback term handlesboth problems:
=_- 0 N P. .

C=0

a and [are magic constants.

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

Tinkertoys

ow we know how to ssmulate a bead on a

e Same idea, but...

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

Constrained particle systems

o Particlesystem: a point in state space.
e Multiple constraints:

N

— Legal state: C=0, V1.
— Simultaneous pr 0] ect

— COHSU all O Ce.

constraint gradients.
e Matrix equation.

RAPH 2001 COURSE NOTES

Compact Particle System Notation

q=WQ =X Xz - X0]

q _
long state vector. Q =lful2 il
long forcevector. 1

matrix.

W: M-inver se (element-

wisereciprocal)

Particle System Constraint Equations

Matrix equation for A

IWJITIL = -3¢ - [IW]Q

More Notation

Derivation: just like bead-on-wire.

C = [Cl,Cz,- : -,Cm}
A= [)\11)\21' ' ';)\m}
_oc
J= e
_ 0°C
dgot

How do you implement all this?

« We havea global matrix equation.

« Wewant to bui_Id modelson thefly, just like

AW —W_N
A\ I Uc .

— Each constraint addsits own pieceto
the equation.

atrix Block ach constrair

- contributes one or more
ructure blocksto the matrix.

__[cl | | » Sparsity: many empty
I_C‘IIIIII DHOCK

=

[oc TN III"

Iax : .‘ E NN

B = traint and narti
....- mdmesdetermmeblock

locations.

A HEE EEE J
HEIIEEE EENIEEN
HE Bl == =l =l =
X ES.J58 S&.dSS
C HE NEN SE.JSN EEdEN
Global Stuff MEEEEE EEINS

Global and L ocal

Constraint Structure

Each constraint
st know how

0C 0C

0°C 9°C

to compute these

|_‘E aX]_’ 0X2

OX 10t OX -0t

A

-2l C=|Xxy-Xg| -1

Distance Constraint

Constrained Particle Systems

Fl

\ 4

Added Stuff

Modified Deriv Eval |_oop

— > [FIF[F]| ...

Clear Force Apply forces

Accumulatot
Added Step

X
R clc[C]|...

Compute and apply
Constraint Forces

1

X [X
V|V
ff
m

X
Y
f

m

m

Constraint Force Eval

o After computing ordinary for ces.

— Loop over constraints, assemble

— Add constraint forceto particle
force accumulators.

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

lmpressyour Friends

 Therequirement that constraints not

add or remove energy iscalled the

» a a|Fa¥Wa - N/
\J \J \J LA U TRAW

« TheA'sarecalled Lagrange Multipli

RAPH 2001 COURSE NOTES

A whole other way to doit.

Point-on-circle

Parametric Constraints

Point-on-circle

Parametric:
X =r|cos0,sin 0]

SIGGRAPH 2001 COURSE NOTES

PHYSICALLY BASED M ODELING

Parametric bead-on-wire (f = mv)

N ¢ X Isnot an independent
variable.

X = T+ T f = mv (constrained)

chain rule

combine

or our As before, assumef; pol
ext trick. . thenormal direction, so

TH.=0

from last dide

blam!

rearrange.

Parametric Constraints; Summary

e Generalizations. f = ma, particle systems

e Big advantages:.
—Fewer DOF's.
—Constraints ar e always met.

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

Thingstotry at home:

A

aYataYa Wala |
Uito\U Y (A VV

e A double pendulum.

* A triple pendulum
iuauilulll.

« Simpleinteractivetin

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

Collision and Contact

David Baraftt.

Collision and Contact

We want objects to behave as if they were solid
and not interpenetrate. \When collisions or contacts
occur we need to:

e Detect them.

» Fix them (if they’re wrong).

e Maintain them.

Simulations with Collisions

Simulations with Collisions

Simulations with Collisions

An lllegal State X

Plan 1: Gradual Repair

Plan 2. Backstep

Plan 3: Just Lie About It!

Penalty-Method Approach

Collision Process

A Soft Collision

velocity

o~

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

A Harder Collision

velocity

A Very Hard Collision

velocity

An Infinitely Hard Collision

Impulsive velocity
force 4

Colliding Contact

P,

Resting Contact

A Fcontact

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

X(t), t

Dxdt() for Contacts

l

Update
current
State

v

Collision
detection

Exceptions

Penetration
detected
Esti mate:t .

Discontinuity

Constraint/
friction force
determination

/

Contact point
determination

A

Collision

response

Computing Impulses

Coefficient of Restitution

e p, =-&(0*p,)

P

Computing J

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

Computing J

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

In the Course Notes — Collision
Response

Data structures to represent contacts (found by
the collision detection phase).

Derivations and code for computing the impulse
netween two colliding frictionless bodies for a
narticular coefficient of &.

Code to detect collisions and apply impul ses.

Separating Planes

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

Separating Planes

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

Separating Planes (in 3D)

contact
plane

Does It Really Work?

Y es, but...

 Requires convex decomposition
 Needs gyjooddecomposition:

N\

An Actual Implementation

Coriolis™—rigid body dynamics engine in
Alias|Wavefront'sMaya™

Fast and reliable

Compares pairs of polygons from non-conveg
topologically specifiegpolyhedralusing a

coherence-

nased separating plane approachy

Hierarchica

bounding-box tree to eliminate

most false hits

Resting Contact

A Fcontact

Resting Contact

= AL

Resting Contact: Quadratic Program

r=JwJ’

A, =0ifa,,, >0
Ay =0if 8,5 >0

Rigid Bodies: Same Thing!

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED M ODELING

Cloth/Fur Collision Detection

dynamic
® :
particle

(outside)

Cloth/Fur Collision Detection

o dynamic

particle

Leaf-level Bounding Boxes

<
2

Mid-level Bounding Boxes

Root-level Bounding Box

Cloth/Fur: Establishing Contacts

SIGGRAPH 2001 COURSE NOTES

New contacts: generally inside
Too many for partial time steps.
Gradual correction—bad.
Arbitrary displacements—worse

Solution: combine information
about displacements
with implicit step method.

21
T
41

iy

JF UK ViaimtamingrConstiamis

o Penalty force—cloth/cloth contacis
» Exact constraints for cloth/solids:

— Must work with conjugate-
giadient algerthm

—[Cagrange multipliers?
— Change of variables?

SIGGRAPH 2001 COURSE NOTES PHYSICALLY BASED MODELING

