

Lecture 10

Introduction to CUDA

Ingemar Ragnemalm Information Coding, ISY

Laborations

Lab 4-6 are ready, no changes planned *but* last minute changes may occur.

The "lab questions" are vital! Answers *must* be written down before we can examine you!

Thus - no lab reports needed.

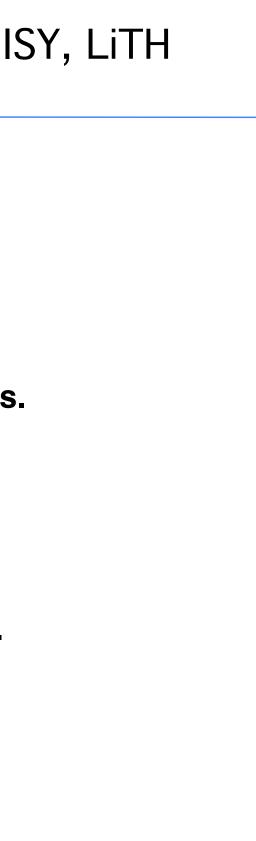
Lecture material

Lecture material available on the web, new and last year's.

The old local course page is obsolete but is linked to

http://computer-graphics.se/TDDD56

The lecture material is linked from the "Lectures" page.

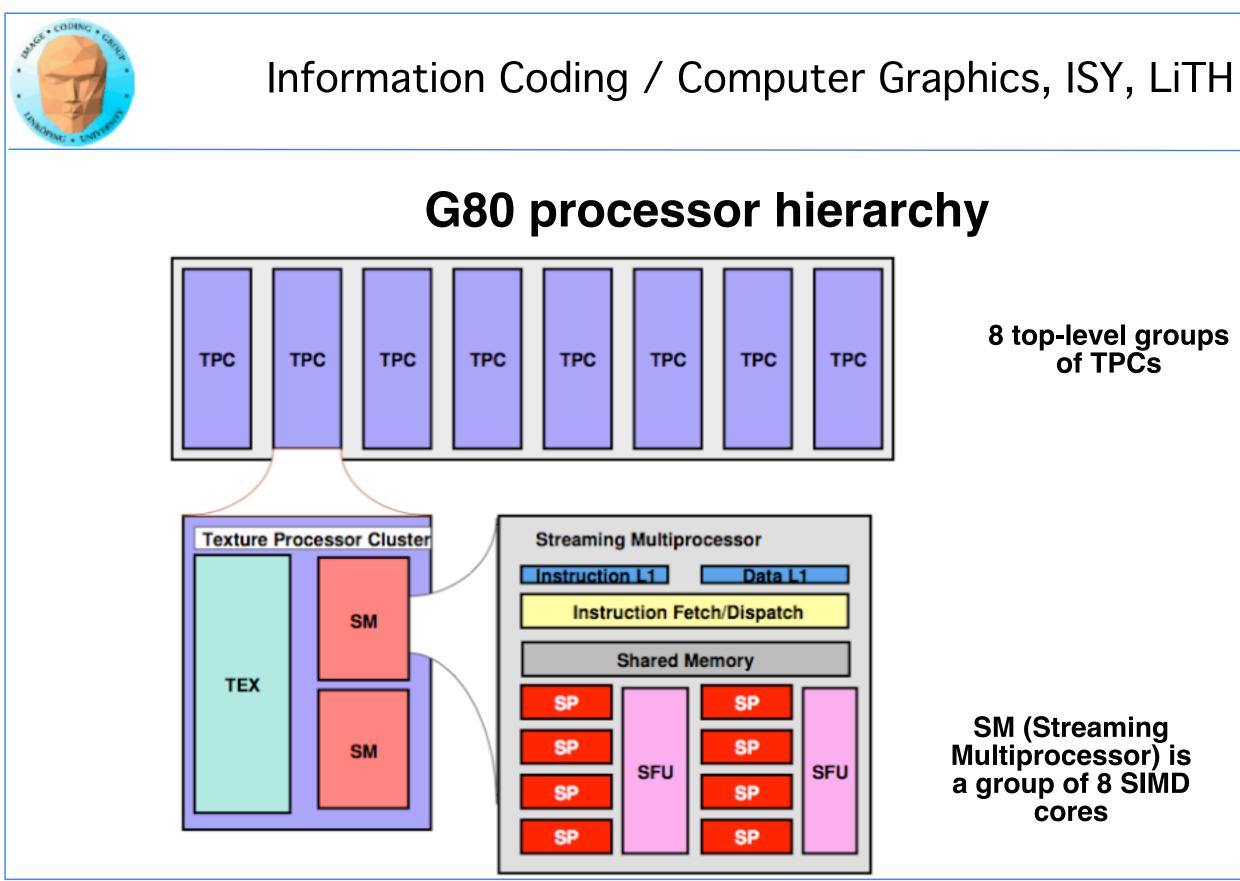


Previous lecture:

GPU development - why did it become a general purpose parallel architecture

GPU architecture

A quick look at GPU coding (Hello World!)



8 top-level groups of TPCs

Multiprocessor) is a group of 8 SIMD cores

This lecture:

CUDA

Programming model and language

Introduction to memory spaces and memory access

Shared memory

Matrix multiplication example

Lecture questions:

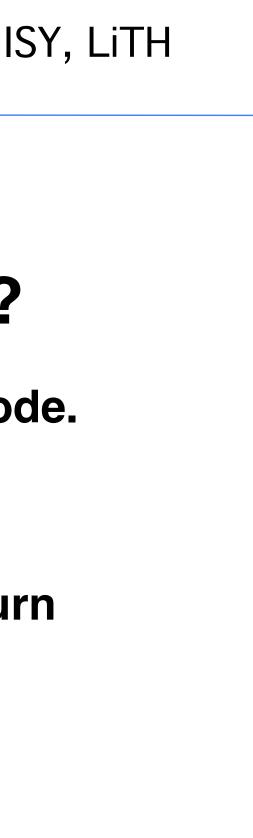
- 1. What concept in CUDA corresponds to a SM (streaming multiprocessor) in the architecture?
 - 2. How does matrix multiplication benefit from using shared memory?
 - 3. When do you typically need to synchronize threads?

Why do we focus on CUDA?

Easiest start! Compact and comfortable code.

Drawback: NVidia only.

We do not forget the alternatives! We return to them later.

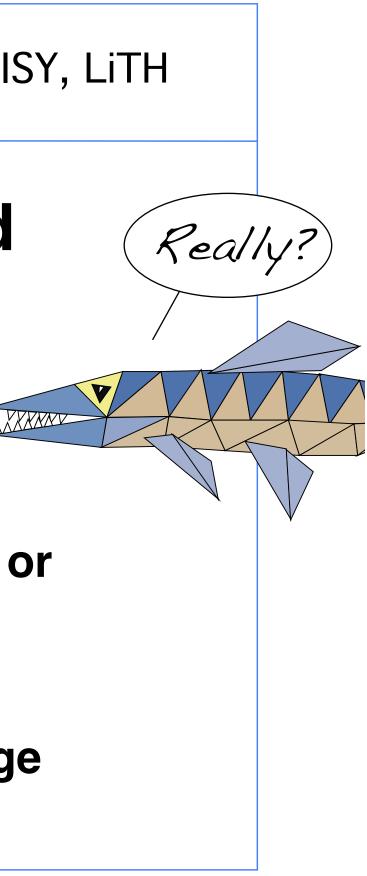


CUDA = Compute Unified Device Architecture

Developed by NVidia

Only available on NVidia boards, G80 or better GPU architecture

Designed to hide the graphics heritage and add control and flexibility



Computing model:

1. Upload data to GPU

2. Execute kernel

3. Download result

Similar to shader-based solutions and **OpenCL**

Integrated source

Source of host and kernel code in the same source file!

Major difference to shaders and OpenCL.

Kernel code identified by special modifiers.

Threads and warps

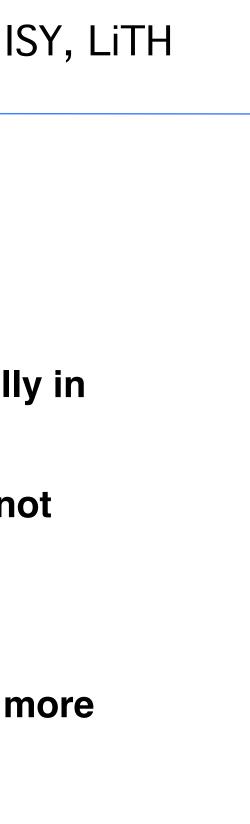
CUDA = Architecture and C extension

Spawn a large number of threads, to be ran virtually in parallel

Just like in graphics! Fragments/computations not quite executed in parallel.

A bunch at a time - a warp.

Looks much more like an ordinary C program! No more "data stored as pixels" - just arrays!



Simple CUDA example

A working, compilable example

#include <stdio.h>

const int N = 16; const int blocksize = 16;

```
__global__
void simple(float *c)
{
 c[threadIdx.x] = threadIdx.x;
}
```

```
int main()
{
 int i;
 float *c = new float[N];
 float *cd;
 const int size = N*sizeof(float);
```

cudaMalloc((void**)&cd, size); dim3 dimBlock(blocksize, 1); dim3 dimGrid(1, 1); simple<<<dimGrid, dimBlock>>>(cd); cudaMemcpy(c, cd, size, cudaMemcpyDeviceToHost); cudaFree(cd);

```
for (i = 0; i < N; i++)
 printf("%f ", c[i]);
printf("\n");
delete[] c;
printf("done\n");
return EXIT_SUCCESS;
}
```


Simple CUDA example

A working, compilable example

```
#include <stdio.h>
```

```
const int N = 16;
const int blocksize = 16;
```

```
Kernel
__global__
void simple(float *c)
{
c[threadIdx.x] = threadIdx.x;
                    thread identifier
}
```

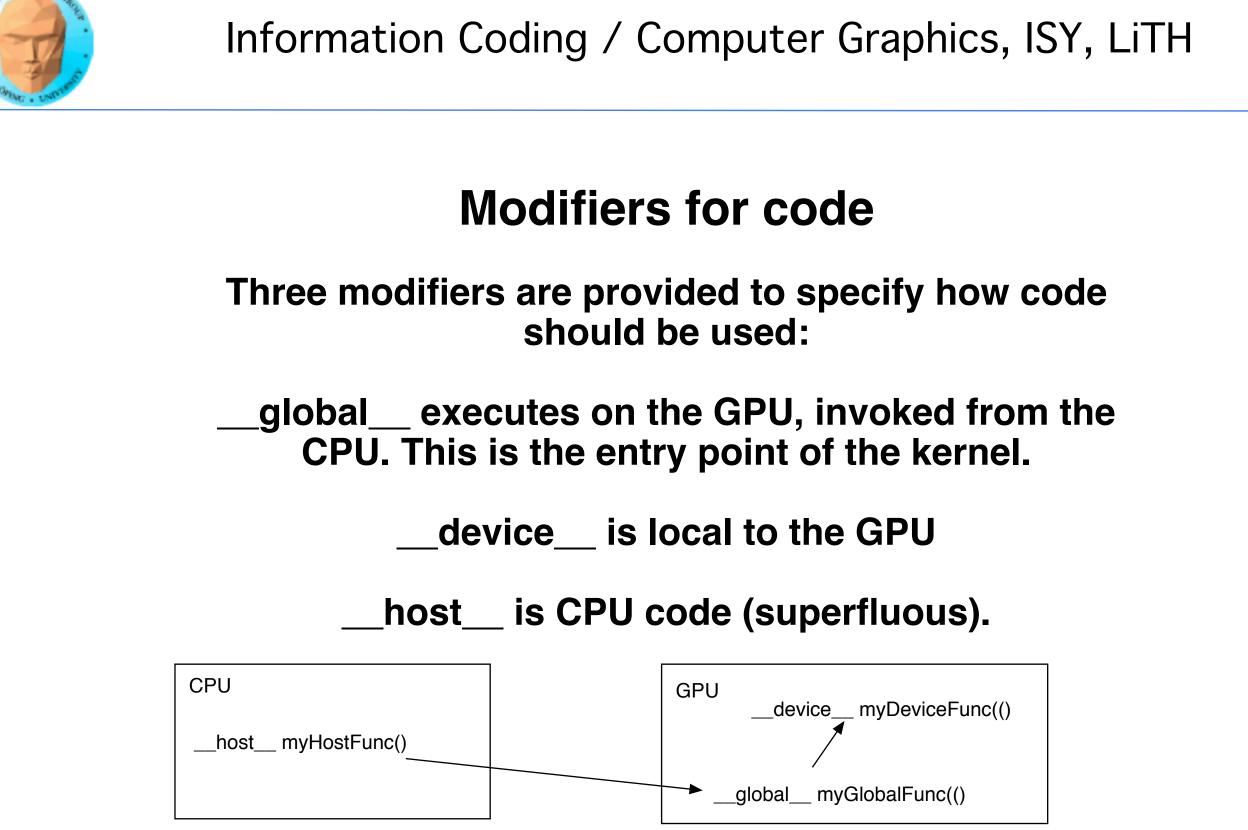
```
int main()
{
int i;
 float *c = new float[N];
 float *cd;
 const int size = N*sizeof(float);
```

```
cudaMalloc( (void**)&cd, size );
dim3 dimBlock( blocksize, 1 );
dim3 dimGrid( 1, 1 );
simple<<<dimGrid, dimBlock>>>(cd);
cudaMemcpy( c, cd, size, cudaMemcpyDeviceToHost );
cudaFree( cd );
```

```
for (i = 0; i < N; i++)
printf("%f ", c[i]);
printf("\n");
delete[] c;
printf("done\n");
return EXIT_SUCCESS;
```

Allocate GPU memory

1 block, 16 threads Call kernel Read back data



Memory management

cudaMalloc(ptr, datasize) cudaFree(ptr)

Similar to CPU memory management, but done by the **CPU to allocate on the GPU**

cudaMemCpy(dest, src, datasize, arg)

arg = cudaMemcpyDeviceToHost or cudaMemcpyHostToDevice

Kernel execution

simple<<<griddim, blockdim>>>(...)

grid = blocks, block = threads

Built-in variables for kernel:

threadIdx and blockIdx *blockDim* and *gridDim*

(Note that no prefix is used, like GLSL does.)

Compiling Cuda

nvcc

nvcc is nvidia's tool, /usr/local/cuda/bin/nvcc

Source files suffixed .cu

Command-line for the simple example:

nvcc simple.cu -o simple

(Command-line options exist for libraries etc)

Compiling Cuda for larger applications

nvcc and gcc in co-operation

nvcc for .cu files

gcc for .c/.cpp etc

Mixing languages possible.

Final linking must include C++ runtime libs.

Example: One C file, one CU file

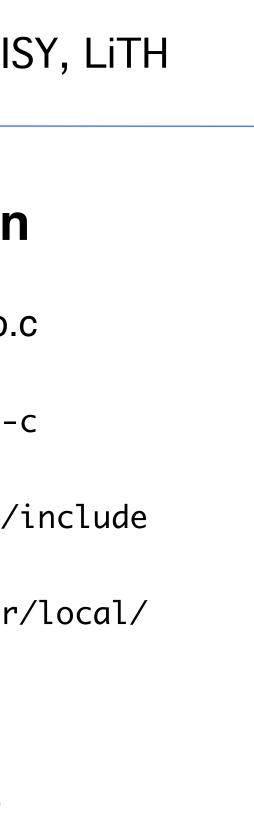
Example of multi-unit compilation

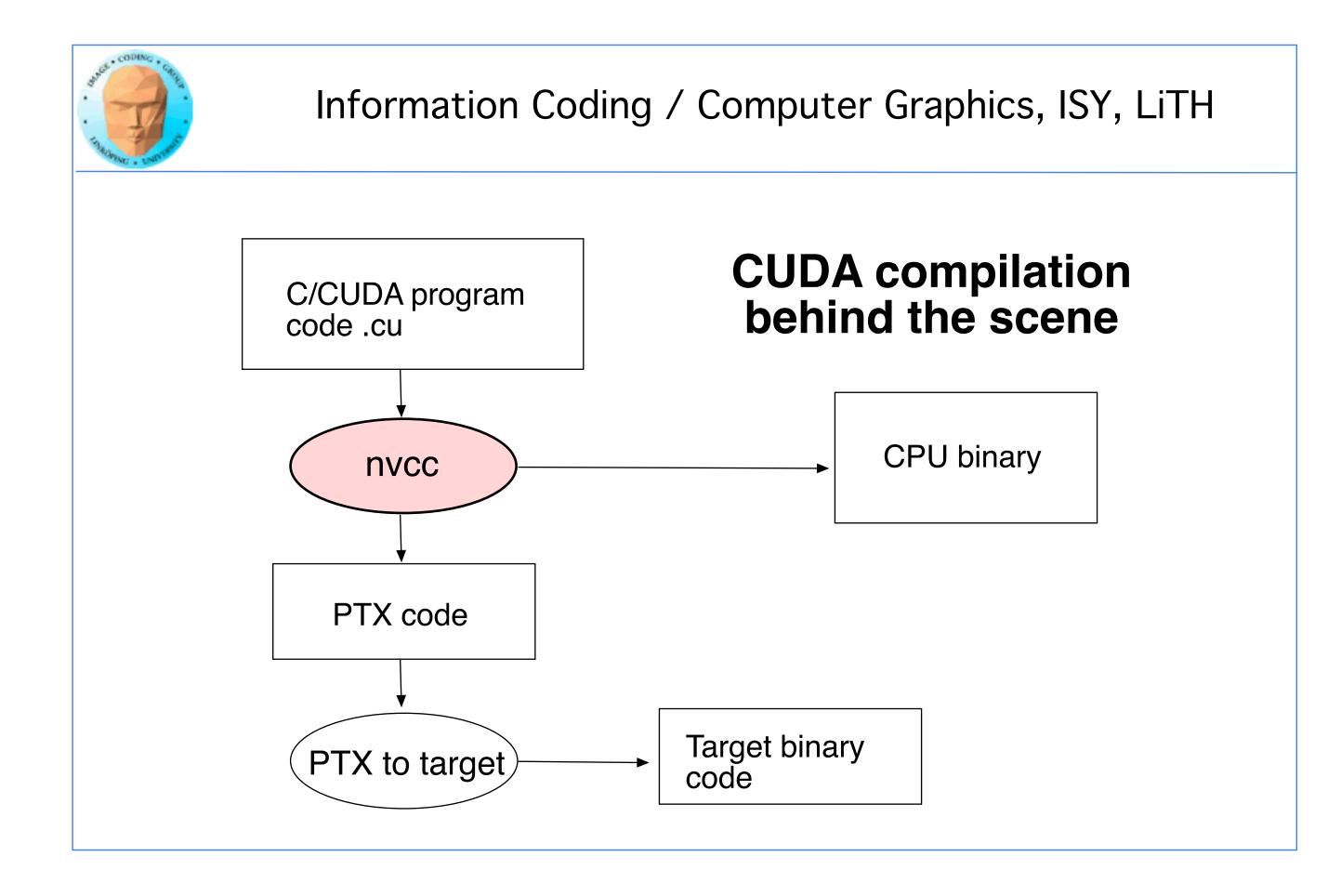
Source files: cudademokernel.cu and cudademo.c

nvcc cudademokernel.cu -o cudademokernel.o -c

gcc -c cudademo.c -o cudademo.o -I/usr/local/cuda/include

Link with g++ to include C++ runtime





Executing a Cuda program

Must set environment variable to find Cuda runtime.

export DYLD_LIBRARY_PATH=/usr/local/cuda/lib:\$DYLD_LIBRARY_PATH

Then run as usual:

./simple

A problem when executing without a shell!

Launch with execve()

Computing with CUDA

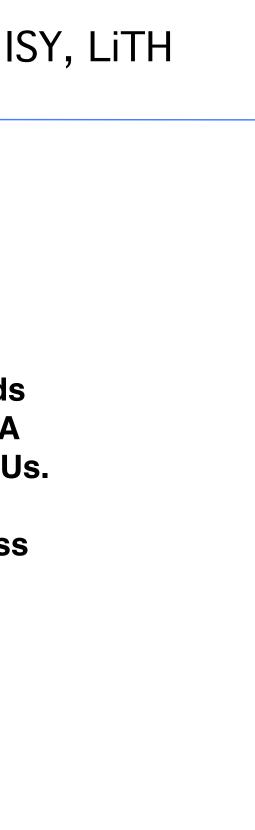
Organization and access

Blocks, threads...

Warps

A warp is the minimum number of data items/threads that will actually be processed in parallel by a CUDA capable device. This number varies with different GPUs.

We usually don't care about warps but rather discuss threads and blocks.



Processing organization

1 warp = 32 threads

1 kernel - 1 grid

1 grid - many blocks

1 block - 1 SM

1 block - many threads

Use many threads and many blocks! > 200 blocks recommended.

Thread # multiple of 32

...almost right

1 block -> 1 SM

but not

1 SM -> 1 block

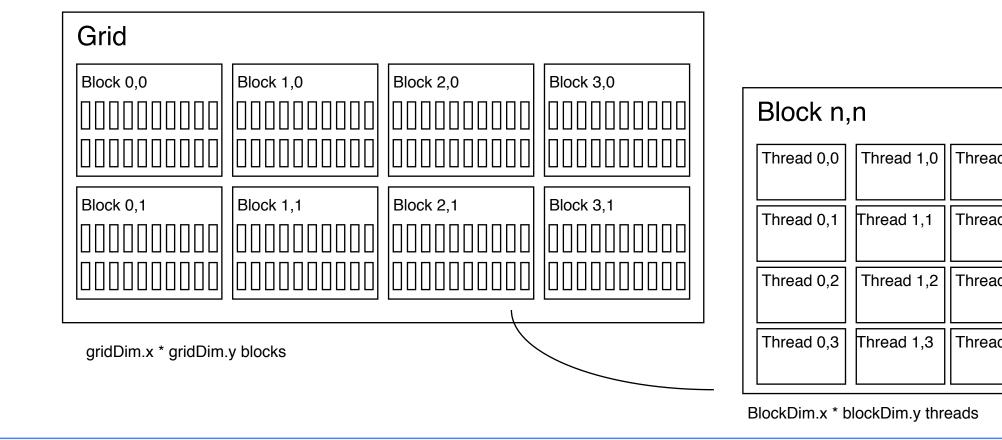
A block is always assigned to one SM, but one SM may run more than one block at a time.



Information Coding / Computer Graphics,

Distributing computing over thread and blocks

Hierarcical model



ISY, LiTH		
s		
		7
d 2,0	Thread 3,0	
d 2,1	Thread 3,1	
d 2,2	Thread 3,2	
d 2,3	Thread 3,3	

Indexing data with thread/block IDs

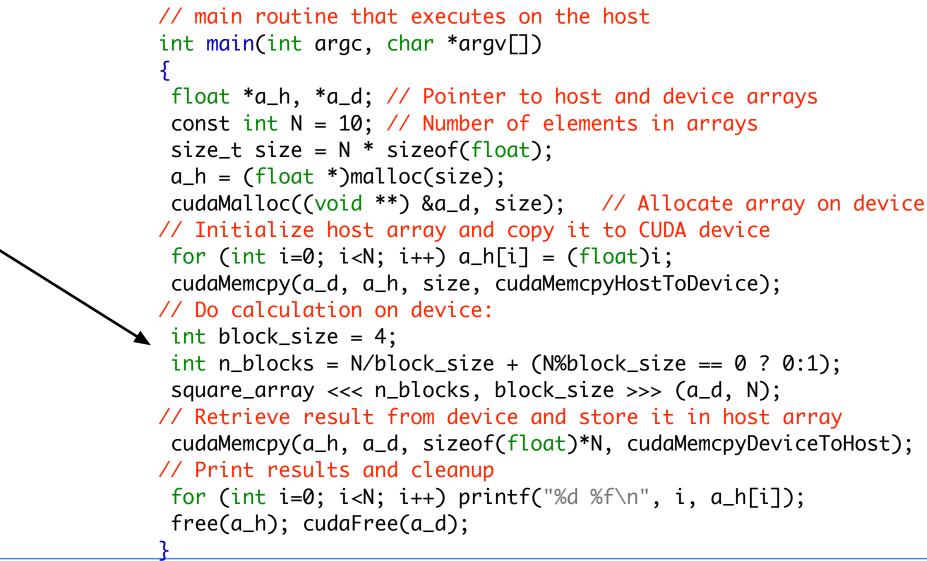
Calculate index by blockldx, blockDim, threadIdx

Another simple example, calculate square of every element, device part:

```
// Kernel that executes on the CUDA device
__global__ void square_array(float *a, int N)
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx<N) a[idx] = a[idx] * a[idx];
}
```


Host part of "cudademo" example

Set block size and grid size



Some new calls in cudademo example

/* find number of device in current "context" */ cudaGetDevice(&devid);

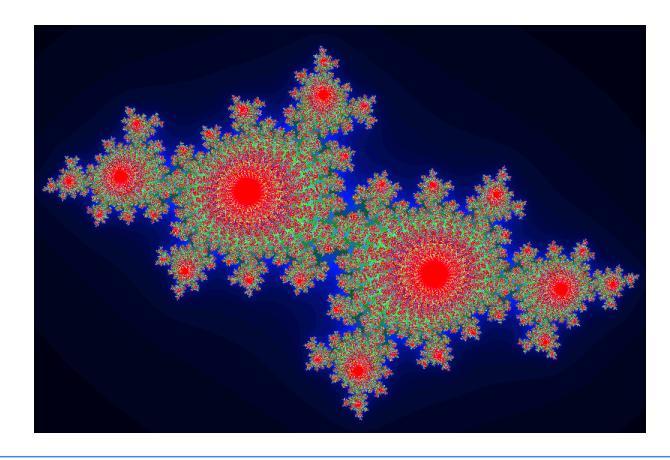
/* find how many devices are available */ cudaGetDeviceCount(&devcount);

and there is also

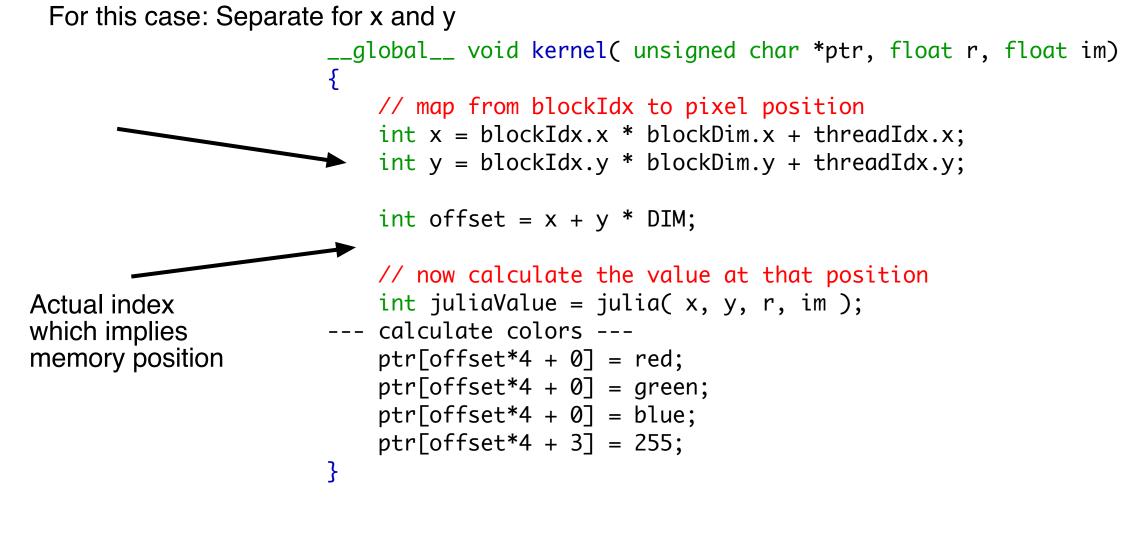
cudaSetDevice(devId)

Julia example

- Bigger problem, addressing calculation must be 2D
 - Simple OpenGL output (similar to the labs)



Julia example



Every thread computes one single pixel!

Julia conclusions

Many blocks, many treads in each block. Make sure everything is in use.

Index by thread and block.

Exceptional speedup - trivially parallellizable problem!

Load balancing? No problem. Why?

Conclusion about indexing

Every thread does its own calculation for indexing memory!

blockIdx, blockDim, threadIdx

1, 2 or 3 dimensions

Usually 2 dimensions

Memory access

Vital for performance!

Memory types

Coalescing

Example of using shared memory

Memory types

Global

Shared

Constant (read only)

Texture cache (read only)

Local

Registers

Care about these when optimizing - not to begin with

Global memory

400-600 cycles latency!

Shared memory fast temporary storage

Coalesce memory access!

Continuous Aligned on power of 2 boundary Addressing follows thread numbering

Use shared memory for reorganizing data for coalescing!

Using shared memory to reduce number of global memory accesses

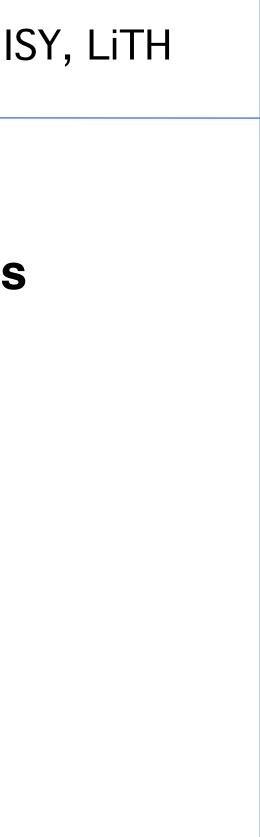
Read blocks of data to shared memory

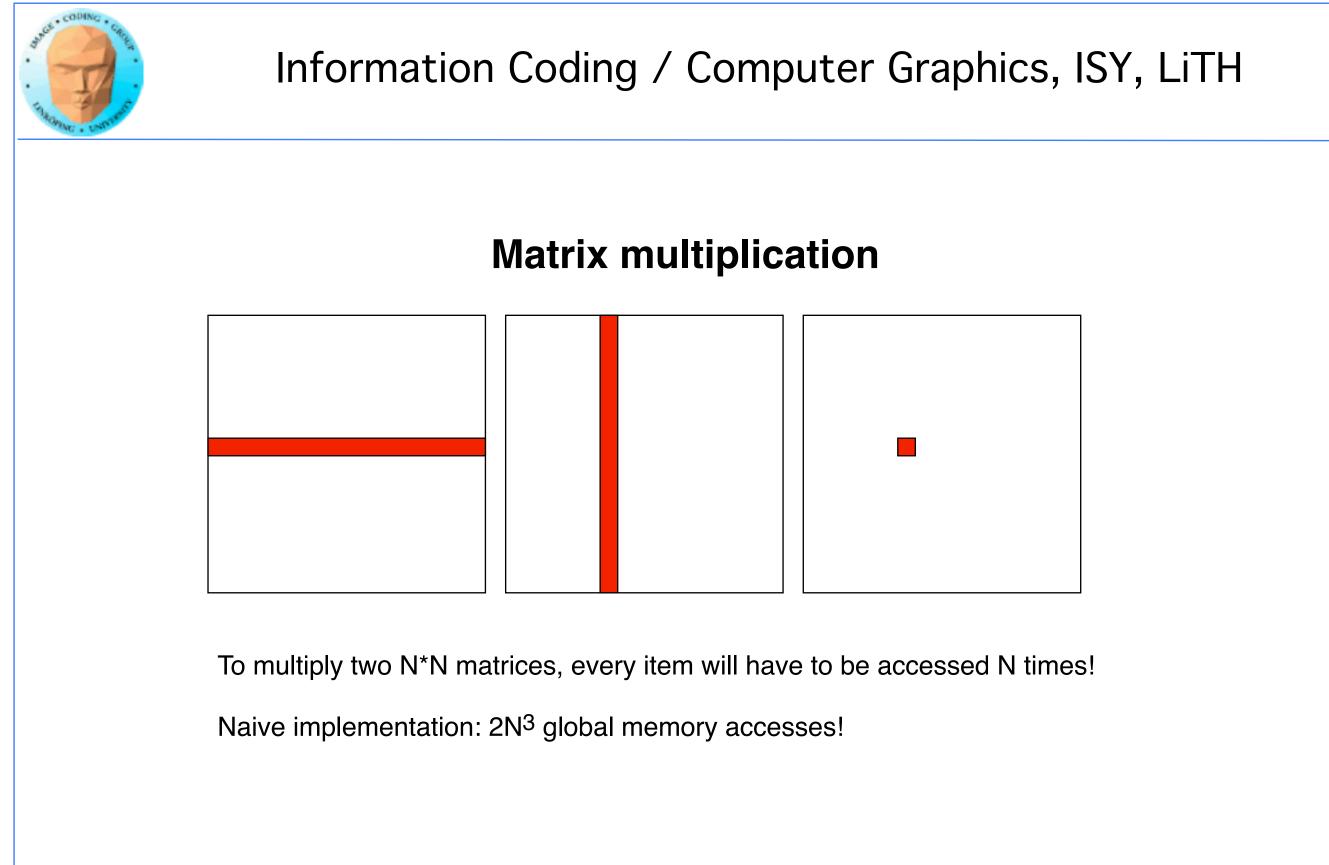
Process

Write back as needed

Shared memory as "manual cache"

Example: Matrix multiplication





Matrix multiplication on CPU

Simple triple "for" loop

```
void MatrixMultCPU(float *a, float *b, float *c, int theSize)
{
    int sum, i, j, k;

    // For every destination element
    for(i = 0; i < theSize; i++)
    for(j = 0; j < theSize; j++)
    {
      sum = 0;
      // Sum along a row in a and a column in b
      for(k = 0; k < theSize; k++)
      sum = sum + (a[i*theSize + k]*b[k*theSize + j]);
      c[i*theSize + j] = sum;
    }
}</pre>
```


Naive GPU version

Replace outer loops by thread indices

```
__global___ void MatrixMultNaive(float *a, float *b, float *c, int
theSize)
{
    int sum, i, j, k;
    i = blockIdx.x * blockDim.x + threadIdx.x;
    j = blockIdx.y * blockDim.y + threadIdx.y;
    // For every destination element
    sum = 0;
    // Sum along a row in a and a column in b
    for(k = 0; k < theSize; k++)
        sum = sum + (a[i*theSize + k]*b[k*theSize + j]);
    c[i*theSize + j] = sum;
}
```


Naive GPU version inefficient

Every thread makes 2N global memory accesses!

Can be significantly reduced using shared memory

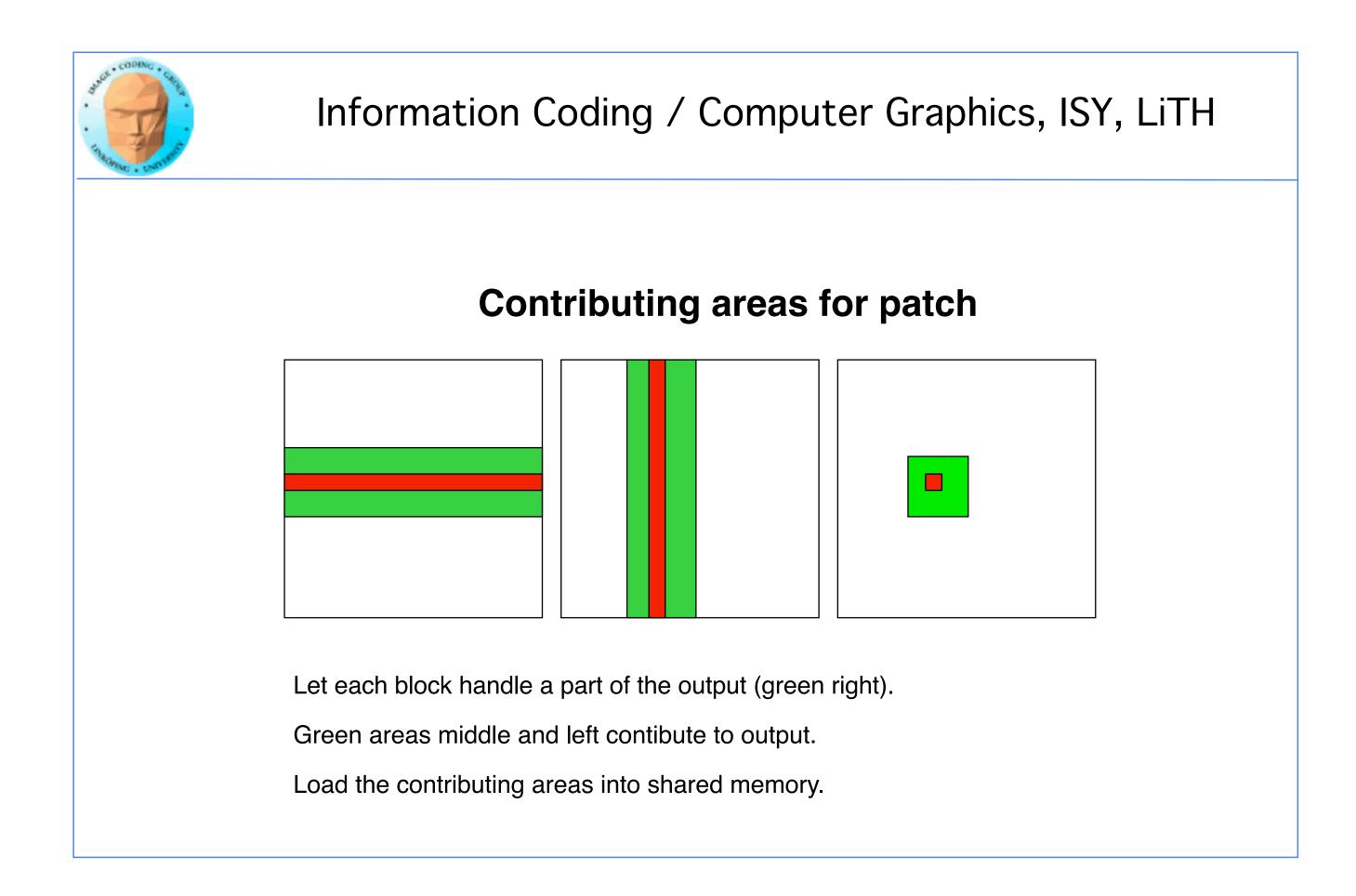
Optimized GPU version

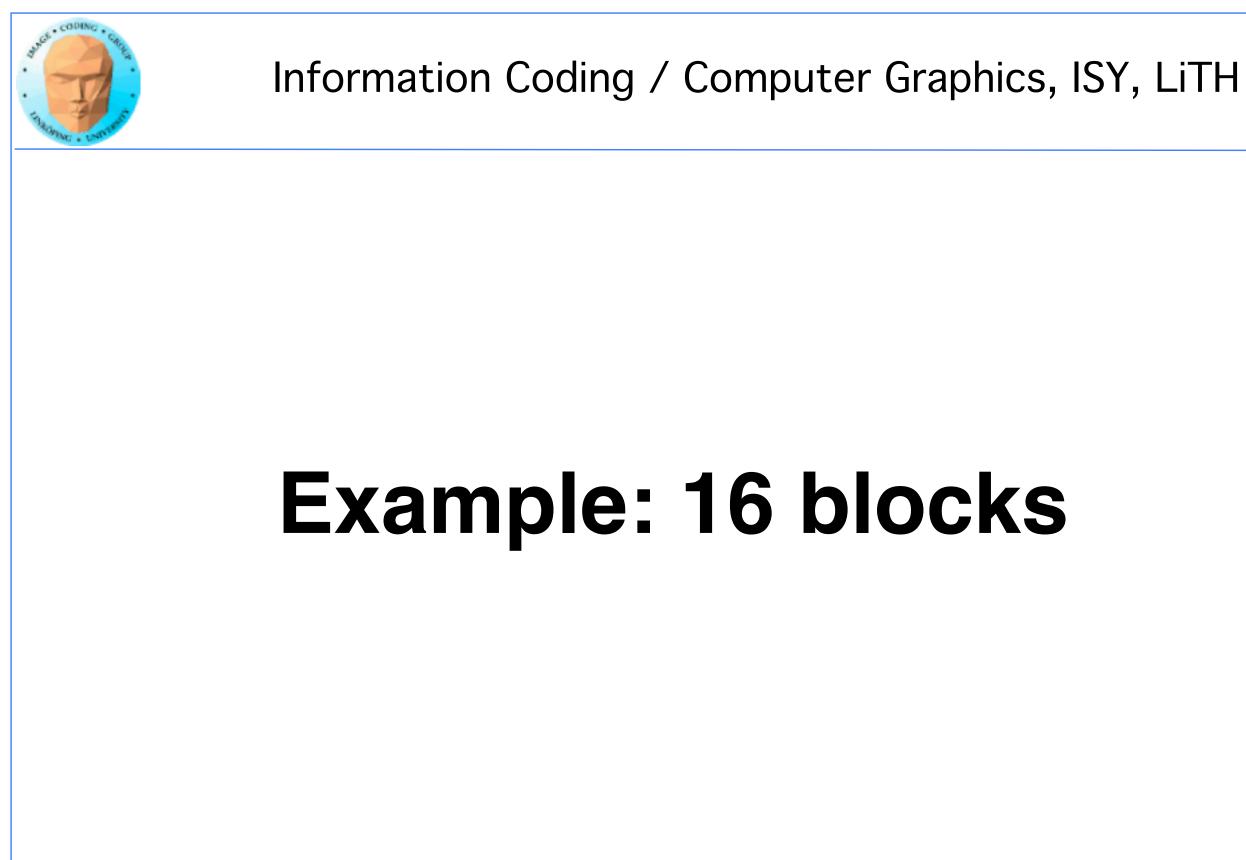
Data is split into patches.

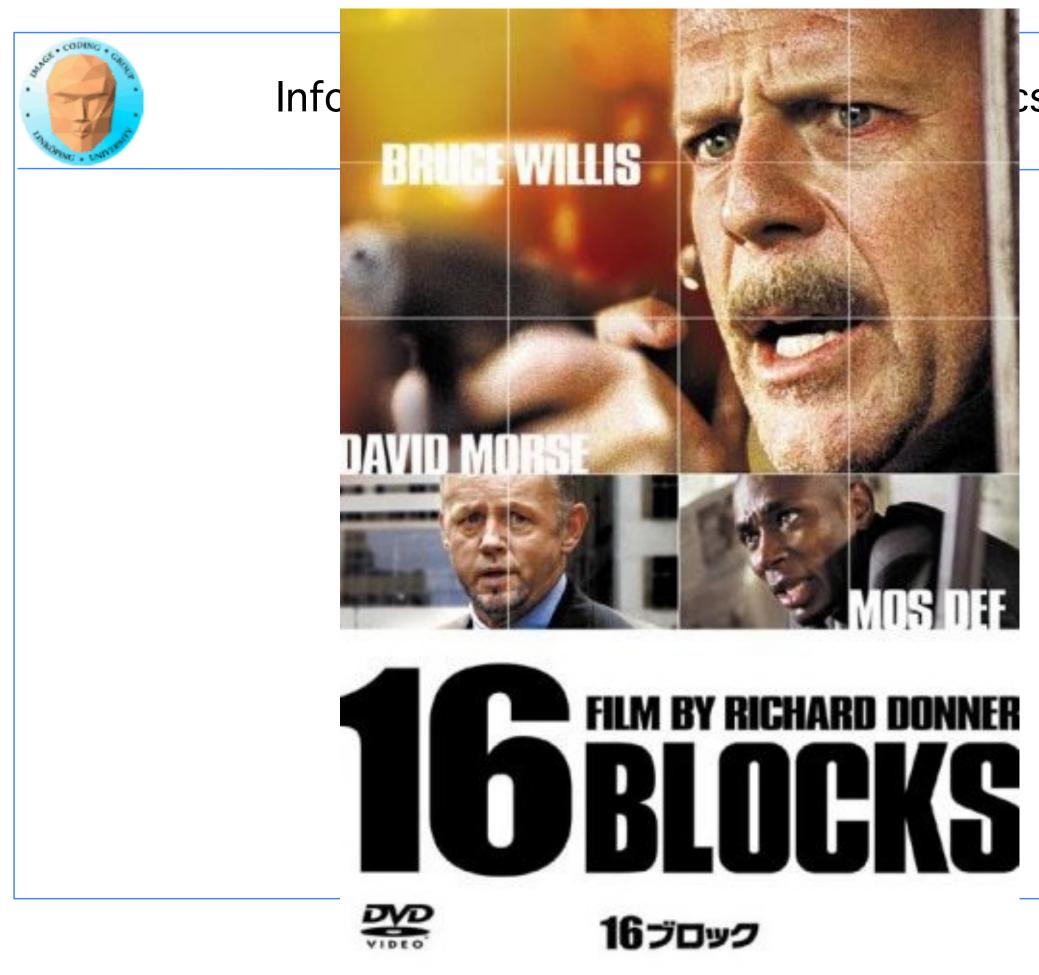
Every element accesses data in all the patches in the same row for A, column for B

Each *output* patch is mapped to one block.

For every such block: Every thread reads *one* element to shared memory Then loop over the appropriate row and column for the block

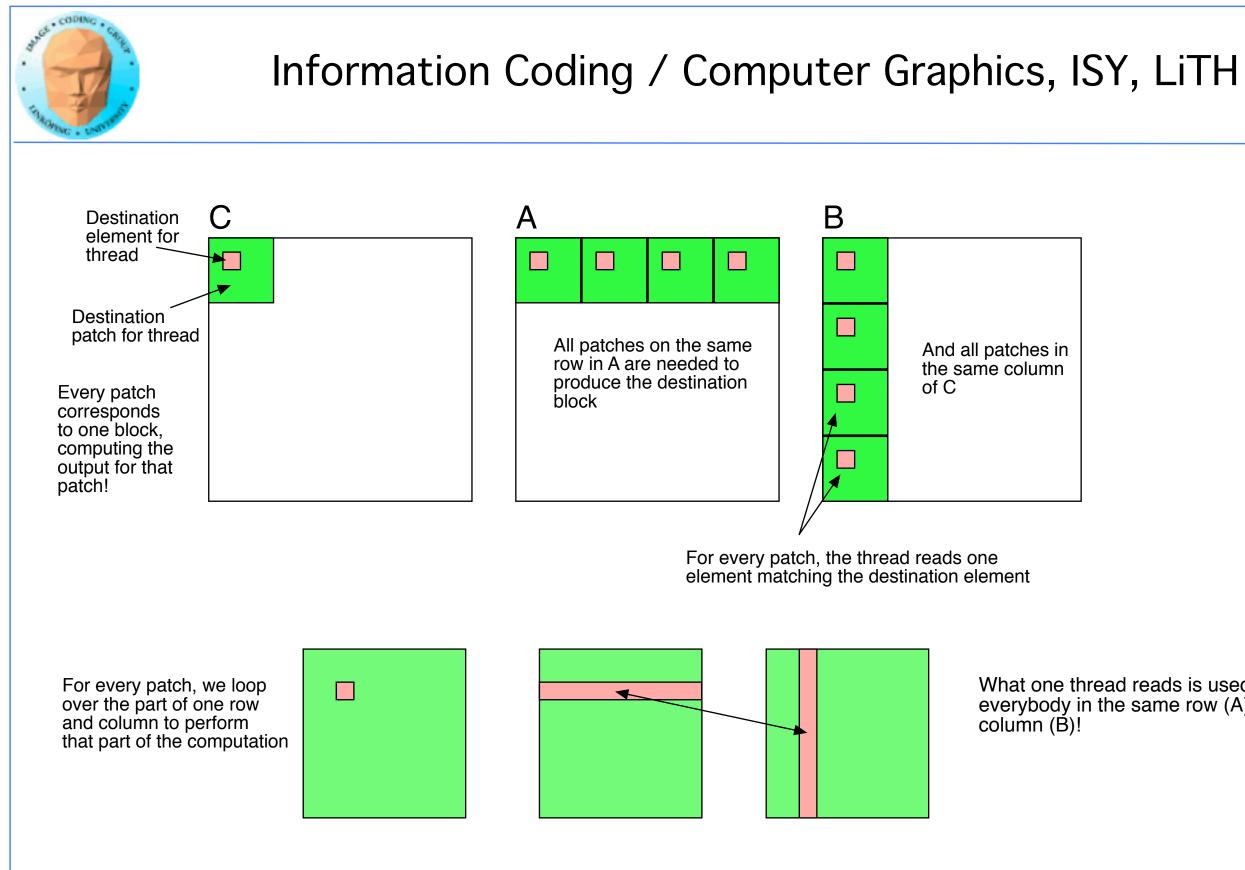




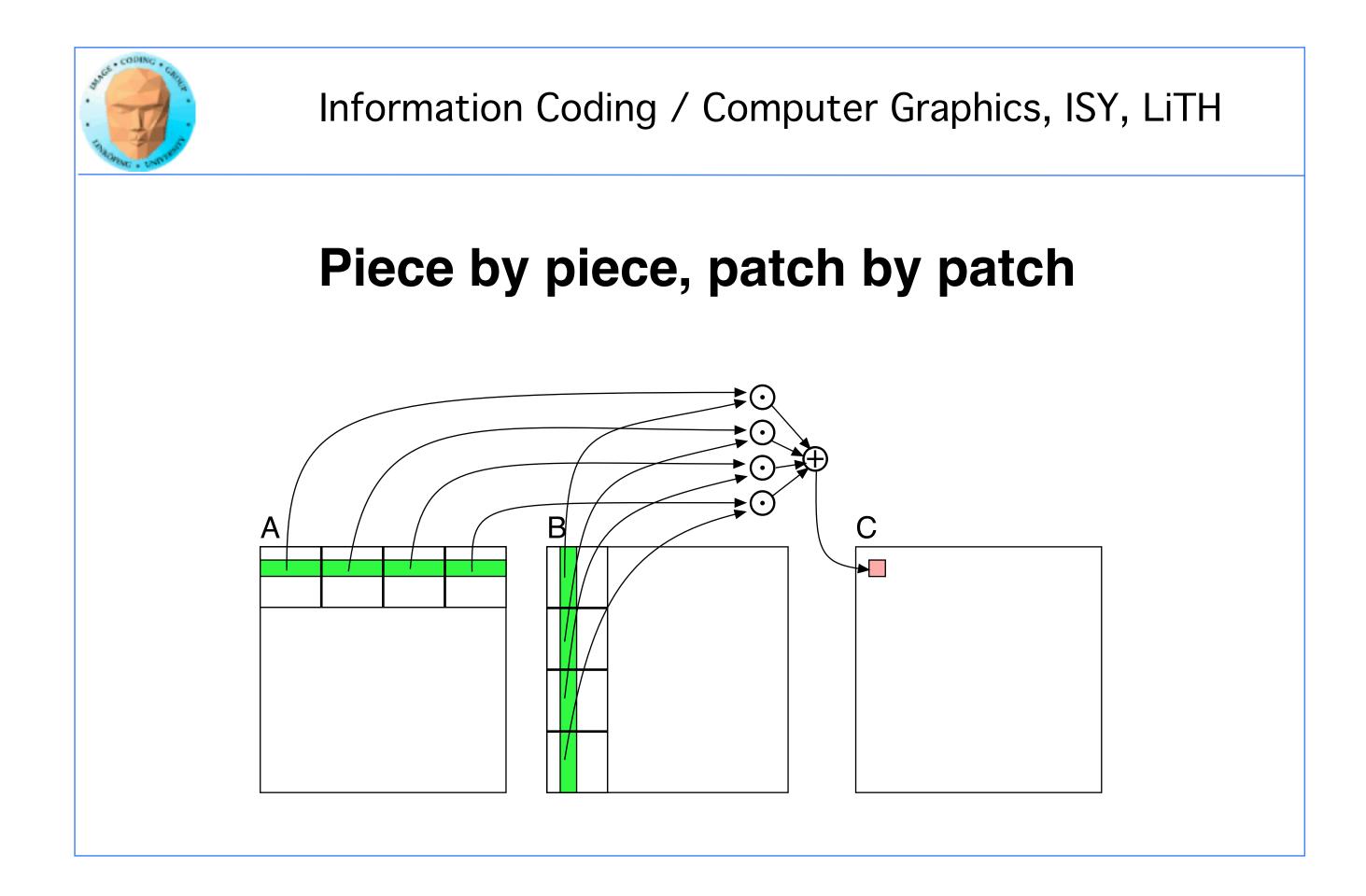


46(61)

cs, ISY, LiTH



What one thread reads is used by everybody in the same row (A) or



Information Coding / Computer Graphics, ISY, LiTH

Optimized GPU version

Loop over patches (1D)

Allocate shared memory

Copy one element to shared memory

Loop over row/column in patch, compute, accumulate result for one element

Write result to global memory

```
__global__ void MatrixMultOptimized( float* A, float* B, float* C, int theSize)
int k, b, gx, gy, gi, bx, by, gia, gib, li;
// Global index for thread
qx = blockIdx.x * blockDim.x + threadIdx.x;
gy = blockIdx.y * blockDim.y + threadIdx.y;
qi = qy^{*}theSize + qx;
// Local index for thread
li = threadIdx.y*blockDim.y + threadIdx.x;
float sum = 0.0;
// for all source blocks
for (b = 0; b < gridDim.x; b++) // We assume that gridDimx and y are equal
 __shared__ float As[BLOCKSIZE*BLOCKSIZE];
 __shared__ float Bs[BLOCKSIZE*BLOCKSIZE];
 bx = blockDim.x*b + threadIdx.x; // modified x for A
 by = blockDim.y*b + threadIdx.y; // modified y for B
 gia = gy*theSize+bx; // resulting global index into A
 gib = by*theSize+gx; // resulting global index into B
 As[li] = A[gia];
 Bs[li] = B[qib];
   ____syncthreads(); // Synchronize to make sure all data is loaded
 // Loop in block
 for (k = 0; k < blockDim.x; k++)
  sum += As[threadIdx.y*blockDim.x + k] * Bs[k*blockDim.x + threadIdx.x];
 ____syncthreads(); // Synch again so nobody starts loading data before all finish
```

```
C[gi] = sum;
}
```


5-10 times faster? So what did I do?

Decent number of threads and blocks

Use shared memory for temporary storage

• All threads read ONE item, but use many!

• Synchronize

• Even more for CPU - compared to single-thread CPU :)

Modified computing model:

Upload data to global GPU memory

For a number of parts, do:

Upload partial data to shared memory

Process partial data

Write partial data to global memory

Download result to host

ISY, LIIH •

Thread synchronization

As soon as you do something where one part of a computation depends on a result from another thread, you must synchronize!

_syncthreads()

Typical implementation:

- Read to shared memory
 - __syncthreads()
- Process shared memory
 - __synchthreads()
- Write result to global memory

Thread synchronization

Really wonderfully simple - everybody are doing the same thing anyway!

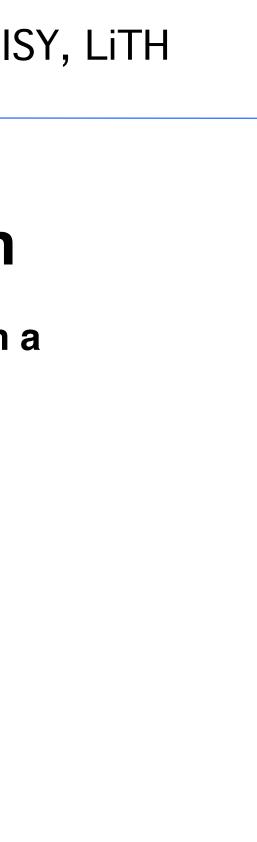
Synchronization simply means "wait until everybody are done with this part"

Deadlocks can still occur!

Limitation of synchronization

Thread synchronization can only be done within a block! No synchronization between blocks!

Why is this a necessary limitation?

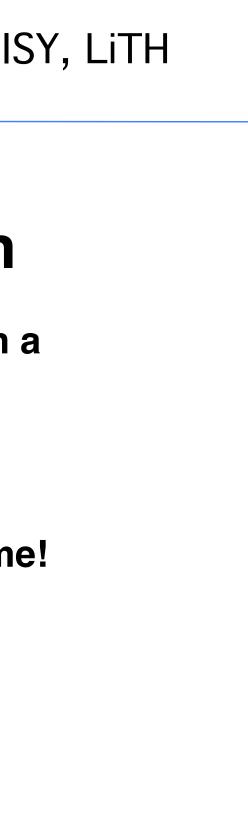


Limitation of synchronization

Thread synchronization can only be done within a block! No synchronization between blocks!

Why is this a necessary limitation?

Because all blocks are not active at the same time! Blocks are queued until an SM is free!



Limitation of synchronization

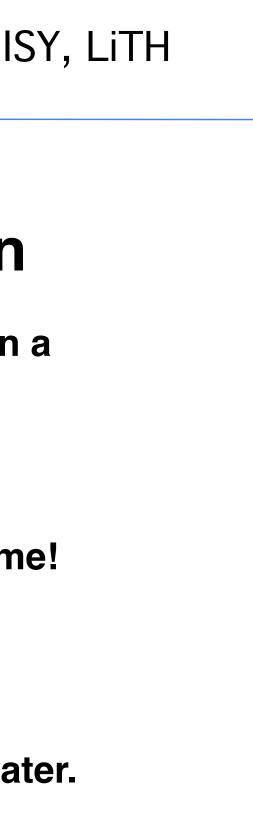
Thread synchronization can only be done within a block! No synchronization between blocks!

Why is this a necessary limitation?

Because all blocks are not active at the same time! Blocks are queued until an SM is free!

But I *must* synchronize globally!

Answer: Run multiple kernel runs! More on this later.



Global synchronization

Another synchronization is *global synchronization*.

Called by the host.

Wait until all blocks are finished!

cudaDeviceSynchronize()

There is also

cudaStreamSynchronize()

Lecture questions revisited:

- 1. What concept in CUDA corresponds to a SM (streaming multiprocessor) in the architecture?
 - 2. How does matrix multiplication benefit from using shared memory?
 - 3. When do you typically need to synchronize threads?

Summary:

Make threads and blocks to make the hardware occupied

Access data depending on thread/block number

• Memory accesses are expensive!

• Shared memory is fast

Make threads within a block cooperate

• Synchronize

What comes next?

- More CUDA
- Even more CUDA

but then

OpenCL and compute shaders - the alternatives

Most that I say about CUDA translate easily to other platforms!

