
Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

Lecture 11!
!

More CUDA

1(77)

1(77)

Information Coding / Computer Graphics, ISY, LiTH

In this episode...!
!

• Error checking!
!

• Query device capabilities!
!

• CUDA events!
!

• More on CUDA memory:!
!

Coalescing, Constant memory, Texture memory...

2(77)2(77)

Information Coding / Computer Graphics, ISY, LiTH

Lab 4!
!

This week!!
!

”Mandelbrot revisited” part, to follow up lab 1.

3(77)3(77)

Information Coding / Computer Graphics, ISY, LiTH

The story so far...!
!

• CUDA and its language extensions!
!

• The CUDA architecture!
!

• Intro to memory!
!

• Matrix multiplication example, using
shared memory

4(77)4(77)

Information Coding / Computer Graphics, ISY, LiTH

CUDA and its language extensions!
!

Kernel invocation myKernel<<<>>>()!
!

__global__ __device__ __host__!
!

cudaMalloc(), cudaMemcpy()!
!

threadIdx, blockIdx, blockDim, gridDim!
!

Using nvcc

5(77)5(77)

Information Coding / Computer Graphics, ISY, LiTH

The CUDA architecture!
!

Blocks and threads!
!

Grid-block-thread hierarchy!
!

Indexing data with thread/block numbers

6(77)6(77)

Information Coding / Computer Graphics, ISY, LiTH

Intro to memory!
!

global memory!
!

shared memory!
!

constant memory!
!

local memory!
!

texture memory/texture units!
!

register memory

7(77)7(77)

Information Coding / Computer Graphics, ISY, LiTH

Matrix multiplication example, using
shared memory

Huge speedup - my GPU went from questionable
performance to clearly faster than CPU!

8(77)8(77)

Information Coding / Computer Graphics, ISY, LiTH

Over to today’s episode:

9(77)9(77)

Information Coding / Computer Graphics, ISY, LiTH

Lecture questions:!
!

1. Why can using constant memory improve
performance?!

!
2. What is CUDA Events used for?!

!
3. What does coalescing mean and what should

we do to get a speedup from coalescing?!
!

4. Why can we not synchronize between blocks?

10(77)10(77)

Information Coding / Computer Graphics, ISY, LiTH

Error checking!
!

• Functions returns error codes (but
kernel launch does not)!

!
• cudaGetLastError()!

!
• cudaPeekLastError()!

!
• cudaGetErrorString()

11(77)11(77)

Information Coding / Computer Graphics, ISY, LiTH

Asynchronous error
checking!

!
Asynchronous errors can not be returned

by the function call!!
!

Call cudaDeviceSynchronize() and check
the latest error code.

12(77)12(77)

Information Coding / Computer Graphics, ISY, LiTH

Demo hello-error.cu!
!

Extended "Hello World" with!
!

• cudaDeviceSynchronize()!
• cudaGetLastError()!

• cudaGetErrorString()!
!
!

and intentionally correct dimensions.

13(77)13(77)

Information Coding / Computer Graphics, ISY, LiTH

Some synchronization from last time:!
!

__syncthreads() is used inside a kernel.!
Stop thread until all threads in the block reach the

location!!
!

cudaDeviceSynchronize() is used from the host. Wait
until all current kernels finish.!

!
cudaStreamSynchronize() waits until all kernels in a

stream (group of kernels) finish.!
!

No synchronization between blocks!

14(77)14(77)

Information Coding / Computer Graphics, ISY, LiTH

Why no synchronization
between blocks?!

!
Queue of blocks, one SM at a

time.!
!

More blocks than SMs!

Blocks SMs

15(77)15(77)

Information Coding / Computer Graphics, ISY, LiTH

Query devices!
!

You can’t trust all devices to have the same
- or even similar - properties.!

!
New boards may have totally different

properties.!
!

Query CUDA for a list of features using
cudaGetDeviceProperties()

16(77)16(77)

Information Coding / Computer Graphics, ISY, LiTH

Example query result (9400M)!
!

---- Information for GeForce 9400M ----	
Compute capability: 1.1	

Total global memory (VRAM): 259712 kB	
Total constant Mem: 64 kB	

Number of SMs: 2	
Shared mem per SM: 16 kB	
Registers per SM: 8192	
Threads in warp: 32	

Max threads per block: 512	
Max thread dimensions: (512, 512, 64)	
Max grid dimensions: (65535, 65535, 1)

17(77)17(77)

Information Coding / Computer Graphics, ISY, LiTH

Example query result 2 (GT 750M)	
	

---- Information for GeForce GT 750M ----	
Compute capability: 3.0	

Total global memory/VRAM: 2096704 kB	
Total constant Mem: 64 kB	

Number of Streaming Multiprocessors (SM): 2	
Shared mem per SM: 48 kB	
Registers per SM: 65536	

Threads in warp: 32	
Max threads per block: 1024	

Max thread dimensions: (1024, 1024, 64)	
Max grid dimensions: (2147483647, 65535, 65535)

18(77)18(77)

Information Coding / Computer Graphics, ISY, LiTH

What is important?!
!

Compute capability - can this board at all work with
our program?	

	
Amount of shared memory - make sure we fit.	

	
Max threads, max dimensions - make sure we fit.	

	
Threads in warp: If you optimize on warp level.	

	
Number of SMs: Lower bound for blocks

19(77)19(77)

Information Coding / Computer Graphics, ISY, LiTH

Compute capability!
!

Essentially CUDA/architecture version number.!
!

1.0: Original release.!
1.1: Mapped memory, atomic operations.!

1.3: Double support.!
2.0: Fermi.!
3.0: Kepler.!

5.0: Maxwell.!
6.0: Pascal.!
7.5: Turing.!
8.6 Ampère.

Olympen

Asgård

20(77)20(77)

Information Coding / Computer Graphics, ISY, LiTH

21(77)21(77)

Information Coding / Computer Graphics, ISY, LiTH

� "�����$%"�#� ����$�"�#$��
�

��
���(������!�"������#��

���������!"���#� ���� �$�

��'�����# "�� "�#

22(77)22(77)

Information Coding / Computer Graphics, ISY, LiTH

��'&����

���

���

��

��	�

�

�	���

�

�

���	

��#����

����

���

��

��	�

�

�	��

�

�

���	

�%"����

��
�

���

��

���	�

�

�	��

�

�

���	

23(77)23(77)

Information Coding / Computer Graphics, ISY, LiTH

24(77)24(77)

Information Coding / Computer Graphics, ISY, LiTH
���

���

�

�

�

�
���

�

�

�

�

�

�

���

25(77)25(77)

Information Coding / Computer Graphics, ISY, LiTH

Do I care about Compute
capability?!

!
While learning CUDA - not much. Stick to the

basics, it works on all.!
!

But if you write professional CUDA code, of
course.

26(77)26(77)

Information Coding / Computer Graphics, ISY, LiTH

CUDA Events!
!

Timing!!
!

Two ways of timing CUDA programs:!
!

• CPU timer. Synchronize at start and end.!
!

• CUDA Events. Synchronize at end.!
!

Synchronize? Because CUDA runs
asynchronously.

27(77)27(77)

Information Coding / Computer Graphics, ISY, LiTH

CUDA Events API!
!

cudaEventCreate - initialize an event variable!
!

cudaEventRecord - place a marker in the queue!
!

cudaEventSynchronize - wait until all markers
have received values!

!
cudaEventElapsedTime - get the time difference

between two events

28(77)28(77)

Information Coding / Computer Graphics, ISY, LiTH

CUDA memory!
!

Coalescing!
!

Constant memory!
!

Texture memory!
!

Pinned memory

29(77)29(77)

Information Coding / Computer Graphics, ISY, LiTH

We already know…!
!

• Global memory is slow.!
!

• Shared memory is fast and can be used as
”manual cache”!

!
• There were some other kinds of memory...

30(77)30(77)

Information Coding / Computer Graphics, ISY, LiTH

Coalescing!
!

Always access global memory ”in order”!
!

If threads access global memory in order of thread
numbers, performance will be improved!

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Thread

RAM

Good!

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Thread

RAM

Bad!

31(77)31(77)

Information Coding / Computer Graphics, ISY, LiTH

WTF?!
!

How can performance depend on what order I
access my data??? Isn’t it ”random access”?!

!
Yes... You can access in any order you want,

but ordered access helps the GPU to read
more data in one access!!

!
Why? Because the GPU can get much data in

a single transaction, and neighbor threads
are tested for accessing the same area!

32(77)32(77)

Information Coding / Computer Graphics, ISY, LiTH

Coalescing!
!

Example: Assume that we can get 4 data
items per transaction.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Thread

RAM

Good!

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Thread

RAM

Bad!

One access One access
Eight separate accesses

33(77)33(77)

Information Coding / Computer Graphics, ISY, LiTH

Coalescing on Fermi & later!
!

Effect reduced by caches - but not removed. !
!

Coalescing is still needed for maximum
performance.!

!
"A very important performance consideration... is

the coalescing of global memory accesses." (CUDA
C Best Practices Guide 2022)

34(77)34(77)

Information Coding / Computer Graphics, ISY, LiTH

Accelerating by coalescing!
!

Pure memory transfers can be significantly faster by taking
advantage of memory coalescing!!

!
Example: Matrix transpose!

!
No computations!!

!
Only memory accesses.

35(77)35(77)

Information Coding / Computer Graphics, ISY, LiTH

__global__ void transpose_naive(float *odata, float* idata, int width, int height)	
{	
 unsigned int xIndex = blockDim.x * blockIdx.x + threadIdx.x;	
 unsigned int yIndex = blockDim.y * blockIdx.y + threadIdx.y;	
 	
 if (xIndex < width && yIndex < height)	
 {	
 unsigned int index_in = xIndex + width * yIndex;	
 unsigned int index_out = yIndex + height * xIndex;	
 odata[index_out] = idata[index_in]; 	
 }	
}

Matrix transpose!
!

Naive implementation

How can this be bad?

36(77)36(77)

Information Coding / Computer Graphics, ISY, LiTH

Matrix transpose!
!

Coalescing problems

Row-by-row and column-by-column.!
Column accesses non-coalesced!

37(77)37(77)

Information Coding / Computer Graphics, ISY, LiTH

Matrix transpose!
!

Coalescing solution

Read from global memory
to shared memory!

!
In order from global, any

order to shared

Write to global memory!
!

In order write to global,
any order from shared

38(77)38(77)

Information Coding / Computer Graphics, ISY, LiTH

__global__ void transpose(float *odata, float *idata, int width, int height)	
{	
	__shared__ float block[BLOCK_DIM][BLOCK_DIM+1];	
		
	// read the matrix tile into shared memory	
	unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x;	
	unsigned int yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y;	
	if((xIndex < width) && (yIndex < height))	
	{	
		unsigned int index_in = yIndex * width + xIndex;	
		block[threadIdx.y][threadIdx.x] = idata[index_in];	
	}	
	
	__syncthreads();	
	
	// write the transposed matrix tile to global memory	
	xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;	
	yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y;	
	if((xIndex < height) && (yIndex < width))	
	{	
		unsigned int index_out = yIndex * height + xIndex;	
		odata[index_out] = block[threadIdx.x][threadIdx.y];	
	}	
}

Better CUDA matrix transpose kernel

Shared memory for temporary storage

Read data to temporary buffer

Write data to global memory

39(77)39(77)

Information Coding / Computer Graphics, ISY, LiTH

Varying results!
!

My demos tend to give varied results on my laptop GPU.
Yes, I am still searching...!

!
Overall, I get!

!
• usually some speedup for coalescing!

• no noticable speedup from avoiding bank conflicts!
!

Cache effect?!
!

Let's try in the lab on full-scale GPUs!

40(77)40(77)

Information Coding / Computer Graphics, ISY, LiTH

Coalescing rules of thumb!
!

• The data block should start on a multiple of 64!
!

• It should be accessed in order (by thread number)!
!

• It is allowed to have threads skipping their item!
!

• Data should be in blocks of 4, 8 or 16 bytes

41(77)41(77)

Information Coding / Computer Graphics, ISY, LiTH

Shared memory!
!

Split into multiple memory banks (32). Fastest if you
access different banks with each thread!

!
Interleaved, 32 bits chunks!

!
Thus: Address in 32-bit steps between threads for

best performance
Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7

Address space

42(77)42(77)

Information Coding / Computer Graphics, ISY, LiTH

How can I get that?!
!

Introduce a padding, an offset to make the memory
accesses hit different banks

In steps of 8

In steps of 9

43(77)43(77)

Information Coding / Computer Graphics, ISY, LiTH

Constant memory!
!

Sounds boring... but has its uses.!
!

Read-only (for kernels)!
!

__constant__ modifier!
!

Use for input data, obviously

44(77)44(77)

Information Coding / Computer Graphics, ISY, LiTH

45(77)45(77)

Information Coding / Computer Graphics, ISY, LiTH

Benefits of constant memory!
!

• No cudaMemcpy needed! Just use it from kernel,
write from CPU!!

!
• For data read by all threads, significantly faster

than global memory!!
!

• Read-only memory is easy to cache.

46(77)46(77)

Information Coding / Computer Graphics, ISY, LiTH

Why faster access? When?!
!

All (or many) threads reading the same data
simultaneously.!

!
One read can be broadcast to all ”nearby” threads.!

!
Nearby? All threads in same ”half-warp” (16 threads)!

!
But no help if threads are reading different data!

47(77)47(77)

Information Coding / Computer Graphics, ISY, LiTH

Example of using constant memory: Ray-caster!
!

Two demos, "Cuda by example" and "Attack in packs"!
!

With and without using __const__

48(77)48(77)

Information Coding / Computer Graphics, ISY, LiTH

Ray-caster example!
!

Every thread renders one pixel!
!

Loop through all spheres, find closest with intersection!
!

Write result to an image buffer.!
!

Image buffer displayed with OpenGL.!
!

Non-const: Uploads sphere array by cudaMemcpy()!
!

Const: Declares array __const__, uses directly from kernel.
(Slightly simpler code!)

49(77)49(77)

Information Coding / Computer Graphics, ISY, LiTH

Ray-caster example!
!

Resulting time:!
!

Without using const: 31 ms!
!

With const: 25 ms!
!

Significant difference - for something that
simplified the code!

50(77)50(77)

Information Coding / Computer Graphics, ISY, LiTH

Constant memory conclusions!
!

Relatively fast memory access - for the case when
all threads read the same memory simultaneously!!

!
Some advantage for code complexity.!

!
NOT something we use for everything.

51(77)51(77)

Information Coding / Computer Graphics, ISY, LiTH

G80 processor!
hierarchy

Texture memory/ Texture units!
!

Using texture units to access memory

52(77)52(77)

Information Coding / Computer Graphics, ISY, LiTH

Texture memory/ Texture units!
!

Texture memory, yet another kind of memory (or
memory access method)!

!
But didn’t we hide the graphics heritage...?!

!
Access global memory through the texturing

units. Lets CUDA take advantage of the strong
points with texturing units.

53(77)53(77)

Information Coding / Computer Graphics, ISY, LiTH

Texture memory features!
!

Read-only (writable using "surface objects").!
!

Cached! Can be fast if data access patterns are good.!
!

Texture filtering, linear interpolation.!
!

Edge handling.!
!

Especially good for handling 4 floats at a time (float4).!
!

cudaBindTextureToArray() binds data to a texture unit.

54(77)54(77)

Information Coding / Computer Graphics, ISY, LiTH

Texture memory for graphics!
!

Texture data mostly for rendering textures!
!

One texel used by 4 neighbor pixels (when not exact
integer coordinates)!

!
Designed for spatial locality

55(77)55(77)

Information Coding / Computer Graphics, ISY, LiTH

Varying access patterns - but
neighbors are still neighbors!

56(77)56(77)

Information Coding / Computer Graphics, ISY, LiTH

Spatial locality for other things than
textures!

!
Image filters of local nature!

!
Physics simulations with local updates, transfer of

heat, liquids, pressure...!
!

Big jumps, no gain!

57(77)57(77)

Information Coding / Computer Graphics, ISY, LiTH

Using texture memory in CUDA!
!

Allocate with cudaMalloc!
!

Bind to texture unit using cudaBindTexture2D()!
!

Read from data using tex2D()!
!

Drawback: Just like in OpenGL, messy to keep
track of which texture unit/texture reference is

which data.

58(77)58(77)

Information Coding / Computer Graphics, ISY, LiTH

0 1 2-1

0

1

2

-1
0 1 2-1

0

1

2

-1
1

Clamp and repeat

Texture access needs no boundary checks!

59(77)59(77)

Information Coding / Computer Graphics, ISY, LiTH

Clamp and repeat
You are used!

!to this
Now you can!

!get this or this

1 2

3 4

ERROR ERROR ERROR ERROR

ERROR ERROR ERROR ERROR

ERROR

ERROR

ERROR

ERROR

1 2

3 4

1 2

3 4

3 4

1 2

2

4

4

2

1

3

3

1

1

1

1

3

33

2

2

2

4

4 4

60(77)60(77)

Interpolation!
!

Computation tricks when optimizing!
!

Texture access provides hardware accelerated
linear interpolation!!

!
Access texture data on non-integer coordinates

and the texture hardware will do linear
interpolation automatically!!

!
Can be used for many calculations, e.g. filters.

Information Coding / Computer Graphics, ISY, LiTH

Interpolation

Texture accesses and calculations hardware
accelerated!

a b x
B∆a + A∆b

=
A B

∆a = |a-x| ∆b = |b-x|

61(77)61(77)

Information Coding / Computer Graphics, ISY, LiTH

Hardware interpolation too good to be
true...!

!
The interpolation trick sounds kind of useful (for some

cases)... but isn’t as useful as it seems.!
!

Why? It is meant for interpolating between texels,
visually. Small errors is not a problem then! May have

low precision, like 10 steps.!
!

Not as fun then...

62(77)62(77)

Information Coding / Computer Graphics, ISY, LiTH

Demo using texture memory!
!

Heat transfer demo

63(77)63(77)

Information Coding / Computer Graphics, ISY, LiTH

Demo using texture memory!
!

Heat transfer demo!
!

Makes local operations modelling heat dissipation

64(77)64(77)

Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

CUDA-OpenGL Interoperability!
!

Visualize results with OpenGL

CUDA kernel OpenGL!
visualization

65(77)65(77)

Information Coding / Computer Graphics, ISY, LiTH

CUDA and graphics!
!

Simplest way: Pass output from CUDA, typically to an OpenGL texture.!
!

Example: Julia set, Lab 4 Mandelbrot, ray caster...!
!

Good for visualizing results. Better methods exist, without having to
move data to CPU and back.

66(77)66(77)

Information Coding / Computer Graphics, ISY, LiTH

CUDA-OpenGL Interoperability!
!

• Integrate for better performance!!
!

• Possible to visualize without leaving GPU!
!

An output which is not the CPU

67(77)67(77)

Information Coding / Computer Graphics, ISY, LiTH

CUDA!
kernel

OpenGL!
visuali-!
zation

CPU

GPU

No visuali-!
zation

CUDA!
kernel

CPU

GPU

Simple
visualization

OpenGL!
visuali-!
zation

CUDA!
kernel

CPU

GPU

Visualization with
OpenGL

interoperability

68(77)68(77)

Information Coding / Computer Graphics, ISY, LiTH

Steps for interoperability!
!

• Decide what data CUDA will process!
!

• Allocate with OpenGL!
!

• Register with CUDA!
!

• Map buffer to get CUDA pointer!
!

• Pass pointer to CUDA kernel!
!

• Release pointer!
!

• Use result in OpenGL graphics

69(77)69(77)

Information Coding / Computer Graphics, ISY, LiTH

glGenBuffers(1, &positionsVBO);!
glBindBuffer(GL_ARRAY_BUFFER, positionsVBO);!
unsigned int size = NUM_VERTS * 4 * sizeof(float);!
glBufferData(GL_ARRAY_BUFFER, size, NULL, GL_DYNAMIC_DRAW);!
glBindBuffer(GL_ARRAY_BUFFER, 0);!
!
cudaGraphicsGLRegisterBuffer(&positionsVBO_CUDA, positionsVBO,!
cudaGraphicsMapFlagsWriteDiscard);

• Allocate with OpenGL!
!

• Register with CUDA

70(77)70(77)

Information Coding / Computer Graphics, ISY, LiTH

cudaGraphicsMapResources(1, &positionsVBO_CUDA, 0);!
size_t num_bytes;!
cudaGraphicsResourceGetMappedPointer((void**)&positions, &num_bytes,!
positionsVBO_CUDA);printError(NULL, err);!
!
// Execute kernel!
dim3 dimBlock(16, 1, 1);!
dim3 dimGrid(NUM_VERTS / dimBlock.x, 1, 1);!
createVertices<<<dimGrid, dimBlock>>>(positions, anim, NUM_VERTS);!
!
// Unmap buffer object!
cudaGraphicsUnmapResources(1, &positionsVBO_CUDA, 0);

• Map buffer to get CUDA pointer!
!

• Pass pointer to CUDA kernel!
!

• Release pointer

71(77)71(77)

Information Coding / Computer Graphics, ISY, LiTH

// CUDA vertex kernel!
__global__ void createVertices(float4* positions, float time, unsigned int num)!
{ !
!unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;!
!!
!positions[x].w = 1.0;!
!positions[x].z = 0.0;!
!positions[x].x = 0.5*sin(kVarv * (time + x * 2 * 3.14 / num)) * x/num;!
!positions[x].y = 0.5*cos(kVarv * (time + x * 2 * 3.14 / num)) * x/num;!
}

Simple CUDA kernel for
producing vertices for graphics

72(77)72(77)

Information Coding / Computer Graphics, ISY, LiTH

Simple examples:

Just vertices - but you can draw surfaces, compute
textures, use any OpenGL effects (light, materials)

73(77)73(77)

Information Coding / Computer Graphics, ISY, LiTH

But should we use CUDA for OpenGL?!
!

Great for visualizing!
!

Faster than going over CPU!
!

Slower than plain OpenGL for graphics!!
!

and OpenGL has CUDA-like functionality built-in!
(Compute Shaders.) (Later lecture)!

74(77)74(77)

Information Coding / Computer Graphics, ISY, LiTH

Conclusions!
!

CUDA can be coupled closer to OpenGL than the
simple way we have done before!!

!
Moving data back and forth is wastefui, there is

performance to gain!!
!

Some interesting alternatives exist as well.

75(77)75(77)

Information Coding / Computer Graphics, ISY, LiTH

Lecture questions:!
!

1. Why can using constant memory improve
performance?!

!
2. What is CUDA Events used for?!

!
3. What does coalescing mean and what should

we do to get a speedup from coalescing?!
!

4. Why can we not synchronize between blocks?

76(77)76(77)

Information Coding / Computer Graphics, ISY, LiTH

That’s all folks!!
!
!

Next: Sorting on the GPU.

77(77)77(77)

