
Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

Lecture 12!
!

Reduction!
!

A few more CUDA issues!
!

Sorting on GPU

1(94)

1(94)

Information Coding / Computer Graphics, ISY, LiTH

Last time!
!

• Coalescing!
!

• Constant memory!
!

• Texture memory

2(94)2(94)

Information Coding / Computer Graphics, ISY, LiTH

The world's simplest demo on
texture memory?!

!
texobjdemo.cu!

!
Simple texture memory example.!

!
Array of numbers, accessed at non-integer

coordinates.

3(94)3(94)

Information Coding / Computer Graphics, ISY, LiTH

1 0 1 0
0.

75
1.

0

0.
50

0.
25

0.
00

0.
25

0.
75

0.
50

0.
25

0.
50

0.
75

1.
0

0.
00

4(94)4(94)

Information Coding / Computer Graphics, ISY, LiTH

Upcoming and ongoing labs!
!

This week: Lab 4: Intro to CUDA, Mandelbrot!
!

then!
!

Lab 5: Image filtering.!
!

Shared memory in focus!!
!

Lab 6: Reduction and sorting with OpenCL.

5(94)5(94)

Information Coding / Computer Graphics, ISY, LiTH

Lecture questions!
!

1) How can you efficiently compute the average
of a dataset with CUDA?!

!
2) In what way does bitonic sort fit the GPU
better than many other sorting algorithms?!

!
3) What is the reason to use pinned memory?!

!
4) What problem does atomics solve?

6(94)6(94)

Information Coding / Computer Graphics, ISY, LiTH

Reduction!
!

Parallelizing problems of limited parallel nature!
!

Problem seen in Kessler 1.3.1.4 and 1.5.2-1.5.4
Global sum.

7(94)7(94)

Information Coding / Computer Graphics, ISY, LiTH

Examples of reduction problems!
!

Extracting small data from larger!
!

• Finding max or min!
!

• Calculating median or average!
!

• Histograms!
!

Common problems!

8(94)8(94)

Information Coding / Computer Graphics, ISY, LiTH

Sequentially trivial!
!

Loop through data!
!

Add/min/max, accumulate results!
!

Fits badly in massive parallelism!

9(94)9(94)

Information Coding / Computer Graphics, ISY, LiTH

Tree-based approach

43

3143

4335 2231

4312 2231535 831

10(94)10(94)

Information Coding / Computer Graphics, ISY, LiTH

In 2D, typically 4-to-1 per level!
!

Pyramid hierarchy

11(94)11(94)

Information Coding / Computer Graphics, ISY, LiTH

Tree-based approach!
!

Each level parallel! Can be split onto large
numbers of threads!

!
but!
!

the parallelism is reduced for each level, and
the results need to be reorganized to a

smaller number of threads!

12(94)12(94)

Information Coding / Computer Graphics, ISY, LiTH

43

3143

4335 2231

4312 2231535 831

4

2

1

8

etc
16

13(94)13(94)

Information Coding / Computer Graphics, ISY, LiTH

Multiple kernel runs for varying size!!
!

For n = k downto 0 do!
Launch 2n kernels!

!

Multiple levels can be merged into one - but not all
of them!

14(94)14(94)

Information Coding / Computer Graphics, ISY, LiTH

Again: You can not synchronize
between blocks!!

!
Not all blocks are

simultaneously active

(Picture by Mark Harris, NVidia)

15(94)15(94)

Information Coding / Computer Graphics, ISY, LiTH

Multiple levels per kernel run for
avoiding overhead

(Picture by Mark Harris, NVidia)

16(94)16(94)

Information Coding / Computer Graphics, ISY, LiTH

Doubly interesting due to study
with many optimizations:!

!
Many possibilities:!

!
• Avoid "if" statements, divergent branches!

• Avoid bank conflicts in shared memory!
• Loop unrolling to avoid loop overhead

(classic old-style optimization!)

17(94)17(94)

Information Coding / Computer Graphics, ISY, LiTH

Huge speed difference reported by Harris

However, some of these optimizations are no longer valid.

18(94)18(94)

Information Coding / Computer Graphics, ISY, LiTH

Alternative: Reduction in many levels,
but making sure idle threads are dense!!

!
With every other thread idle/finished -

half the performance.!
!

With every other warp idle finished -
good performance!

19(94)19(94)

Information Coding / Computer Graphics, ISY, LiTH

Skip every other thread over and over
in same kernel - waste!

20(94)20(94)

Information Coding / Computer Graphics, ISY, LiTH

Keep active threads together - better!

Threads and memory both behave like this for coalescing.

21(94)21(94)

Information Coding / Computer Graphics, ISY, LiTH

Divergent branching =!
!

"if" statements:!
!

Branches can be bad in GPU code!!
!

Why?

22(94)22(94)

Information Coding / Computer Graphics, ISY, LiTH

Divergent branching in SIMD:!
!

All branches execute all code! Data masked
with result of "if".!

!
Warp-level problem!!

!
Can not be avoided within warps if a single

thread gets a different result from others. Can
be avoided if all threads in warp take same

branch

23(94)23(94)

Information Coding / Computer Graphics, ISY, LiTH

if X then 10010110!
|!
| and with 10010110!
|!
else!
|!
| and with 01101001!
|!
endif

if X then 11111111!
|!
| !
|!
else!
|!
| !
|!
endif

Divergent warp Non-divergent warp

Skip

24(94)24(94)

Information Coding / Computer Graphics, ISY, LiTH

Conclusions:!
!

• Multiple kernel runs for varying problem size!
• Multiple kernel runs for synchronizing blocks!
• Optimizing matters! Not only shared memory

and coalescing!

25(94)25(94)

Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

More memory!
!

Managed memory!
!

Atomics!
!

Pinned memory

26(94)

26(94)

Information Coding / Computer Graphics, ISY, LiTH

Managed memory!
!

Makes read/write memory as easy as constant!!
!

New, simpler Hello World!

#include <stdio.h>!
!
const int N = 16; !
const int blocksize = 16; !
!
__global__ !
void hello(char *a, int *b) !
{!
!a[threadIdx.x] += b[threadIdx.x];!
}!
!
__managed__ char a[N] = "Hello \0\0\0\0\0\0";!
__managed__ int b[N] = {15, 10, 6, 0, -11, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

int main()!
{!
!printf("%s", a);!
!dim3 dimBlock(blocksize, 1);!
!dim3 dimGrid(1, 1);!
!hello<<<dimGrid, dimBlock>>>(a, b);!
!cudaDeviceSynchronize(); // Synchronize!
!!
!printf("%s\n", a);!
!return EXIT_SUCCESS;!
}

27(94)27(94)

Information Coding / Computer Graphics, ISY, LiTH

Managed memory!
!

Managed memory must be declared __managed__!
!

Memory accessible both from CPU and GPU. Risk
for racing!!

!
Do not expect performance penalty (but always be

ready for surprises).!
!

Not supported everywhere.

28(94)28(94)

Information Coding / Computer Graphics, ISY, LiTH

Atomic operations!
!

A special memory access method, for avoiding
conflicts and race conditions.!

!
Available in CUDA from Compute model 1.1.!

!
To use it, specify model with!

!
-arch compute_11!

!
(or higher)

29(94)29(94)

Information Coding / Computer Graphics, ISY, LiTH

Example: Histogram!
!

Simple method for gathering statistics about a
set of data. Much data in, little out.!

!
Common in image processing.!

!
for all elements i in a[]!

h[a[i]] += 1

30(94)30(94)

Information Coding / Computer Graphics, ISY, LiTH

Histogram memory conflicts!
!

If you try to parallelize these operations, multiple threads will
write simultaneously at the same item!

!
Non-atomic operations will read h[a[i]], add 1, and write back.

Read

Add 1

Write back

Read

Add 1

Write back

10

11

Read

Add 1

Write back

10

11

Write back11

10

Unknown write order

Add 1
Read

Write unsynchronized values in sequence

31(94)31(94)

Information Coding / Computer Graphics, ISY, LiTH

Solution: Atomics!
!

Read - modify - write in one operation!
!

Guaranteed not to be subject to racing!
!

atomicAdd, atomicSub, atomicExch, atomicMin,
atomicMax, atomicInc, atomicDec, atomicCAS,

atomicAND, atomicOR, atomicXor!
!

More types in Fermi and up

32(94)32(94)

Information Coding / Computer Graphics, ISY, LiTH

But it comes for a cost!!
!

Slower than other operations!
!

Global memory only as of Compute Capability 1.1!
!

Shared memory atomics in modern GPUs.!
!

Simpler but slower than reduction solutions!

33(94)33(94)

Information Coding / Computer Graphics, ISY, LiTH

Example: Find maximum!
!

for all elements i in a[]!
maxValue = max(maxValue, a[i])!

!
Easy? Yes! Parallel? No!!

!
All threads will write to the same memory

element!!
!

Use atomics? Very slow! All write at the same
time, must wait -> sequential performance!!

!
Solution: Use reduction instead!

34(94)34(94)

Information Coding / Computer Graphics, ISY, LiTH

Atomic conclusions!
!

Simplifies some operations!
!

Serializes conflicting operations!
!

Can hurt performance! Don't overuse!

35(94)35(94)

Information Coding / Computer Graphics, ISY, LiTH

More exotic optimizations and tools!
!

Pinned memory!
!

Multiple streams!
!

Not where you start but let's not ignore the
options.

36(94)36(94)

Information Coding / Computer Graphics, ISY, LiTH

Pinned memory!
!

Can boost performance for memory transfer!
!

Page-locked memory!
!

So far: malloc() and cudaMalloc()!
!

New call: cudaHostAlloc()!
!

Allocated page-locked memory! Fixed physical
location!

37(94)37(94)

Information Coding / Computer Graphics, ISY, LiTH

Pinned memory!
!

Page-locked memory is a limited resource!!
!

For non-pinned memory, CUDA copies it internally to page-
locked memory, then DMA to GPU. Transfer time goes up!

Host
Pageable
memory

Pinned
memory

VRAM

Device

Picture
based on
an NVidia
article

Host
Pinned
memory

VRAM

Device

Normal, pageable data transfer Pinned data transfer

38(94)38(94)

Information Coding / Computer Graphics, ISY, LiTH

Pinned memory, streams,
overlapping computation!

!
Pinned memory is part of an optimization
approach with overlapping computations!

!
No longer just a slight speedup of data transfer!!

!
cudaMemCpyAsynch() can copy locked memory

asynchronously!

39(94)39(94)

Information Coding / Computer Graphics, ISY, LiTH

Multiple streams!
!

CUDA commands are placed in a queue, a stream!!
!

These are the same queues as you can post CUDA
events to.!

!
We usually only use the default CUDA stream.!

!
Multiple CUDA streams can be used to overlap work -

especially computing and data transfers!

40(94)40(94)

Information Coding / Computer Graphics, ISY, LiTH

Copy result to CPU

Run kernel
Copy data to GPU

Copy result to CPU

Run kernel
Copy data to GPU

Single stream computation!
!

The kernel can not run until the data
is transferred.!

!
For this example, 2/3 data transfer,

1/3 computation

41(94)41(94)

Information Coding / Computer Graphics, ISY, LiTH

Dual stream computation!
!

While one stream runs a kernel, the
other stream performs data copying,!

!
More time for computing, in this

example kernels are running 1/2 of
the time instead of 1/3.

Copy result to CPU

Run kernel
Copy data to GPU

Copy result to CPU

Run kernel
Copy data to GPU

Copy result to CPU

Run kernel
Copy data to GPU

Copy result to CPU

Run kernel
Copy data to GPU-

-

-

42(94)42(94)

Information Coding / Computer Graphics, ISY, LiTH

Not all devices...!
!

Asynchronous data copying as well as concurrent
execution is not guaranteed...!

!
so make a device query!!

!
CU_DEVICE_ATTRIBUTE_ASYNCH_ENGINE_COUNT:

Can we copy memory asynch?!
!

CU_DEVICE_ATTRIBUTE_CONCURRENT_KERNELS:
Can we run multiple kernels?

43(94)43(94)

Information Coding / Computer Graphics, ISY, LiTH

Debugging CUDA!
!

Let’s get a bit more efficient when your code
doesn’t work!

!
• Catch error codes!

!
• printf() from kernels!

!
• cudagdb

44(94)44(94)

Information Coding / Computer Graphics, ISY, LiTH

Catch those error codes
// Check for errors everywhere	
err = cudaMalloc((void**)&ad, csize);	
// If the GPU won't even take our data we are toasted	
if (err) printf("cudaMalloc %d %s\n", err, cudaGetErrorString(err));	
...		
dim3 dimBlock(blocksize, 1);	
dim3 dimGrid(1, 1);	
hello<<<dimGrid, dimBlock>>>(ad, bd);	
// Most important thing to check? Did the kernel run at all?	
err = cudaPeekAtLastError();	
if (err) printf("cudaPeekAtLastError %d %s\n", err, cudaGetErrorString(err));

and pass them to cudaGetErrorString() for an explanation

45(94)45(94)

Information Coding / Computer Graphics, ISY, LiTH

printf() from kernels!
!

Yes - printf() if legal in a kernel since
Compute Capability 2.0!

!
But don’t try to print 100000 messages per

second...

46(94)46(94)

Information Coding / Computer Graphics, ISY, LiTH

More advanced debugger tools!
!

There are more tools to help you out there!!
!

cudagdb!
!

Variant of the GDB debugger!
!

Allows breakpoints and single-stepping
CUDA kernels!

47(94)47(94)

Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

Sorting on GPUs!
!

Revisiting some algorithms from lecture 6:!
!

Some not-so-good sorting approaches!
!

Bitonic sort!
!

QuickSort!
!

Concurrent kernels and recursion

48(94)

48(94)

Information Coding / Computer Graphics, ISY, LiTH

Adapt to parallel algorithms!
!

Many sorting algorithms are highly sequential!
!

Suitable for parallel implementation?!
!

• Data driven execution!
!

• Data independent execution

49(94)49(94)

Information Coding / Computer Graphics, ISY, LiTH

Data driven execution!
!

Computing pattern depends on data!
!

Usually harder to parallellize!!
!

Example: QuickSort.

50(94)50(94)

Information Coding / Computer Graphics, ISY, LiTH

Data independent execution!
!

Known computing pattern!
!

Easier to parallellize - always the same plan!
!

Example: Bitonic sort

51(94)51(94)

Information Coding / Computer Graphics, ISY, LiTH

Bubble sort!
!

Loop through data, compare neighbors!
!

Extremely sequential!
!

Inefficient!
!

Parallel version: Bubble sort with odd-even transposition method!
!

Compare all items pairwise!
!

Two phases, ”odd phase” and ”even phase” (shifted one step)

52(94)52(94)

Information Coding / Computer Graphics, ISY, LiTH

Bubble sort, parallel version!
!

Bubble sort with odd-even transposition method!
!

Compare all items pairwise!
!

Two phases, ”odd phase” and ”even phase” (shifted one step)!
!

Fully sorted after n phases

Even phase

O(n2)

Odd phase

53(94)53(94)

Information Coding / Computer Graphics, ISY, LiTH

Suitable for GPU?!
!

Not as bad as it seems at first look:!
!

• Data independent!
!

• Excellent locality!
!

• Appears to have possibilities to use shared memory but
with some costly transfers at edges between blocks.!

!
• But certainly not optimal at very large sizes!

!
”Better” algorithms don’t necessary beat this all that easily!

54(94)54(94)

Information Coding / Computer Graphics, ISY, LiTH

Rank sort!
!

Count number of items that are smaller!
!

Easy to parallelize:!
!

• One thread per item!
!

• Loop through entire data!
!

• Store in index decided from count of number of smaller items.

55(94)55(94)

Information Coding / Computer Graphics, ISY, LiTH

Suitable for GPU?!
!

Again, not as bad as it seems at first look:!
!

• Data independent!
!

• Excellent locality - especially good for broadcasting (e.g.
constant memory). Also suitable for shared memory.!

!
• Again, O(n2): Will grow at very large sizes!

!
!

Two bad ones that are not quite as bad as they seem.!
!

N parallel iterations may beat NlogN sequential ones!

56(94)56(94)

Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort!
!

(As described in Kessler 2.3)!
!

Bitonic set: Two monotonic parts in different direction.!
!
!
!
!

1
4

7
8

11
12

14
13

10
9

6
5

3
2

57(94)57(94)

Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort!
!

(According to Batcher:) Let a be a bitonic set with a maximum at
k, consisting of two monotonic parts, one increasing, a- (from

item 1 to k) and one decreasing, a+ (k+1 to n)!
!

Then two new sets can be constructed as!
!

a’ = min(a1, ak+1), min(a2, ak+2)…!
a” = max(a1, ak+1), max(a2, ak+2)…!

!
These two sets are also bitonic and max(a’) ≤ min(a”)!

a”
a’a- a+

58(94)58(94)

Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort by divide-and-
conquer!

!
Bitonic sort works on a bitonic sequence:

partially sorted!
!

The parts must be sorted. Sort them by
bitonic sort!

59(94)59(94)

Information Coding / Computer Graphics, ISY, LiTH

7
1
8
3
5
6
2
4

1
7
8
3
5
6
4
2

1
3
8
7
5
6
4
2

1
3
7
8
6
5
4
2

1
3
4
2
6
5
7
8

1
2
4
3
6
5
7
8

1
2
3
4
5
6
7
8

Bitonic sort example

Bitonic sort of
smaller parts

Reverse parts
(bitonic merge)

Bitonic sort of main
part

Reverse parts
(bitonic merge)

60(94)60(94)

Information Coding / Computer Graphics, ISY, LiTH

Bigger example!
!

The problem scales nicely, uniformly

More stages gives longer stages
(Image inspired by one from Wikipedia)

61(94)61(94)

Information Coding / Computer Graphics, ISY, LiTH

15!
12!
1!
3!
16!
9!
13!
8!
10!
6!
7!
5!
14!
4!
2!
11

12!
15!
3!
1!
9!
16!
13!
8!
6!
10!
7!
5!
4!
14!
11!
2

3!
1!
12!
15!
13!
16!
9!
8!
6!
5!
7!
10!
11!
14!
4!
2

1!
3!
12!
15!
16!
13!
9!
8!
5!
6!
7!
10!
14!
11!
4!
2

1!
3!
9!
8!
16!
13!
12!
15!
14!
11!
7!
10!
5!
6!
4!
2

1!
3!
9!
8!
12!
13!
16!
15!
14!
11!
7!
10!
5!
6!
4!
2

1!
3!
8!
9!
12!
13!
15!
16!
14!
11!
10!
7!
6!
5!
4!
2

1!
3!
8!
7!
6!
5!
4!
2!
14!
11!
10!
9!
12!
13!
15!
16

1!
3!
4!
2!
6!
5!
8!
7!
12!
11!
10!
9!
14!
13!
15!
16

1!
2!
4!
3!
6!
5!
8!
7!
10!
9!
12!
11!
14!
13!
15!
16

1!
2!
3!
4!
5!
6!
7!
8!
9!
10!
11!
12!
13!
14!
15!
16

62(94)62(94)

Information Coding / Computer Graphics, ISY, LiTH

Get those steps right!
!

Step length!
!

Step direction!
!

Comparison direction!
!

Calculated from stage number and stage
length

63(94)63(94)

Information Coding / Computer Graphics, ISY, LiTH

Code examples!
!

Sequential:!
!

Recursive example!
!

Iterative example!
!

Parallel:!
!

CUDA example (not optimized)

64(94)64(94)

Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort!
!

• Data independent, no worst case!
!

• Fast: O(n·log2n) (Why?)!
!

• Good locality in some parts!
!

but!
!

• Big leaps in addressing for some parts

65(94)65(94)

Information Coding / Computer Graphics, ISY, LiTH

What about those big leaps?!
!

Small leaps: Can be computed within one block.
Shared memory friendly.!

!
Big leaps (>number of threads/block): No
synchronization possible between blocks!!

!
But we must synchronize!!

!
-> multiple kernel runs!

66(94)66(94)

Information Coding / Computer Graphics, ISY, LiTH

QuickSort!
!

Very popular algorithm for sequential implementation

Choose pivot

Compare to pivot, form
two subsets, repeat

Data driven, data dependent reorganization, non-uniform!
!
Fancy name - nobody expect QuickSort to be nothing but optimal

67(94)67(94)

Information Coding / Computer Graphics, ISY, LiTH

QuickSort is!
!

Fast: O(n·logn) in typical cases!
!

O(n2) in the worst case!
!

Data driven, data dependent reorganization, non-uniform

68(94)68(94)

Information Coding / Computer Graphics, ISY, LiTH

QuickSort on GPU!
!

Initially ignored as impractical!
!

CUDA implementations exist!
!

Data driven approaches increasingly suitable as
GPUs become more flexible

69(94)69(94)

Information Coding / Computer Graphics, ISY, LiTH

Parallel QuickSort!
!

Several stages to consider:!
!

• Pivot selection. Usually just grab one.!
!

• Comparisons!
!

• Partitioning!
!

• Concatenate result

70(94)70(94)

Information Coding / Computer Graphics, ISY, LiTH

Pivot selection!
!

If we could always pick a pivot that splits the data in half…

That would be greeat…

71(94)71(94)

Information Coding / Computer Graphics, ISY, LiTH

but you can’t do that without sorting! (Or a
histogram.) But how about a random one?

There is a worst case caused by bad pivots. Live with it!

72(94)72(94)

Information Coding / Computer Graphics, ISY, LiTH

Comparisons!
!

Easy to parallelize!
!

One thread per comparison not unreasonable!
(GPUs don’t have a problem with many threads!)!

!
No problem!

73(94)73(94)

Information Coding / Computer Graphics, ISY, LiTH

Partitioning!
!

The big problem!!
!

Sequential partitioning: Bad!!
!

Parallel partitioning 1: Atomic fetch & increment.
(GPUs have atomics!)!

!
Parallel partitioning 2: Divide and conquer

74(94)74(94)

Information Coding / Computer Graphics, ISY, LiTH

In-place sorting not feasible!
!

Split to two list of same size as original. Massive
number of threads!!

!
Then we must pack to smaller size.

A B C D E F G H

A C D F H B E G

75(94)75(94)

Information Coding / Computer Graphics, ISY, LiTH

Packing to smaller size not trivial!
!

Data dependent!
!

Use parallel prefix sum to create a look-up table for
addressing. (Kessler 1.6.3)!

!
Computes sum of all previous items.

76(94)76(94)

Information Coding / Computer Graphics, ISY, LiTH

#1 #2 #3 #4 #5 #6 #7 #8

#1 #1+2 #3 #3+4 #5 #5+6 #7 #7+8

#1 #1+2 #3 #1..4 #5 #5+6 #7 #5..8

#1 #1+2 #3 #1..4 #5 #5+6 #7 #1..8

#1 0 #3 #1+2 #5 #1..4 #7 #1..6

#1 #1+2 #3 0 #5 #5+6 #7 #1..4

#1 #1+2 #3 #1..4 #5 #5+6 #7 0

#1 #1+2 #3 #1..4 #5 #5+6 #7 #1..8

Zero

Zero

Zero

0 #1 #1+2 #1..3 #1..4 #1..5 #1..6 #1..7

Zero

Parallel prefix sum!
!

Similar to reduction but full output.

77(94)77(94)

Information Coding / Computer Graphics, ISY, LiTH

3 0 8 9 4 18 2 23

3 9 8 0 4 5 2 18

3 9 8 18 4 5 2 0

3 9 8 18 4 5 2 30

0 3 9 17 18 22 23 25

Zero

Zero

Zero

Zero

3 6 8 1 4 1 2 5

3 9 8 9 4 5 2 7

3 9 8 18 4 5 2 12

3 9 8 18 4 5 2 30

Parallel prefix sum!
!

Example

78(94)78(94)

Information Coding / Computer Graphics, ISY, LiTH

0 0 1 1 0 3 1 3

0 1 1 0 0 0 1 3

0 1 1 3 0 0 1 0

0 1 1 3 0 0 1 4

0 0 1 2 3 3 3 4

Zero

Zero

Zero

Zero

0 1 1 1 0 0 1 0

0 1 1 2 0 0 1 1

0 1 1 3 0 0 1 1

0 1 1 3 0 0 1 4

For sorting: Binary parallel prefix sum

79(94)79(94)

Information Coding / Computer Graphics, ISY, LiTH

Parallel prefix sum on GPU!
!

• No reason to use few threads. Use as many as
you have output items.!

!
• Multiple kernel runs to adapt to problem size

variation.!
!

• As described above, non-coalesced. Pack
intermediate values for coalescing. If using shared

memory, risk of bank conflicts. [Capannini]

80(94)80(94)

Information Coding / Computer Graphics, ISY, LiTH

See also Kessler Ch 2

Thus, QuickSort is not impossible, but more complex than
before.!

!
Note:!
!

GPUs have Compare-And-Swap atomics!!
!

GPUs favor massive numbers of threads. One thread per
comparison is more than OK!!

!
Implementations available. Example:!

!
https://sourceforge.net/projects/cuda-quicksort/

81(94)81(94)

Information Coding / Computer Graphics, ISY, LiTH

Recursion!
!

GPUs can’t do recursion efficiently… or can they?!
!

Since Kepler we have concurrent kernels!
!

Not only a matter of launching kernels from CPU!!
!

A kernel can spawn new kernels!!
!

Do recursion by spawning new kernels!

82(94)82(94)

Information Coding / Computer Graphics, ISY, LiTH

Concurrent kernels, Dynamic Parallelism!
!

Less work for the CPU to manage the computation.

83(94)83(94)

Information Coding / Computer Graphics, ISY, LiTH

Recursion can look like this:

Source: http://blogs.nvidia.com/blog/2012/09/12/how-tesla-k20-
speeds-up-quicksort-a-familiar-comp-sci-code/

But… does this really
do a good job on
partitioning?

84(94)84(94)

Information Coding / Computer Graphics, ISY, LiTH

Advantages!
!

• Less work for CPU!
!

• Less synchronizing (from CPU side)!
!

• Easier programming!

They claim it matters
this much (but your
milage will vary)

85(94)85(94)

Information Coding / Computer Graphics, ISY, LiTH

Recursive CUDA kernels, a significant
improvement

86(94)86(94)

Information Coding / Computer Graphics, ISY, LiTH

Other non-trivial algorithms!
!

FFT, Fast Fourier Transform!
!

Distance transform!
!

Fractal Brownian Motion

87(94)87(94)

Information Coding / Computer Graphics, ISY, LiTH

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 0

0

0

0

0

0

0

0

0

1

2

3

4

5

6

7

0

0

0

0

0

2

4

6

0

0

0

0

0

2

4

6

0

0

0

4

0

0

0

4

0

0

0

4

0

0

0

4

0

8

4

12

2

10

6

14

1

9

5

13

3

11

7

15

stage 1 stage 2 stage 3 stage 4

Epoch

Fast Fourier Transform!
!

Based on a sequence of "butterflies"!
!

Similarily to Bitonic sort, can be computed several stage
in one run for the "smaller" stages

88(94)88(94)

Information Coding / Computer Graphics, ISY, LiTH

Distance transform!
!

Fast and simple version by Danielsson 1980: "Jump
flooding"!

!
Makes "jumps" of various length

Every "jump"
need to be one

kernel run!

89(94)89(94)

Information Coding / Computer Graphics, ISY, LiTH

Fractal Brownian Motion!
!

Used for e.g. realistic looking procedural terrains!
!

Among other methods:!
!

• Diamond-square!
!

• Multi-pass Perlin noise

90(94)90(94)

Information Coding / Computer Graphics, ISY, LiTH

Diamond-square algorithm!
!

1) Midpoint from corners!
!

2) Edge from corners and midpoints

Repeat to
desired

resolution

91(94)91(94)

Information Coding / Computer Graphics, ISY, LiTH

Multi-pass Perlin noise!
!

Theoretically slower than Diamond-square!
!

BUT!
!

can be computed by independent threads! One
kernel run!

Single octave!
!

Needs log N passes of
different frequency

92(94)92(94)

Information Coding / Computer Graphics, ISY, LiTH

Conclusion!
!

Algorithms with dependency in computed data
often need multiple kernel runs.!

!
This is an extra cost!!

!
Does it pay when the computational complexity is

lower?

93(94)93(94)

Information Coding / Computer Graphics, ISY, LiTH

That's all folks!

94(94)94(94)

