

1

…When They

Attack In Packs

“Polygons feel no pain” Volume 3

Ingemar Ragnemalm

Course book in GPU computing

2

Foreword

In the past, I wrote “Polygons feel no pain” and “so how can you make them scream?”.
For several years I have considered making a small course book for my part of TDDD56
“Multicore and GPU programming” so you have something that firmly summarizes my
part of the course, complete and without too much fluff.

There are other books on the topic, of course, and some are pretty neat and non-bulky.
However, they are usually focused entirely on CUDA, possibly with some OpenCL mate-
rial but hardly more. This book, although brief, has the ambition to give an introduction to
the field with a wider scope, including several other platforms of interest.

I may not be a known expert in the field, but having worked with this concept since 2005,
giving my first GPU computing course before CUDA even existed, I feel that I should be
capable of providing a decent book.

Parts of the book are based on the GPU computing chapter of Volume 2. Much of the con-
tents is also based on NVidia’s CUDA programming guide. [3] Another important source
is Mark Harris’ blog entries, e.g. [15]

You should immediately see that the name fits with the names of the earlier books. It also
refers to a rarely heard joke that I remember, I think it was from a crowded university
party:

“Ingen panik! Anfall i flock! Alla på en gång!”

which translates to

“No panic! Attack in packs! Everybody at the same time!”

For some reason I never forgot that and it fits right in.

Cover image by myself, “a pack of ‘cudas”.

Related web page: http://www.computer-graphics.se

All content of the book is © Ingemar Ragnemalm 2018 except for cited material as docu-
mented.

ISBN 978-91-7773-719-3

First edition 2018.

Introduction 3

1. Introduction

This book was written as course material for the latter part of the course in “TDDD56
Multcore and GPU programming”.

1.1 Who should read this book?

Since this book is written for part of the course TDDD56 at the University of Linköping,
attendants of that course are the target audience. It is also likely to be used in PhD courses
on the GPU Computing concept. Anyone else interested in the subject is also in the target
audience!

The purpose of the book is to provide a broad overview of the GPU Computing program-
ming subject, far broader than most other books.

1.2 What should you expect to learn from this book, and its course?

This book spends most of its pages on CUDA, but it is not a CUDA book. Rather, it has an
unusually broad scope, covering most GPU computing technologies of interest.

•

1. GPU history and architecture.

•

2. CUDA

•

3. OpenCL

•

4. Compute Shaders

•

5. Fragment shaders

•

6. Specific problem areas.

We start with CUDA for the simple reason that it is the API that is by far easiest to get
started with. Once you know it, however, you will find it pretty easy to move to any of the
others.

Most code examples will be in CUDA, but the book will aim towards covering the other
platforms as well, with emphasis on OpenCL and OpenGL Compute Shaders. We can not

4 Introduction

put all code examples for all platforms in the book, but there will be a (slowly) growing
amount of accompanying code on my website, computer-graphics.se.

Thus, let us emphasize this: This is not a CUDA book, this book is not only about CUDA.
It is a general GPU Computing book, although mostly using CUDA for examples for
space and readability reasons, but I strongly advocate diversity and being knowledgeable
of alternatives. And there are some strong ones to consider.

1.3 Acknowledgments

The material for this book comes from a variety of sources, books, papers, web pages.

The first contributor was Erik Pettersson [2]. In 2005, he made an early GPU Computing
project as master thesis, with me as examiner. Later, Johan Hedborg, Fredrik Viksten and
Jens Ogniewski have contributed, first to my PhD courses and later to the TDDD56
course. Finally, the collaboration with Christoph Kessler and his group over the course has
been most important and fruitful. The recent (2017) move towards more image processing
in the course was particularly nice for me, since I have a background in image processing,
and has influenced chapter 18.

Finally, all previous students on the courses have contributed in various ways. Your inter-
est for certain problems have been very important for the course.

At the top-right in this pile is an NVidia 8500 GT, my first CUDA capable GPU, and on
top-left (that is left in the picture) is an ATI Radeon 9800 PRO, the card on which I made

my first GPGPU experiments.

Table of contents 5

2. Table of contents

1. Introduction..3

1.1 Who should read this book?...3
1.2 What should you expect to learn from this book, and its course?3
1.3 Acknowledgments..4

2. Table of contents ..5

3. How did we get here?...9

3.1 Related efforts ..11
3.2 Why did GPUs get so much performance?..13
3.3 The arrival of GPU computing: General Purpose computation on Graphics Processing

Units14
3.3.1 Key components of the GPGPU trend...14
3.3.2 GPGPU/GPU computing approaches..15
3.3.3 Fixed pipeline GPGPU ..15
3.3.4 Fragment shader based GPGPU ..15
3.3.5 CUDA..16
3.3.6 OpenCL ...16
3.3.7 OpenGL Compute shaders ..16
3.3.8 Direct Compute ...16
3.3.9 Vulkan..17

3.4 Applications ...17
3.4.1 Image processing, image analysis and video coding...17
3.4.2 Crypto currency mining...17
3.4.3 Deep learning...17

4. GPU architecture..19

4.1 SIMD and SIMT ..19
4.2 SIMT, Single Instruction, Multiple Thread..20
4.3 The unified architecture ...21
4.4 SMs, SPs and shared memory..22

5. Hello World!...25

5.1 Hello CUDA ..25
5.2 Hello OpenCL..27
5.3 Hello GPGPU...29
5.4 Hello Compute Shaders ...32

5.4.1 Main program ..32

6 Table of contents

5.4.2 Kernel.. 33
5.5 Direct Compute and Vulkan .. 34

6. CUDA ..35

6.1 Simple CUDA example... 36
6.2 Modifiers for code ... 36
6.3 Memory management.. 37
6.4 Kernel execution.. 38
6.5 Compiling Cuda .. 38

6.5.1 Compiling CUDA for larger applications ... 39
6.5.2 Example of multi-unit compilation... 39
6.5.3 Compiling for MacOSX.. 40

6.6 Executing a Cuda program.. 40
6.7 Computing with CUDA... 40
6.8 Warps... 40
6.9 Kernel .. 41
6.10 Grid, blocks and threads.. 41
6.11 Indexing data with thread/block IDs ... 41
6.12 Julia example... 42

7. Memory access...45

7.1 Global memory.. 46
7.2 Shared memory ... 46
7.3 Example: Matrix multiplication .. 46

7.3.1 Matrix multiplication on CPU .. 47
7.3.2 Naive GPU version ... 47
7.3.3 Optimized GPU version.. 48

7.4 Modified computing model ... 50

8. More language features..51

8.1 Synchronization... 51
8.1.1 Global synchronization ... 52

8.2 Error checking ... 52
8.3 Query devices .. 53
8.4 Compute capability ... 54
8.5 Timing and profiling.. 55

8.5.1 CPU timers.. 55
8.5.2 CUDA Events.. 55

8.6 CUDA streams and overlapping data transfers ... 56
8.6.1 Multiple streams.. 57

9. Memory access part 2 ..59

9.1 Coalescing ... 59
9.1.1 Matrix transpose example ... 60

9.2 Optimizing shared memory... 62
9.3 Atomic functions ... 62
9.4 Constant memory .. 64

9.4.1 Ray-caster example ... 65
9.5 Texture memory/ Texture units.. 69

9.5.1 Texture memory for graphics.. 69
9.5.2 Using texture memory in CUDA .. 70
9.5.3 Clamp and repeat .. 73

Table of contents 7

9.5.4 Interpolation ..73
9.6 Managed/unified memory ..74

10. OpenCL..77

10.1 OpenCL for GPU Computing ..77
10.2 OpenCL vs. CUDA terminology ...78
10.3 OpenCL memory and thread model...78
10.4 Heterogeneous..79
10.5 Language..79
10.6 Walk through the Hello CL example code...80
10.7 The Julia example in OpenCL ...82
10.8 Some more notes on OpenCL..84
10.9 Synchronization in OpenCL ..84
10.10 Queries in OpenCL ..85
10.11 OpenCL events...85
10.12 Conclusions on OpenCL..85

11. Fragment shaders ...87

11.1 Input and output ...88
11.2 The computation kernel = the shader...89
11.3 Feedback ..90
11.4 Image filter in fragment shader ..91
11.5 Reduction in fragment shaders...92

12. OpenGL Compute shaders and Vulkan..93

12.1 OpenGL Compute shaders...93
12.2 Shader Storage Buffer Objects...95
12.3 Example code...96
12.4 Synchronization in OpenGL compute shaders ..97
12.5 Compute shader timing with query objects ...97
12.6 Queries in compute shaders ...97
12.7 Conclusions on Compute Shaders ...98
12.8 Vulkan ..98

13. Direct Compute..99

13.1 Shared memory ..101
13.2 Synchronization ...101

14. Comparisons of the platforms..103

15. Reduction ...105

15.1 Optimization of reduction ..107
15.2 Parallel prefix sum on GPU ...107

16. OpenGL Interoperability..109

16.1 CUDA-OpenGL Interoperability ...109
16.2 OpenCL and OpenGL..111
16.3 OpenGL, Compute Shaders and fragment shaders ..112

17. Sorting on GPUs ..113

17.1 Bubble sort ...113
17.2 Rank sort ..114
17.3 Bitonic sort...117

8 Table of contents

17.4 QuickSort .. 119
17.4.1 Pivot selection ... 120
17.4.2 Comparisons ... 120
17.4.3 Partitioning.. 121
17.4.4 Concatenate result ... 121

17.5 Recursion, Concurrent kernels, Dynamic Parallelism... 121

18. Image filters ...123

18.1 Separable filters ... 125
18.2 Non-linear filters ... 126
18.3 Edge checks, clamping.. 126
18.4 Color images ... 127
18.5 Scatter vs gather .. 127

19. Questions..129

19.1 Lecture questions... 129
19.1.1 Lecture 1 ... 129
19.1.2 Lecture 2 ... 129
19.1.3 Lecture 3 ... 130
19.1.4 Lecture 4 ... 130
19.1.5 Lecture 5 ... 130

19.2 GPU Algorithms and Coding (GPU Algorithms).. 130
19.3 GPU Conceptual Questions (AKA GPU Architecture concepts or GPU Computing) ... 133
19.4 GPU Quickies.. 136

20. Final words...139

21. References..141

22. Index ..143

How did we get here? 9

3. How did we get here?

Let us start with having a look at how we got here, what developments that led us to the
hardware that we have today. This is more than just a peek back in history, it may also give
some insights in what to expect from the GPU hardware.

Since personal computers arrived, the development of CPUs can be summarized as fol-
lows:

80’s: CPU and the memory bus had the same speed, the same clock frequency. The con-
cept “Zero wait states” was an honor word, the CPU never had to wait for the bus more
than one clock cycle.

1993: About this time, the 1-1 mapping between CPU and the system was scrapped,
instead the term “clock doubling” described the new way; The CPUs was faster than the
rest of the system, by 2 or 3 times. This gave us a rapid raise of CPU frequency, making it
possible to do more computations between every memory access.

Late 90’s to present: We saw multi-CPU systems in the late 90’s, but they were initially a
limited success. Since then the operating systems have been adapted to fully support mul-
tiple CPUs, and we got multi-core CPUs with two cores on a chip. Today, 8 cores is get-
ting increasingly common while 16 cores is available but expensive. Even embedded
systems like phones are multi-core, and systems with less than 2 cores are getting rare.

CPUs are still improving, but going for higher frequency is not as obvious as before.

During this time, graphics hardware has undergone an even faster evolution.

80’s: Graphics hardware in these days mainly referred to hardware that read pixels from
VRAM and put them on a screen. The fanciest hardware acceleration was probably hard-
ware sprites. Graphics programming was very focused on writing pixels to VRAM with
low-level code, optimized assembly code.

1993: With the clock doubled/tripled CPUs we got enough power to produce textured 3D
games like Wolfenstein 3D and Doom. In a glorious 320x240 resolution, these games
were sensations! However, rendering was still a job for the CPU.

10 How did we get here?

But were there not any GPUs? Yes, there was, but they were professional 3D boards,
insanely expensive from a home computing point of view. This all changed 1996:

1996: With the 3dfx Voodoo1 board, we suddenly got a GPU that anyone could buy! It was
priced pretty much like today’s mid-range boards. Of course it did extremely little from a
modern point of view, and had a strange solution for switching between 2D and 3D graph-
ics, with a special cable over to the 2D board, but it took gaming from a blocky 320x240
resolution to a slick-looking 640x480.

2001: This year gave us a revolution that was bigger than most people understood: Pro-
grammable shaders. For the first time, we could put our own program code into the GPU!

2006: The G80 gave us the “unified architecture”, which was much more suited for GPU
computing than the older architectures, and with that followed NVidia’s CUDA.

2009: The non-NVidia part of the world struck back with OpenCL.

2010: The Fermi architecture was the first GPU architecture that was clearly aimed at
GPU computing. It was no success, it made NVidia fall behind in gaming performance,
but it was still a milestone, showing what was to come.

During this process, the number crunching performance of GPUs has increased extremely
fast. NVidia tends to show off with graphics like Figure 1.

FIGURE 1. Typical “GFLOPS race” graph

These graphs look impressive and we get the impression that GPUs are improving at a rate
that is way over what CPUs can perform, accelerating away leaving CPUs standing still at
the starting line. However, the picture is somewhat misleading. Note that the graphs are
always with

linear

 scales. If you would make them with logarithmic scale for perfor-

10

9

8

7

6

5

4

3

2

1

TFLOPS (theoretical)

2004 2006 2008 2010 2012 2014 2016

NVIDIA GPU, single precision

NVIDIA GPU, double precision

Intel CPU, single precision

Intel CPU, double precision

How did we get here? 11

mance, it would look much more like what it is; GPUs and CPUs are both improving at
similar rates. GPUs are faster, but the proportions are not changing so much.

But is this a fair comparison? Let us compare apples with apples:

GFLOPS for both!

If we take this in numbers, we get a table like this:

GPU CPU
1995: 0.001 0.09
2005: 40 5.6
2011: 2488 91
2015: 7000 176
2016: 16380 400-700*
2017: 110000** 4000***
* Theoretical, 16 cores
** Claimed by NVidia on Titan V [5]
*** Theoretical peak performance [6]
(Other data from various sources, not documented.)

The 2017 part of the table reflects late 2017/early 2018.

CPUs can not compete in peak performance. Even after the biggest steps of progress, they
are far behind. On the other hand, remember that this is for the most optimal problems.
The advantage of GPUs drop significantly on problems that are less suited for the architec-
ture.

Let us also consider economy. How much does a GFLOPS cost?

1961: 8.3 trillion
1984: 42 million
1997: 42000 (CPU cluster)
2000: 836-1300
2007: 52
2012: 0.73 (AMD 7970)
2013: 0.22 (PS4)
2015: 0.08 (Radeon R9 295)
(Source: Wikipedia)

That is a price/performance improvement of 104 trillion times since 1961, and only since
2000 computing has become 16000 times cheaper! And that is in an era where CPU clock
frequency has stalled, and thus many people may believe that performance doesn’t
improve! If so, they are just 16000 times wrong (and that is not even counting the
improvement since 2015).

3.1 Related efforts

So, NVidia and AMD have been the two big ones in graphics and gaming, and had consid-
erable success in general purpose computing. We also have Intel making GPUs integrated
in CPUs. They, however, tend to be of little interest for high performance applications.

12 How did we get here?

The GPUs are, of course, mostly compared to the main cores of CPUs. It should be noted
that they are less often compared to the processing power of CPUs while using the vector
processing units in the CPUs. But there have also been other parallel architectures. At this
time, many of them are counted out. IMB had the Cell processor, which even made it into
Sony Playstation 3 as well as Namco Bandai arcade boards, but in 2009, its next genera-
tion was cancelled, signalling its decline. Intel made the Larabee, which was cancelled in
2010.

However, a successor of Larabee, the

Xeon Phi

, is actively developed, competing with
NVidia and AMD for the growing GPU computing market.

The following two tables come from an investigation on the performance on the Phi com-
pared to a CPU, using vector processing extensions, and a high performance GPU. Alas, I
have lost the source and am unable to find it. If anyone involved in it reads this, please
enlighten me.

Xeon E5-2670 Xeon Phi 5110P Tesla K20X

Cores 8 60 14 SMX
Logical cores 16 (HT) 240 (HT) 2688 CUDA cores
Frequency 2.60 GHz 1.053 GHz 735 MHz
GFLOPS (double) 333 1010 1317
SIMD width 256 bits 512 bits N/A
Memory

≈

16-128 GB 8GB 6GB
Memory BW 51.2 GB/s 320 GB/s 250 GB/s
Threading software software hardware

So, how does it complete? The same investigation (I

think

 it was) also gave us bench-
marks, with the following table:

Paths Sequential Sandy-Bridge CPU* Xeon Phi* Tesla GPU

128K 13.062 s 694 ms 603 ms 146 ms
256K 26.106 s 1.399 s 795 ms 280 ms
512K 52.223 s 2.771 s 1.200 s 543 ms

* using SIMD vector intrinsics

My conclusion of this particular investigation is that the GPU still wins, even by a consid-
erable margin, but the Phi, and even a CPU using vector extensions, are still fighting to
give it a run for the money.

Note how much faster the CPU was by using the often ignored vector intrinsics. A 20
times speedup, for something that we always have available! But all these except the
poorly performing sequential CPU solution require you to code in parallel! So whatever
you do, if you want to compete in performance, you must learn parallel programming, you
must

attack in packs

!

And that is why you are here, right?

How did we get here? 13

3.2 Why did GPUs get so much performance?

So, the GPU is pretty fast. Let me now argue for why the GPU got all that power in the
first place.

There have been many earlier attempts to construct parallel computers. However, gener-
ally speaking, they have all failed to be mass market product due to lack of a big problem
suited for parallel implementation with wide enough user base to get the volumes up.

This problem was provided by the gaming industry, by the demand for good graphics. This
makes it an early problem with large amounts of data, with its complex geometry and mil-
lions of output pixels. It could, with great benefits, be accelerated. The graphics pipeline is
designed with excellent opportunities for parallelism!

So, we got a volume product! The 3D graphics boards quickly became a central compo-
nent in the game industry. Everybody wants one, so every producer of game equipment
needs to put one in.

An interesting bonus was that the hardware was designed to hide memory latency by par-
allelism. This is a smart trick that suits the thread model in the GPU shaders well.

So, graphics performance went up, but it didn’t stop there. If a new GPU could make new
impressive features, it would sell both games and GPUs. Thus, many important advance-
ments started as game features.

So, it all started with that a GPU must process many pixels fast! This was the #1 task, so
early GPUs could draw textured, shaded triangles much faster than the CPU.

The next generation could do matrix multiplication and divisions fast, in order to trans-
form vertices and normalize vectors, which had then become a bottleneck on the CPUs.

The next step was programmability, programmable shaders. This was added to make
Phong shading and bump mapping, new visual effects that were hard to do, or could only
be done in inflexible ways.

Finally, floating-point support was added! This, too, was for visual effects, namely for
light effects, using high dynamic range.

So a GPU should

•

process vertices, many in parallel, applying the same transformations on each

•

process pixels (fragments) in parallel, applying the same color/light/texture calculations
on each

Both these tasks are suitable for parallel implementation. It is better than that, the problem
is easily split into parts can be processed by one single program executed for multiple
data. This makes it a SIMD friendly problem, single instruction, multiple data!

14 How did we get here?

For such computations, we need less control per computation. The hardware will control
many calculations instead of one.

This also gave us a different kind of threads. The whole process could have been expressed
as a vector processor, explicitly grabbing chunks of data and feeding them to a vector pro-
cessor. However, it was instead expressed as separate threads, processed in parallel run-
ning the same program.

This gave us the SIMT model,

single instruction, multiple threads

, which is SIMD hidden
under an thread-like abstraction, but also with hardware support for this, providing each
thread its identity, giving us an impression of independent threads. This model was good
for graphics operations: Shader threads calculate one pixel or one vertex. CUDA/OpenCL
threads may calculate anything, but typically one part of the output, and this can usually be
made independent of each other.

Thus, these vital improvements all are based on needs of the game programmers, and
thereby the needs of the gamers. They paid for our parallel computing platforms!

3.3 The arrival of GPU computing: General Purpose computation on
Graphics Processing Units

The concept of GPU computing was first called GPGPU,

General Purpose computation
on Graphics Processing Units

, coined by Mark Harris in 2002. The idea is to perform
demanding calculations on the GPU instead of the CPU. At first, this appeared to be a wild
idea, or at least a marginal possibility, but since then it has grown into a very important
factor in modern computing. Results were highly varied in the early years, but the GPU
advantage has grown bigger and bigger.

The concept has since then been renamed GPU computing, and more general platforms
have appeared, making it easier to program and also enabling better optimizations.

3.3.1 Key components of the GPGPU trend

What made this possible was of course the massive parallelism of GPUs, which comes
directly from the need to process large amounts of vertices and pixels,

The next key component was programmability, the introduction of shader programs,
which made the GPUs much more flexible, reprogrammable for any problem.

The third vital component was the arrival of floating-point buffers. Without them, GPUs
could only store and output integer information. Thereby it was vital for general purpose
computing.

Initially, the support had poor precision. We could have as little as 16- or 24-bit floating
point numbers, but with 32-bit floating-point we at least had decent precision, although
not really impressive. High precision computations were not possible, but granted the

How did we get here? 15

promising results, 64-bit floating-point support eventually arrived and has been steadily
growing since then.

3.3.2 GPGPU/GPU computing approaches

There are several technologies for GPU computing, so let me give a brief overview. Here
is a list of the most important alternatives.

•

Fixed pipeline graphics

•

Shader programs

•

CUDA

•

OpenCL

•

Compute shaders

•

Direct Compute

•

Vulkan

The list is not exhaustive, there are many packages on top of these, and new solutions are
being developed, and the current ones are revised.

3.3.3 Fixed pipeline GPGPU

Even before programmable shaders, there were several results based on the old, fixed
pipeline technology. Some problems could successfully be reformulated to something that
could be, at least partially, computed by standard graphics operations.

Early results include Voronoi diagrams by Hoff et. al. 1999 [7], matrix multiplication by
Larsen and McAllister [8] and face tracking by Ahlberg in 1999/2002 [13].

Thus, GPUs were usable for computing even back then, but the scope of algorithms was
highly limited. This kind of algorithms is not of any practical interest today.

3.3.4 Fragment shader based GPGPU

When programmable shaders arrived, the scope widened considerably. In 2005, I took part
of a GPGPU project for the first time [2], and we could see an overall speedup of image
processing operations of about 8 times, an amazing improvement in a business where you
are happy when you can squeeze out a 10% speedup with a lot of work.

Programming is made in shader languages such as GLSL, Cg or HLSL. Initially, an
assembly language was used but it was quickly phased out.

This solution has two major drawbacks. First, it requires you to re-map your data to tex-
tures, to image data, typically with four channels per pixel. This gives us a data organiza-
tion that can be rather clumsy to work with. Second, the visibility of hardware features,
most notably shared memory (see chapter 7), is bad compared to the following platforms.

16 How did we get here?

Thus, fragment shader based GPU computing is likely to be outperformed in many appli-
cations by CUDA and other later platforms.

Still, this approach should not be counted out. It is by far the most portable one. It runs on
old and new GPUs. It is easy to make your algorithm run as efficiently on the latest GPUs
as well as 10 year old ones. All GPUs on the market can use shaders, so there is no need
for extra software, and you can run on all brands, NVidia, AMD and Intel. All you need is
the standard software/drivers.

3.3.5 CUDA

A popular platform is CUDA from NVidia. It only works on NVidia hardware, which lim-
its it considerably, but on the other hand, it is probably the most actively developed GPU
computing platform.

It requires extra software installations, and there is a big risk that a software using CUDA
has steep hardware demands due to its rapid changes. However, the active development
also means that new features come here early, which often give CUDA the edge.

We often see excellent results with CUDA. For problems of highly parallel nature, 100x
speedups are common, even before optimizing! Even low-end GPUs give significant
boosts.

3.3.6 OpenCL

OpenCL is often considered the main alternative to CUDA. It works on various hardware,
not only GPUs. It is developed by Khronos Group, and initially had significant support by
Apple.

It is noticeably harder to get started, partially due to the wider scope of hardware, but also
since the whole model is closer to OpenGL, to the extent that there are considerable simi-
larities in how you program shaders.

3.3.7 OpenGL Compute shaders

An alternative that is given much less attention is OpenGL compute shaders. This is a
GPU computing solution built into OpenGL. That makes it similar to OpenCL, but being
part of OpenGL makes it easier to make programs with OpenGL visualization. (See
chapter 15.2.) This also gives it good portability, because just like fragment shaders, it
exists on all installations with a recent enough OpenGL, and all you need is the GPU driv-
ers.

3.3.8 Direct Compute

DirectX also has compute shaders, a part of DirectX/Direct3D called Direct Compute. It
predates the OpenGL Compute Shaders significantly. Its biggest weakness is of course
that it is limited to Microsoft systems only.

How did we get here? 17

3.3.9 Vulkan

Vulkan has sometimes been called the “new OpenGL”. It is a redesign that focuses on pro-
viding good multi-thread support to graphics programming, which has become a weakness
with OpenGL. It arrived officially in 2016, but now, in 2018, it is still in the process of
propagating. This makes it a “Bleeding edge” technology that is not the easiest to get
started with.

This could be the future main generic GPU platform for both graphics and computing.
However, lack of interest from major players like Apple and Microsoft may pose prob-
lems.

3.4 Applications

I claim that this is so important, but is it? Is it being used? Let me summarize some of the
strongest application areas.

3.4.1 Image processing, image analysis and video coding

From the very first steps of GPU computing, it was clear that almost any kind of image
processing fits the concept well. Among the first GPU computing results were image pro-
cessing tasks, and even today, it remains one of the strongest fields. Any decent video
coder must use the GPU today or it will be unreasonably slow compared to the competi-
tion.

3.4.2 Crypto currency mining

In the early days of bitcoins, they were often mined using GPUs. Today, that task has been
taken over by ASICs, but other crypto currencies have appeared, less suited for ASIC solu-
tions, and those currencies are mined with GPUs.

3.4.3 Deep learning

Deep learning basically means learning systems based on very large neural networks.
Learning with neural networks has been around for a long time, and was a hot topic in the
90’s, but until GPU computing arrived, it was unfeasible to handle large networks in real
time.

But this is a good problem for GPUs! Simulating and updating a neural network is a
highly parallel problem. And it has produced remarkable results and is now a hot trend in
computer vision as well as other fields. And it was the GPUs that opened the door!

18 How did we get here?

GPU architecture 19

4. GPU architecture

So far, I have discussed why we got here and what the performance is. Now, let us look
closer to how that performance is made possible.

4.1 SIMD and SIMT

How is this possible? In the CUDA design guide, they talk about area use, that the GPU
has more space assigned to computations, while CPUs waste much space on cache. This
picture is no longer valid since GPUs also use a lot of space on caches these days. Instead,
I would claim that the difference is that the GPU is a SIMD machine, single instruction,
multiple data, while the CPU is a MIMD. These terms come from Flynn’s taxonomy
(Figure 2), where we also find SISD, that is old single-core systems, and the must more
exotic MISD, multiple instruction, single data, where multiple processors do the same
work for redundancy, for safety.

FIGURE 2. Flynn’s taxonomy

SIMD, single instruction, multiple data, has a couple of advantages. It simplifies instruc-
tion handling, in that several cores get the same instruction. That means that the whole
system for handling instructions is shared between many computations. In this sense, there
is better area use.

This is, obviously, excellent for operations where one operation must be made on many
data elements. So, is that so common? It is more common than you may realize, and many
algorithms can be rewritten to be more SIMD-friendly.

SISD
Single instruction, single data

Old single-core systems

MISD
Multiple instruction, single data

Multiple for redundance

SIMD
Single instruction, multiple data

GPUs, vector processors

MIMD
Multiple instruction, multiple data

Multi-core CPUs

20 GPU architecture

But what about algorithms that are not SIMD-friendly, where there are differences? That
can be managed by boolean operators, boolean variables used as masks. If you need two
different variants, two branches, you compute both, and then trash the one that one partic-
ular line of computations does not need.

Moreover, SIMD computations are also easier to synchronize. You know exactly when the
other computations (or at least part of them) are computed so some synchronizations can
be skipped.

A rule of thumb here is to store data in arrays. Linked lists, pointers, tree structures, they
can be hard to process in parallel, while arrays are easily passed to multiple processors.

This kind of processing situation is called (or at least closely related to) Data Oriented
Programming (DOP). [14] While OOP tries to optimize programming for the program-
mer, DOP optimizes for performance, for the machine and the end user. Data structures
are selected to fit the computations, instead of the programmer!

Optimizing for the end user instead for the programmer sounds like a good idea! This view
is popular in the game industry, but seems virtually unknown otherwise.

4.2 SIMT, Single Instruction, Multiple Thread

NVidia uses the concept SIMT, Single Instruction, Multiple Thread, for their computing
model. This is a variant of SIMD. I would argue that SIMT is a reformulation of SIMD,
hiding the SIMD processing from the programmer, who sees the parallelism as separate
threads, and gets the view of the computing as to be made in independent threads. This,
however, is not the case. The threads are computed a number at a time, a warp.

FIGURE 3. The OpenGL pipeline (simplified)

Parallelism expressed as threads is still a great improvement over handing arrays in
chunks. This gives us a programming model that demands that the hardware can handle
threads very fast, which is also the case for GPUs. As mentioned in chapter 3.2, this model
fits a graphics processor very well.

Vertex processing:
Transformations

Primitive

Clip & cull

Rasterization
Fragment processing:
shading & texture

Frame buffer
operations:

Z-buffer & stencil
test, write pixel

Vertices Primitives

Fragments

Pixels

assembly,
geometry
processing

GPU architecture 21

4.3 The unified architecture

The current GPUs have a unified architecture. This is unlike early GPUs, which had a
structure that closely followed the graphics pipeline, like the OpenGL pipeline, shown in
Figure 3. The hardware basically had separate hardware for each step, including a number
of computing cores in the vertex and fragment stages. For NVidia, this was the case up to
the G70 architecture, which was roughly structured as shown in Figure 4. Note that it very
closely follows Figure 3.

FIGURE 4. Schematic overview of the G70 GPU

In 2006, the G80 changed this, totally, All the cores in the vertex and fragment stages were
collected into a pool of computing cores, all capable of performing the tasks for both
stages, unified shaders. The data flow now passes twice through the pool of cores, as
shown in Figure 5.

FIGURE 5. Schematic overview of the G80 GPU

This was a great success. The big advantage was that both the vertex and fragment stage
could now access the whole pool, balancing the needs of the two, limiting the problem
with computing bottlenecks.

Geometry/Clip/Cull

VRAM

Vertex processors

Fragment processors

Frame buffer operations

Geometry/Clip/Cull

VRAM

Unified processors

Fragment processors

22 GPU architecture

For graphics, this optimized extreme situations where the balance between the difference
stages is big. One such case is when there are very detailed models, with a lot of vertex
computations, but little fragment processing, simple or no lighting effects etc. This is typi-
cal for 3D design situations, like CAD, where you need to see exactly how the model
looks but there is no need for visual effects like Phong shading.

The other extreme is when you have less detailed models, but much computations at the
pixel level, that is in the fragment shaders. This could be when there is a lot of visual
effects, multiple light sources, bump mapping, ray marching per fragment, or even GPU
computing in the fragment stage. The balancing problem is illustrated in Figure 6.

FIGURE 6. How G80 improved performance with load balancing

This new design was the first architecture that was truly suitable for GPU computing, with
most of the chip dedicated to programmable computing.

4.4 SMs, SPs and shared memory

So let us have a closer look at the inside of the G80. What we find there is the design that
all following GPUs are based on. See Figure 7.

We see how the processors of the G80 are grouped into eight TPCs, texture processing
clusters. Each such cluster has two SMs, streaming multiprocessors, and hardware for tex-
turing.

The SM concept is what we should care the most about. Inside each SM we find eight SPs,
stream processors, which are the processing cores. However, they are not the processor
cores we are used to. They are tightly coupled to a SIMD array, a vector processor, so they
are essentially lanes in a single processor.

Separate vertex and fragment
processors (G70)

Vertex
problem (e.g.

complex
geometry)

Vertex Shader

Fragment Shader

Vertex Shader

Fragment Shader

Fragment
problem (e.g.

advanced
rendering)

Unified processors (G80)

Unified Shader

Unified Shader

GPU architecture 23

FIGURE 7. Vital components in the G80

We also find the SFUs, special function units, which corresponds to the ALU in a CPU,
performing operations that we can’t afford to provide separately for each SP. There is also
instruction handling, register memory for each SP (not shown in the picture), and shared
memory.

There is more inside the chip, of course. Perhaps most important to us is the thread man-
agement. Although the processing is performed as a vector processor, the computing from
our point of view is made in threads, each with its own memory. These threads are man-
aged in hardware, with automatic switching between groups of active threads. This thread
switching is another key component to the efficiency. However, we don’t see anything of
this thread handling, we just use it and it seems totally seamless.

When doing shader programming, we see even less of the architecture. We see threads,
and that is it. With CUDA, OpenCL etc., we see more. We don’t care too much about the
number of SMs, because the work is automatically queued over available SMs, but we do
specify the split over number of threads per SM, and it is often important to make this split
as optimal as possible, to distribute the work to keep the hardware busy, but also to avoid
too much synchronization and passing data. We also need to plan the usage of the shared
memory. More about that later.

Important note: The queuing of work over a number of SMs, which are not capable of
communicating during processing other than by writing and reading global memory, and
even then you can’t rely on a specific block/work group being active since they are
queued, is both effective, simplifying work balancing, as well as complicating many algo-
rithms. Many seemingly simple algorithms are hard to parallelize due to the lack of com-
munication.

G80 TPC TPC TPC TPC TPC TPC TPC TPC

Texture Processor Cluster

Shared memory

Instruction handling

Streaming Multiprocessor

TPC

SM SM

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

24 GPU architecture

So, the numbers we see in a G80 are 16 SMs and 8 cores (SPs) for each SM. These num-
bers are not magical in any way and change with each new architecture. The subsequent
architecture from NVidia, the GT200, sports 10 SPs per SM and 30 SMs in 10 clusters, a
straight upscaling.

The Fermi, in 2010, was the next major change in the hardware. Apart from even more
upscaling, it surprised us by adding on-chip cache memory, the very thing that NVidia had
earlier implied that was a weakness with CPUs. There was also a dramatic increase in dou-
ble precision floating-point performance, 4x higher than before, implying that it was
intended to strengthen the GPU computing use. Otherwise, it was business as usual with
some more upscaling, 16 SMs with 32 SPs each, support for 24576 threads.

The Fermi has even had its own name, a Computing Graphics Processing Unit, CGPU.
However, marketing-wise this generation was a failure for NVidia, because their strong
emphasis on GPU computing let AMD take the lead, and for quite some time, AMD was
the brand of choice for gamers. NVidia could not afford falling behind on their core mar-
ket, so the next generation, Kepler, had more single precision support and NVidia was
back on track. The following architectures, Maxwell and Pascal, has kept NVidia high on
the price/performance scale again.

But don’t count out AMD. While NVidia was busy taking back what they had lost in the
gaming market, AMD took the lead in GPU computing with the R9 series, which for a
while was the chip of choice for mining crypto currencies!

I have not said anything about the GPU architectures from AMD, but generally, they fol-
low the lead of NVidia, in order to match the same OpenGL and DirectX generations.

Hello World! 25

5. Hello World!

This chapter does something completely trivial in a non-trivial way, which is even pretty
unique as far as I know: We will take the super simple “Hello World” problem and solve it
in parallel, not once but several times, for different GPU computing platforms. Thereby
we get a first introduction to all the GPU computing platforms that I intend to cover. As
you will see, the solution requires very different amounts of setup, but in the end they use
kernels that are quite similar.

Let me define the problem to be solved: “Hello World!” should produce the string “Hello
World!” and nothing more. For our purposes, it has to be made in parallel. This is, for all
examples in this chapter, made like this: Take the string “Hello ” and add, using one thread
per character, the offsets 15, 10, 6, 0, -11, 1, to each character, thereby producing “World!”

This super simple problem, embarrassingly parallel and far too small for a parallel prob-
lem, thereby provides us with a first introduction to each platform. Naturally, it is a trivial
problem, so we will go further with more interesting things, which is just what the original
Hello World! is for. Get your first, simple program, running.

5.1 Hello CUDA

Most CUDA tutorials start with some simple example that is often dubbed “Hello World”,
although that is usually an ignorant statement since the examples usually do not output
“Hello World!” as their result. This is understandable, since it is not entirely obvious how
to make an example of parallel computing which has the sole purpose of producing the
string “Hello world!”. However, not without pride, I can present you with exactly that: A
program that is short, simple, does perform parallel processing on the GPU using CUDA,
and the result is indeed “Hello World!”!

So, here it is, the real “Hello world” for CUDA:

#include <stdio.h>

const int N = 16;
const int blocksize = 16;

__global__

26 Hello World!

void hello(char *a, int *b)
{

a[threadIdx.x] += b[threadIdx.x];
}

int main()
{

char a[N] = "Hello \0\0\0\0\0\0";
int b[N] = {15, 10, 6, 0, -11, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

char *ad;
int *bd;
const int csize = N*sizeof(char);
const int isize = N*sizeof(int);

printf("%s", a);

cudaMalloc((void**)&ad, csize);
cudaMalloc((void**)&bd, isize);
cudaMemcpy(ad, a, csize, cudaMemcpyHostToDevice);
cudaMemcpy(bd, b, isize, cudaMemcpyHostToDevice);

dim3 dimBlock(blocksize, 1);
dim3 dimGrid(1, 1);
hello<<<dimGrid, dimBlock>>>(ad, bd);
cudaMemcpy(a, ad, csize, cudaMemcpyDeviceToHost);
cudaFree(ad);
cudaFree(bd);

printf("%s\n", a);
return EXIT_SUCCESS;

}

I hope the source itself explains what it is doing; it takes a string and an array of offsets to
produce “World!” from “Hello “. But a few more clarifications are called for.

What you see here is, in one and the same file, both CPU and GPU code. This integration
is very elegant. The amount of code to compile and launch the GPU kernel is extremely
small.

The __global__ code is the kernel, executed on the GPU, in parallel. Note the threadIdx.x.
That is the thread identifier, which must be used to calculate where in the data to operate.
“Real” CUDA programs use both thread and block identifiers.

We allocate memory on the GPU from the CPU, using cudaMalloc. We can then upload
and download data with cudaMemcpy, using the arguments cudaMemcpyDeviceToHost or
cudaMemcpyHostToDevice to denote the copying direction. Finally, we can dispose of
GPU memory using cudaFree.

One of the most challenging issues when you start with CUDA is the concepts of grid,
block and thread. The grid is the whole computing, which is split into a number of blocks,
which each contains a number of threads. This division scheme describes how the comput-
ing is distributed over the GPU.

Hello World! 27

The weird statement

hello<<<dimGrid, dimBlock>>>(ad, bd);

is the actual execution of the kernel.

This version of the Hello World for CUDA works on any CUDA version. It should be
noted that a simpler version exists for newer CUDA versions, using managed memory.
More about that later (chapter 9.6).

5.2 Hello OpenCL

Hello World for OpenCL is substantially longer. However, much of the complexity is the
setup.

#include <stdio.h>
#include <math.h>
#ifdef __APPLE__

#include <OpenCL/opencl.h>
#else

#include <CL/cl.h>
#endif

const char *KernelSource = "\n" \
"__kernel void hello(\n" \
" __global char* a, \n" \
" __global char* b, \n" \
" __global char* c, \n" \
" const unsigned int count) \n" \
"{ \n" \
" int i = get_global_id(0); \n" \
" if(i < count) \n" \
" c[i] = a[i] + b[i]; \n" \
"} \n" \
"\n";

#define DATA_SIZE (16)

int main(int argc, char** argv)
{

int err; // error code returned from api calls
cl_device_id device_id; // compute device id
cl_context context; // compute context
cl_command_queue commands; // compute command queue

 cl_program program; // compute program
 cl_kernel kernel; // compute kernel
 cl_mem input; // device memory used for the input
array
 cl_mem input2; // device memory used for the
input array
 cl_mem output; // device memory used for the
output array
 size_t global; // global domain size for our
calculation
 size_t local; // local domain size for our cal-
culation

28 Hello World!

int i;
 unsigned int count = DATA_SIZE;

// Input data
char a[DATA_SIZE] = "Hello \0\0\0\0\0\0";
char b[DATA_SIZE] = {15, 10, 6, 0, -11, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0};
// Output data
char c[DATA_SIZE];

// Print original data
printf("%s", a);

cl_platform_id platform;
unsigned int no_plat;
err = clGetPlatformIDs(1,&platform,&no_plat);

// Where to run
err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device_id,

NULL);
if (err != CL_SUCCESS) return -1;
context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);
if (!context) return -1;
commands = clCreateCommandQueue(context, device_id, 0, &err);
if (!commands) return -1;

// What to run
program = clCreateProgramWithSource(context, 1, (const char **) &

KernelSource, NULL, &err);
if (!program) return -1;

err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
 if (err != CL_SUCCESS) return -1;

kernel = clCreateKernel(program, "hello", &err);
if (!kernel || err != CL_SUCCESS) return -1;

// Create space for data and copy a and b to device (note that we
could also use clEnqueueWriteBuffer to upload)

input = clCreateBuffer(context, CL_MEM_READ_ONLY |
CL_MEM_USE_HOST_PTR, sizeof(char) * DATA_SIZE, a, NULL);

input2 = clCreateBuffer(context, CL_MEM_READ_ONLY |
CL_MEM_USE_HOST_PTR, sizeof(char) * DATA_SIZE, b, NULL);

output = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(char) *
DATA_SIZE, NULL, NULL);

if (!input || !output) return -1;

// Send data
err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &input);
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &input2);
err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &output);
err |= clSetKernelArg(kernel, 3, sizeof(unsigned int), &count);
if (err != CL_SUCCESS) return -1;

local = DATA_SIZE;

// Run kernel!
global = DATA_SIZE; // count;
err = clEnqueueNDRangeKernel(commands, kernel, 1, NULL, &global,

&local, 0, NULL, NULL);

Hello World! 29

if (err != CL_SUCCESS) return -1;

clFinish(commands);

// Read result
err = clEnqueueReadBuffer(commands, output, CL_TRUE, 0, sizeof(char)

* count, c, 0, NULL, NULL);
if (err != CL_SUCCESS) return -1;

// Print result
printf("%s\n", c);

// Clean up
clReleaseMemObject(input);
clReleaseMemObject(output);
clReleaseProgram(program);
clReleaseKernel(kernel);
clReleaseCommandQueue(commands);
clReleaseContext(context);
return 0;

}

In this case, the kernel is defined as a set of text strings at the top of the program. A real
OpenCL program will rather put that in a separate file.

5.3 Hello GPGPU

In this section, we will have a look at how to write Hello World! for a fragment shader in
the OpenGL pipeline. This means that the entire computation takes place by drawing
bogus graphics and make computations per fragment, that is per pixel in the generated
geometry.

This example exists in no less than three variants, one for old-style OpenGL, which I try to
avoid, one with few dependencies, and one that uses my lab material for simplifying
shader compilations and model/buffer handling (loadobj.c, GL_utilities.c and MicroGlut).

// Hello World in a shader.
// Kind of twisted, since it uses signed chars.
// Modern OpenGL, using my lab material for simplicity.

#include <stdio.h>
#include <OpenGL/gl3.h>
#include "MicroGlut.h"
#include "GL_utilities.h"
#include "loadobj.h"
#include <sys/times.h>
// uses framework Cocoa

// Add offset (texUnit2) to string (texUnit)
// Negative values end up as > 0.5, adjust them!
static const char *fragSource =
{
"#version 150\n"
"uniform sampler2D texUnit;"
"uniform sampler2D texUnit2;"
"out vec4 outColor;"

30 Hello World!

"in vec2 texCoord;"
"void main(void)"
"{"
" vec4 texVal = texture(texUnit, texCoord);"
" vec4 texVal2 = texture(texUnit2, texCoord);"
" if (texVal2.r > 0.5) texVal2.r -= 1.0;"
" if (texVal2.g > 0.5) texVal2.g -= 1.0;"
" if (texVal2.b > 0.5) texVal2.b -= 1.0;"
" if (texVal2.a > 0.5) texVal2.a -= 1.0;"
" outColor = texVal + texVal2;\n"
"}"
};

// Vertex shader, pass position and texcoord
char *vs =
{
"#version 150\n"
"in vec3 inPosition;"
"in vec2 inTexCoord;"
"out vec2 texCoord;"
"void main()"
"{"
" texCoord = inTexCoord;"
" gl_Position = vec4(inPosition, 1.0);"
"}"
};

GLfloat vertices[] = {-1.0f,-1.0f,0.0f,
-1.0f,1.0f,0.0f,
1.0f,-1.0f,0.0f,
1.0f,1.0f,0.0f };

GLfloat texcoord[] = {0.0f, 1.0f,
0.0f, 0.0f,
1.0f, 1.0f,
1.0f, 0.0f};

unsigned int indices[] = {0,1,2, 2,1,3};

Model *m;
GLuint shader;

// declare texture size, the actual data will be a vector
// of size texSize*1*4 = N

#define N 16
// test data
char a[N] = "Hello \0\0\0\0\0\0\0\0\0\0";
char b[N] = {15, 10, 6, 0, -12, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
unsigned char c[N];
#define texSize 4

void display()
{

DrawModel(m, shader, "inPosition", NULL, "inTexCoord");
glutSwapBuffers();

printf("%s",a);
// and read back
glReadPixels(0, 0, texSize, 1, GL_RGBA,GL_UNSIGNED_BYTE,c);

Hello World! 31

// print out results
printf("%s\n",c);
exit(0);

}

// Not exported by GL_utilties:
GLuint compileShaders(const char *vs, const char *fs, const char *gs,
const char *tcs, const char *tes,

const char *vfn, const char *ffn, const char
*gfn, const char *tcfn, const char *tefn);

GLuint LoadTexture(unsigned char *a, GLuint texunit)
{

GLuint tex;
glActiveTexture(texunit);
glGenTextures (1, &tex);
glBindTexture(GL_TEXTURE_2D,tex);
glTexImage2D(GL_TEXTURE_2D,0,GL_RGBA,

texSize,1,0,GL_RGBA,GL_UNSIGNED_BYTE, a);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
return tex;

}

int main(int argc, char **argv)
{
// set up glut to get valid GL context and
// get extension entry points
 glutInit (&argc, argv);

glutInitContextVersion(3, 2);
glutInitWindowSize (4, 1);

 glutCreateWindow("TEST1");

// create string texture
 GLuint tex = LoadTexture(a, GL_TEXTURE0);
// create offset texture
 GLuint offtex = LoadTexture(b, GL_TEXTURE1);

// Compile shader
shader = compileShaders(vs, fragSource, NULL, NULL, NULL, "vs", "fs",

NULL, NULL, NULL);

// Inform shader of texture units
glUniform1i(glGetUniformLocation(shader, "texUnit1"), 0); // Texture

unit 0
glUniform1i(glGetUniformLocation(shader, "texUnit2"), 1); // Texture

unit 1

m = LoadDataToModel(vertices, NULL, texcoord, NULL, indices, 4, 6);

// Ask for a redraw
glutDisplayFunc(display);
glutMainLoop();
exit(0);

}

Some notes: We are using all four channels of the texels, which is why the texture width is
1/4 of the data size. We also need to mess a bit with the data since we upload to unsigned
chars. This problem disappears when using floating-point buffers. See chapter 11.

32 Hello World!

5.4 Hello Compute Shaders

OpenGL Compute Shaders is a relatively new development.

In this case, I chose to use MicroGlut for creating an OpenGL context. On the computer-
graphics.se page, you can also find a stand-alone Linux version complete with context cre-
ation.

Also note that this code also contains a file loader, so the kernel can be in a separate file.
This is desirable for the OpenCL code as well.

Like with the fragment shader version, I have skipped some code for compiling shaders,
loading a file and printing out errors.

5.4.1 Main program

Here is the main program code. It sets up an OpenGL context, loads and compiles a shader
(by standard code, not included).

int main(int argc, char **argv)
{
// Let GLUT create a GL context

glutInit (&argc, argv);
 glutInitContextVersion(4, 4); // Failed with 4.5 on my PC. The com-
pute shader works even on old-style GL!

glutCreateWindow("Hello");

// Load and compile the compute shader
 GLuint p =loadShader("hello.cs");

GLuint ssbo, ssbo2; //Shader Storage Buffer Object

// Some data
#define N 16

char a[N] = "Hello \0\0\0\0\0\0";
int ac[N];
int b[N] = {15, 10, 6, 0, -11, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
int *ptr;
int i;

printf("%s", a);

// PROBLEM: No bytes in shaders!
// I chose to package to int on the CPU.
// Convert string to int:

for (i = 0; i < N; i++) ac[i]=a[i];

// Create buffer, upload data
glGenBuffers(1, &ssbo);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo);
glBufferData(GL_SHADER_STORAGE_BUFFER, 16 * sizeof(int), &ac,

GL_STATIC_DRAW);

// Tell it where the input goes!

Hello World! 33

// The "5" matches a "layuot" number in the shader.
// (Can we ask the shader about the number? I must try that.)

glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 5, ssbo);

// Same for the other buffer, offsets, ID 6
glGenBuffers(1, &ssbo2);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo2);
glBufferData(GL_SHADER_STORAGE_BUFFER, 16 * sizeof(int), &b,

GL_STATIC_DRAW);
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 6, ssbo2);

// Get rolling!
 glDispatchCompute(1, 1, 1); //Work groups launch

// Get data back!
glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo);
ptr = (int *)glMapBuffer(GL_SHADER_STORAGE_BUFFER, GL_READ_ONLY);

// Convert int to string:
for (i=0; i < 16; i++)
{

a[i] = ptr[i];
}
printf("%s\n", a);

}

The main program should be of most interest, the rest is reusable code. First we create an
OpenGL context. We load and compile the shader. Above, we find code that will print out
error messages from the compilation. Then we create buffers on the GPU and upload the
data to them, and tell the shader about the buffers.

Then we are ready to run and call glDispatchCompute(). Finally, download the result.

5.4.2 Kernel

As for all other cases, the kernel itself is comfortably simple.

There are a few notable peculiarities here:

You may note that the work group size is defined by the compute shader, not by the main
program. However, this is not a limitation, but rather a freedom, because we can also do
that from the CPU.

A more disturbing limitation is that a compute shader does not allow byte-sized variables!
Therefore, the CPU part converts the data to standard-sized integers. Given that, the shader
itself is as simple as the earlier ones.

#version 430
#extension GL_ARB_compute_shader : enable
//#extension GL_ARB_shader_storage_buffer : enable
#define width 16
#define height 1

// Compute shader invocations in each work group

34 Hello World!

layout(std430, binding = 6) buffer offsbuf {int offs[];};
layout(std430, binding = 5) buffer strbuf {int str[];};
layout(local_size_x=width, local_size_y=height) in;

//Kernel Program
void main()
{

int i = int(gl_GlobalInvocationID.x);
str[i] = str[i] + offs[i];

}

5.5 Direct Compute and Vulkan

Although we do acknowledge Direct Compute and Vulkan to be significant frameworks
for our purposes, they are left out in order not to make the focus too scattered and this
chapter not too repetitive. See chapter 13 for a discussion and simple example of Direct
Compute.

CUDA 35

6. CUDA

Our first pick for learning GPU computing is CUDA, for the simple reason that it is the
easiest starting point. It sports an integrated code model that makes simple programs very
simple, which is, as you saw in chapter 5, not quite the case for the others. For bigger
problems, the difference rapidly gets insignificant, but for an easy start, let us use CUDA.

CUDA is officially an acronym for “Compute Unified Device Architecture” (but see the
cover for my interpretation). It is developed by NVidia and is only available on NVidia
boards. A G80 or better GPU architecture is required, and as you may expect, the newer
hardware, the newer CUDA version you can use. It is designed to hide the graphics heri-
tage and add control and flexibility.

Since this means that computing is taken place outside the domain of your CPU, we can
consider the following model for our computing:

• 1. Upload data to GPU

• 2. Execute kernel

• 3. Download result

The same holds for other platforms, like shader-based solutions and OpenCL However, a
major difference to other platforms is that CUDA has integrated source, which means that
the source of host and kernel code can be in the same source file! This makes the most dif-
ference for small examples, and that is also why we start with it.

Since CPU and GPU code can reside in the same file, CUDA uses special modifiers to
identify kernel code. We will soon see how that looks.

Thus, CUDA is both an architecture (essentially the G80 architecture) and a C/C++ exten-
sion. The basic model is that we spawn a large number of threads. These threads will be
ran in parallel, or rather virtually in parallel. They will not all be computed in parallel, they
will be processed in batches, as much as the GPU can handle at a time. This is exactly
what happens in graphics rendering as well; fragments and vertex computations not quite
executed in parallel, but in batches. The difference is that in CUDA, these batches are
more visible to you.

36 CUDA

Compared to a graphics program, a CUDA program looks much more like an ordinary C
program! Even though the hardware is made to process pixels, we don’t see them any
more, just arrays of whatever data we want to work with.

6.1 Simple CUDA example

Here follows a working, compileable example. This is as simple as Hello World!, but I
believe that another simple example doesn’t hurt, and it is even a little bit simpler since my
goal was to make a truly minimal example. The central components remain the same.

#include <stdio.h>

const int N = 16;
const int blocksize = 16;

__global__
void simple(float *c)
{

c[threadIdx.x] = threadIdx.x;
}

int main()
{

int i;
float *c = new float[N];
float *cd;
const int size = N*sizeof(float);

cudaMalloc((void**)&cd, size);
dim3 dimBlock(blocksize, 1);
dim3 dimGrid(1, 1);
simple<<<dimGrid, dimBlock>>>(cd);
cudaMemcpy(c, cd, size, cudaMemcpyDeviceToHost);
cudaFree(cd);

for (i = 0; i < N; i++)
printf(“%f “, c[i]);

printf(“\n”);
delete[] c;
printf(“done\n”);
return EXIT_SUCCESS;

}

In the code, you can easily spot the computing kernel, a thread identifier, allocation of
GPU memory, specification of 1 block and 16 threads, the kernel call, the readback of data
to CPU, and deallocations.

6.2 Modifiers for code

Since we are mixing CPU and GPU code, we must instruct the compiler on what is what.
Three modifiers are built into CUDA to specify how code should be used:

__global__ executes on the GPU, invoked from the CPU. This is the entry point of the ker-
nel.

CUDA 37

__device__ is local to the GPU, not callable from the CPU. You use this for subroutines
and methods used by the main kernel, the __global__.

__host__ is CPU code. This is superfluous, since it is the default. You may use it for mak-
ing your code more readable.

The modifiers are illustrated in Figure 8.

FIGURE 8. CUDA code modifiers

6.3 Memory management

The memory management calls are similar to the calls in the C libraries, where we have
malloc(), calloc() and free(), but now they are calls done by the CPU to allocate and man-
age memory on the GPU.

cudaMalloc(ptr, datasize)

This allocates a chunk of memory on the GPU.

cudaFree(ptr)

This frees the memory allocated by cudaMalloc.

cudaMemCpy(dest, src, datasize, arg)

This copies data between CPU and GPU, datasize bytes from src to dest. This is rather
peculiar, you must specify direction using these constants:

arg = cudaMemcpyDeviceToHost
or cudaMemcpyHostToDevice

These constants may seem unnecessary, but the dest and src pointers can not be identified
as CPU or GPU memory so we need to keep track of that ourselves.

The easiest way to manage memory with CUDA, if you are on a fairly recent GPU
(CUDA capability 6) is to take advantage of unified memory. This allows you to access the
same memory from CPU and GPU. You must still allocate it with CUDA calls.

cudaMallocManaged(ptr, datasize)

For this kind of memory, no cudaMemCpy is needed, just pass the pointer.

To make matters even easier, you can declare a variable __managed__, which will then
have the same capability. We will discuss this further in chapter 9.6.

CPU

__host__ myHostFunc()

GPU
__device__ myDeviceFunc()

__global__ myGlobalFunc()

38 CUDA

6.4 Kernel execution

The kernel is executed by a call with very odd syntax:

simple<<<griddim, blockdim>>>(...)

That is KERNELNAME<<<argument1, argument2>>>(some other arguments)

The arguments in the parenthesis are the argument sent to the kernel entry point, the
__global__. The ones within <<<>>> are something else, they specify the size of the com-
putation, and how it should be split into blocks and threads.

The griddim argument specifies the number of blocks, and the blockdim argument speci-
fies number of threads per block.

When working with blocks and threads in the kernel, you need to use the built-in variables
threadIdx, blockIdx, blockDim and gridDim, which tells the thread what thread numer it
has, in what block, and the dimensions of each (as specified above).

If you are used to OpenGL, you may note that no prefix is used for built-in variables, like
GLSL does. We will look further into blocks and threads in chapter 6.7.

6.5 Compiling Cuda

If you start from the CUDA development kit, you will find that the CUDA examples are
compiled by gigantic makefiles. Don’t panic, they are just auto-generated makesfiles with
a lot of unnecessary fluff. It all boils down to calling a single compiler, nvcc.

nvcc is nvidia’s CUDA compiler. On Unix systems you will usually find it in

/usr/local/cuda/bin/nvcc

FIGURE 9. CUDA compilation

Source files are suffixed .cu. In order to compile a simple example like “simple” above, all
you need to do is a simple command-line like this:

C/CUDA program
code .cu

CUDA compilation
behind the scene

nvcc CPU program

PTX code

PTX to target
Target binary
code

CUDA 39

nvcc simple.cu -o simple

Of course it is not quite that simple for all cases. Like with all compilers, there are options
for including libraries as well as other options, enabling/disabling language features etc.)

However, this simplicity hides a much more complex compilation than we are used to.
What happens behind the scene is illustrated in Figure 9.

The nvcc compiler doesn’t just compile a program, it splits the code into CPU and GPU
parts, sends the CPU part to GCC/G++, and compiles the other to something called PTX
code. This code is an intermediate code, which is compiled to your target GPU when exe-
cuted. This two-step process is there to allow a compilation for any kind of (supported)
GPU, while still allowing each GPU to have the instruction set it needs.

6.5.1 Compiling CUDA for larger applications

It may seem like your CUDA-using application should be written entirely as .cu files.
Anyone involved in a large project that needs CUDA acceleration late in the process will
realize that that is out of the question. Fortunately, this is not the situation, we do not need
to port the rest of the project.

For instance, if your program is a C or C++ program, you can compile it with gcc as usual,
and then link with the CUDA parts. You use nvcc for the .cu files and gcc for .c/.cpp files.
You can mix in any language that produces code that can be linked with C/C++. You may
do the final linking with gcc or g++. In any event, the final linking must include C++ runt-
ime libs.

This gives us one little hint: .cu files are really C++. Indeed, .cu allows us to use C++
classes, even in the kernel!

6.5.2 Example of multi-unit compilation

Thus, multi-unit compilation is quite easy. Here follows a simple example with one .c file
and one .cu file. They are called cudademokernel.cu and cudademo.c.

I compile them with

nvcc cudademokernel.cu -o cudademokernel.o -c
gcc -c cudademo.c -o cudademo.o -I/usr/local/cuda/include

Then I link them. To make it simple, I use g++ to include the C++ runtime.

g++ cudademo.o cudademokernel.o -o cudademo -L/usr/local/cuda/lib -lcuda
-lcudart -lm

I also included some more common linking options, like the location of the CUDA runt-
ime library and the math library. You will need them in just about any nontrivial example.

40 CUDA

6.5.3 Compiling for MacOSX

Compiling for MacOSX is a bit different than Linux. Since you add most libraries as
frameworks, with the -framework option, which nvcc doesn’t have, this information must
be added as linker options.

Thus, a compilation line may look something like this:

/usr/local/cuda/bin/nvcc program.cu -L /usr/local/cuda/lib -lcudart -o
program -Xlinker -framework,GLUT,-framework,OpenGL

for a program “program.cu” that uses the frameworks GLUT and OpenGL.

6.6 Executing a Cuda program

CUDA programs are executed like any other program. From the command-line, the pro-
gram simple is launched with

./simple

Often, this is all you need. However, this depends on your system, your OS as well as
CUDA version. On some Linux installations, you may need to set environment variable to
find Cuda renting.

export DYLD_LIBRARY_PATH=/usr/local/cuda/lib:$DYLD_LIBRARY_PATH

This may look a little different between different systems and CUDA versions.

6.7 Computing with CUDA

Let us now look a bit closer to the internal organization of CUDA. We have touched upon
blocks and threads. The overall processing organization can be summarized as follows:

• 1 warp = 32 threads

• 1 kernel - 1 grid

• 1 grid - many blocks

• 1 block - 1 SM

• 1 block - many threads

6.8 Warps

A warp is the minimum number of data items/threads that will actually be processed in
parallel by a CUDA capable device. This number may vary with different GPUs but has
been surprisingly stable at 32.

We usually don’t care so much about warps but rather discuss threads and blocks, but
warps are useful to take into account when optimizing.

CUDA 41

6.9 Kernel

The kernel is the GPU program. We usually consider one at a time, although that is not a
necessary limitation in modern GPUs. The kernel is mapped to a computing grid.

6.10 Grid, blocks and threads

A grid is the top level of the computing structure. It consists of a number of blocks. Any
running block is mapped to one SM. However, there may be many more blocks than SMs.
It is recommended that you use more blocks than SMs, so they can be organized in a
queue, and processed as SMs get freed up.

Every block consists of a number of threads. It is recommended than the number of
threads in a block is a multiple of 32.

You should use many threads and many blocks! More than 200 blocks are recommended,
but it is virtually unlimited. The number of threads is more limited, but you should use
plenty of them. About 256 tends to be optimal.

Thus, grid, blocks and threads form a hierarcical model, illustrated in Figure 10.

FIGURE 10. Hierarchy of grid, blocks and threads

In the figure, it looks like the grids and blocks are organized in 2 dimensions. This is not
strictly true, but also not strictly false. It is legal to use up to three dimensions, but the
range in the third dimension is more limited than for the two first, so you will often just
use two.

6.11 Indexing data with thread/block IDs

In order to know which thread that is running, your kernel code should inspect the built-in
variables blockIdx, blockDim and threadIdx and compute a n index from them, indicating
what data it should process. Here is another simple kernel, which does this in one dimen-
sion, supporting multi-block computing by calculating an index from both thread and
block numbers.

Grid

Block 0,0 Block 1,0 Block 2,0 Block 3,0

Block 0,1 Block 1,1 Block 2,1 Block 3,1

gridDim.x * gridDim.y blocks

Block n,n

blockDim.x * blockDim.y threads

Thread 0,0 Thread 1,0 Thread 2,0 Thread 3,0

Thread 0,1 Thread 1,1 Thread 2,1 Thread 3,1

Thread 0,2 Thread 1,2 Thread 2,2 Thread 3,2

Thread 0,3 Thread 1,3 Thread 2,3 Thread 3,3

42 CUDA

// Kernel that executes on the CUDA device
__global__ void square_array(float *a, int N)
{

int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx<N) a[idx] = a[idx] * a[idx];

}

The host part of this program looks like this:

// main routine that executes on the host
int main(int argc, char *argv[])
{

float *a_h, *a_d;// Pointer to host and device arrays
const int N = 10;// Number of elements in arrays
size_t size = N * sizeof(float);
a_h = (float *)malloc(size);
cudaMalloc((void **) &a_d, size); // Allocate array on device

// Initialize host array and copy it to CUDA device
for (int i=0; i<N; i++) a_h[i] = (float)i;
cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);

// Do calculation on device:
int block_size = 4;
int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);
square_array <<< n_blocks, block_size >>> (a_d, N);

// Retrieve result from device and store it in host array
cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);

// Print results and cleanup
for (int i=0; i<N; i++) printf(“%d %f\n”, i, a_h[i]);
free(a_h); cudaFree(a_d);

}

Note that there is now a variable number of blocks. We may also note that the block size is
only four, which is much too small for a good computation.

The vital part here is the index calculation, using the block and thread numbers. In this
case, we only use one dimension. For bigger problems, you primarily use two, X and Y.

6.12 Julia example

The Julia set is a family of fractals based on iterating of complex functions. It is, together
with the Mandelbrot, one of the most famous fractals. It was described in Volume 1, so
here I will only briefly cite its definition. It is created by iterating the function

zk+1 = zk
2 + L

where L is a constant. Every pixel is scaled and defines the starting z, and the output is the
number of iterations until z is outside a certain radius.

Thus, each thread will compute a single pixel. We should assume that the image can be at
least a million pixels, possibly more. A million threads or more? Yes, and that is no prob-
lem at all for the GPU.

CUDA 43

This is a bigger problem than before, processing a number of iterations for each pixel in an
entire image. Addressing calculation should be done in 2D. Not only do we avoid running
out of allowed range for the X coordinate, it is also very convenient since each pixel
comes in 2D.

The problem requires considerable computations for every pixel. However, each computa-
tion is independent, which makes this trivial to implement in parallel, and we can easily
get full performance out of the GPU. We say that the problem is embarrassingly parallel.
Not only is the problem easy to implement in parallel, the amount of computations for
each thread also means that the problem is not memory limited.

Furthermore, the problem is somewhat tricky when performed with a small number of
threads, on a multi-core CPU. In that case, it is important to do proper load balancing to
utilize each core optimally. On the GPU, however, this problem is must smaller. The mas-
sive parallelism makes the problem so fine-grained that it practically balances itself. There
is a certain waste in areas where deep iterations are processed together (in the same warp -
more about that later) with areas that diverge quickly, but for most of the fractal, we can
finish entire warps quickly and spend more time on the expensive parts automatically.

FIGURE 11. The Julia fractal, rendered in real time

The result is shown in Figure 11. We can hardly wish for a nicer problem for showing off
the computational power of the GPU!

For this demo, we use a simple OpenGL output. This will waste some performance in
passing data back and forth, but we will still get amazing performance. See further
chapter 15.2.

I will only include the kernel and the julia() subroutine here. The kernel calls the function
julia() which performs the calculation. Notice how the __device__ modifier is used to
identify GPU code.

__device__ int julia(int x, int y, float r, float im)

44 CUDA

{
 const float scale = 1.5;
 float jx = scale * (float)(DIM/2 - x)/(DIM/2);
 float jy = scale * (float)(DIM/2 - y)/(DIM/2);

 cuComplex c(r, im);
 cuComplex a(jx, jy);

 int i = 0;
 for (i=0; i<200; i++)
 {
 a = a * a + c;
 if (a.magnitude2() > 1000)
 return i;
 }

 return i;
}

__global__ void kernel(unsigned char *ptr, float r, float im)
{
 // map from blockIdx to pixel position
 int x = blockIdx.x * blockDim.x + threadIdx.x;
 int y = blockIdx.y * blockDim.y + threadIdx.y;

 int offset = x + y * DIM;

 // now calculate the value at that position
 int juliaValue = julia(x, y, r, im);
--- calculate colors ---
 ptr[offset*4 + 0] = red;
 ptr[offset*4 + 0] = green;
 ptr[offset*4 + 0] = blue;
 ptr[offset*4 + 3] = 255;
}

We conclude that the Julia demo uses many blocks as well as many treads in each block.
This distribution should be made in a way that makes sure all hardware is in use as much
as possible. We also see an index calculation by thread and block. We have made it to the
first example that makes significant computations with large data output.

Let us also draw some conclusions about indexing: Every thread does its own calculation
for indexing memory! This may seem wasteful but this part of code is expected so the
GPU can optimize it well. We use blockIdx, blockDim, threadIdx in 1, 2 or 3 dimensions,
with 2 dimensions being the typical choice.

Memory access 45

7. Memory access

The problem of memory access is vital in GPU computing. Memory access is all too often
the bottleneck of a parallel computation, so we need to do what we can to handle it. There
are several memory types and memory access paths in a GPU, more than you may expect.

In this chapter, we will mainly deal with global and shared memory. A later chapter will
discuss more memory access, including the important topic of coalescing.

FIGURE 12. Memory model for CUDA

We can identify the following memory types/access paths:

• Global

• Shared

• Constant (read only)

• Texture cache (read only)

• Local

• Registers

Global memory

Constant memory

Texture memory

Accessible
by CPU

VRAM
on-board

On-chip
memory

memory

Block 0,0

GPU (Grid)

Shared memory

Registers Registers

Local
memory

Local
memory

Block 0,1

Shared memory

Registers Registers

Local
memory

Local
memory

Thread 0,0 Thread 0,1 Thread 0,0 Thread 0,1

46 Memory access

When writing a CUDA program, you usually don’t care so much about these to begin
with, but the difference is so big that you will soon want to take at least some steps to opti-
mize. The first step is to learn about shared memory.

7.1 Global memory

Global memory is plentiful, but you should expect it to be slow, much slower than most of
the system. A global memory access has a whopping 400-600 cycles latency! The band-
width is very good but the response time for a single access is not as impressive,

Due to this latency, it often pays to use shared memory fast temporary storage, as a kind of
“manual cache”. You should also make sure global memory access is ordered properly,
with coalescing for the memory accesses! That means continuous addresses, aligned on a
power of 2 boundary, addressed in order of thread numbers... See chapter 9.1.

7.2 Shared memory

Shared memory is a small memory bank, local to each SM, and thereby to each block. The
amount of data is not extremely small, but with something like 48k-96k per block in a
modern GPU, it clearly isn’t a big data buffer but rather a small buffer for temporary use.
But this use is important!

This memory is roughly 10 times faster to access than global memory. Let us consider the
case where the global memory has a latency of 440 cycles (actual numbers from the Tesla
K20/Kepler GPU) and the shared memory 48 cycles (same GPU). This means that if you
need to access a certain data item 8 times, if you do it directly in global memory, it will
take 3520 cycles, but if we read the item to shared memory, it will only take 824 cycles!

This is disregarding cache and queuing effects in the GPU, so the number is not exact, but
it can give you a rough estimate of the expected effect.

In CUDA, shared memory is declared __shared__:

__shared__ float a[SOMESIZE];

In OpenCL, shared memory is called local memory and is declared __local:

__local float a[SOMESIZE];

In OpenGL compute shaders, shared memory is declared shared:

shared float a[SOMESIZE];

7.3 Example: Matrix multiplication

The task of multiplying two large matrices is one of the most common examples in GPU
computing. You will find it in the CUDA NVidia programming guide [3], and for a reason.
It gives us a pure and (relatively) simple case where shared memory matters a lot.

Memory access 47

To multiply two N*N matrices, every item will have to be accessed N times! A naive

implementation uses 2N3 global memory accesses! How can we improve on that? The
computations are simple, so it is likely that we have a memory bound operation.

FIGURE 13. Matrix multiplication, output is the dot product of a row tiles a column

7.3.1 Matrix multiplication on CPU

This is a simple triple “for” loop. This is so wonderfully simple that you want to believe
that it is good, even optimal. Even on the CPU, we can do better (i.e. split into multiple
threads), but our goal is to make a massively parallel version.

void MatrixMultCPU(float *a, float *b, float *c, int theSize)
{

int sum, i, j, k;

// For every destination element
for(i = 0; i < theSize; i++)

for(j = 0; j < theSize; j++)
{

sum = 0;
// Sum along a row in a and a column in b
for(k = 0; k < theSize; k++)

sum = sum + (a[i*theSize + k]*b[k*theSize + j]);
c[i*theSize + j] = sum;

}
}

7.3.2 Naive GPU version

The typical first try when porting a CPU program to the GPU is to replace outer loops by
thread indices. So, let us do just that.

__global__ void MatrixMultNaive(float *a, float *b, float *c, int the-
Size)
{

int sum, i, j, k;

i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;

// For every destination element
sum = 0;
// Sum along a row in a and a column in b

48 Memory access

for(k = 0; k < theSize; k++)
sum = sum + (a[i*theSize + k]*b[k*theSize + j]);

c[i*theSize + j] = sum;
}

Looks good, right? Short and easy to understand. Yes, but every thread makes 2N global
memory accesses! This can be significantly reduced using shared memory.

7.3.3 Optimized GPU version

In order to optimize, we can first make this observation: If we want to compute a group of
output pixels, they will share some data. Every pixel in the same row will share the same
input row in the left input matrix, and the same for pixels in the same column and the right
matrix. See Figure 14.

FIGURE 14. Strategy: For a patch of output, a limited number of rows and columns contribute

We can take advantage of this. What we need to do is to store data that will be used multi-
ple times in shared memory. Shared memory is local to the SM, and thereby much faster.

However, assuming that the matrices can be very large, we must limit ourselves to a part of
the input data that we know fits in shared memory. We can handle that by reading a part of
the input data at a time. See Figure 15.

Our strategy is like this:

1) We split the input (A, B) and output (C) matrices into patches of equal size that will fit
in shared memory. This split is for a specific output patch (C) that will be produced by one
single block.

2) Each thread in the block is now responsible for reading one single item of A and B.
Note that this does not have to me an item that the tread itself needs! For some problems,
it may be more convenient to have each thread reading a part of the data, but the general
principle is to split the reading to several threads.

3) Synchronize! All threads in the block must have read its data before continuing.

4) Compute and accumulate the dot product result for this part of the matrix only.

5) Synchronize again, continue with the next two input patches.

Memory access 49

FIGURE 15. GPU implementation, using a sequence of input patches

For each patch that is processed, the whole (shaded) area is loaded into shared memory,
and then we calculate the contribution to the dot product that should end up in the output
item for the thread in question. See Figure 16.

FIGURE 16. Output is accumulated as the dot product of sub-rows and sub-columns of parts of
the matrices

The optimized GPU version follows here.

__global__ void MatrixMultOptimized(float* A, float* B, float* C, int
theSize)
{

int i, j, k, b, ii, jj;

// Global index for thread
i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;

float sum = 0.0;
// for all source patches
for (b = 0; b < gridDim.x; b++)
{

__shared__ float As[BLOCKSIZE*BLOCKSIZE];
__shared__ float Bs[BLOCKSIZE*BLOCKSIZE];

// Index locked to patch
ii = b * blockDim.x + threadIdx.x;

Destination
element for
thread

Destination
patch for
thread All patches on the

same row in A are
needed to produce the
destination patch

For every patch, the thread reads one
element matching the destination element

And all patches

C A B

in the same
column of C

50 Memory access

jj = b * blockDim.y + threadIdx.y;

As[threadIdx.y*blockDim.x + threadIdx.x] = A[ii*theSize + j];
Bs[threadIdx.y*blockDim.x + threadIdx.x] = B[i*theSize + jj];

__syncthreads(); // Synchronize to make sure all data is loaded

// Loop, perform computations in patch
for (k = 0; k < blockDim.x; ++k)

sum += As[threadIdx.y*blockDim.x + k]
* Bs[k*blockDim.x + threadIdx.x];

__syncthreads(); // Synch so nobody starts next pass prematurely
}

C[i*theSize + j] = sum;
}

We can find these parts of the code:

• Allocate shared memory

• Calculate indices both local to the patch and globally

• Copy one element to shared memory

• Loop over row/column in patch, compute, accumulate result for one element

• Write result to global memory

The result is something like 25-30 times faster on my computer! So what did I do? First, I
must use a decent number of threads and blocks, so the computation is reasonably bal-
anced. I use shared memory for temporary storage to reduce global memory access. Note
that all threads read one item, but use many! Finally, I synchronize after any stage where
the threads depend on each other.

There is, however, one weakness in my measure: I compare with single-thread CPU. For a
fair comparison, I should split the CPU version to multiple cores.

7.4 Modified computing model

I suggested a simple computing model in chapter 6. Now we can expand that a little bit, as
follows.

• Upload data to global GPU memory

• For a number of parts, do:

• Upload partial data to shared memory

• Process partial data

• Write partial data to global memory

• Download result to host

This gives us a better view on the structure of a typical CUDA/GPU computing solution.

More language features 51

8. More language features

In this chapter, I will discuss some features and details, mainly in CUDA.

8.1 Synchronization

As soon as you do something where one part of a computation depends on a result from
another thread, you must synchronize!

In a thread, local to a group, this is done with this call:

__syncthreads()

When using shared memory, this will typically work like this:

• Read to shared memory

• __syncthreads()

• Process shared memory

• __synchthreads()

• Write result to global memory

This seems simple, even trivial. Do we need so synchronize when everybody are doing the
same thing anyway? However, since not all threads are running at the same time, we need
to wait sometimes. Synchronization simply means “wait until everybody are done with
this part”.

However, this is local to a block only. We return to global synchronization in the next sec-
tion.

Although we have a SIMD/SIMT machine, note that deadlocks can still occur! CUDA
allows loops, so if you set up a locking mechanism with semaphores, you can get stuck in
a loop that never unlocks. If you try to set up semaphores to handle dependencies between
different blocks, I can almost guarantee that you get deadlocks. More about that below.

52 More language features

8.1.1 Global synchronization

There is a big limitation in synchronization with __synchthreads(): It can only be done
within a block! No synchronization is possible between blocks!

Why is this a necessary limitation? That is because all blocks are not active at the same
time! We may have more blocks than SMs, so blocks are queued until an SM is free! So
don’t even think about having one block waiting until another block has finished. If that
other block waits to start executing, you have a solid deadlock on your hands.

But what if my algorithm must synchronize globally? There are many such cases, where a
part of an algorithm depends on the result of totally different parts of the computation.

The answer is simple: You run one iteration in one kernel run, and then you finish that ker-
nel run. Once all blocks have finished, you can launch a new iteration.

And you need to wait until the previous kernel run finishes, otherwise you may have sev-
eral runs overlapping, getting conflicts over accessing the same data.

Thus, there are three synchronization calls, one for the kernel code and two for the host:

__syncthreads()
cudaDeviceSynchronize()
cudaStreamSynchronize()

__syncthreads() is used inside a kernel, and affects the current block. Stop thread until all
threads in the block reach the location!

cudaDeviceSynchronize() is used from the host. Wait until all current kernels finish.

cudaStreamSynchronize() waits until all kernels in a stream finish. We have not talked
about streams yet, though.

8.2 Error checking

So far, we have basically expected our programs to work flawlessly. As we all know, large
programs without bugs is a dream. We must check for errors.

Most CUDA function calls from the host return error codes. However, kernel launches do
not, so we check for errors there with separate calls. The main calls are simple: cudaGet-
LastError(), which gets the latest error and removes it from the list of errors, and cudaP-
eekLastError(), which looks at the latest error without removing it,

But note that many errors do not occur at the time of the function call. These are asynchro-
nous errors. They happen after the call is made. For those, you call cudaDeviceSynchro-
nize() and check its returned error code.

More language features 53

8.3 Query devices

You can’t trust all devices to have the same, or even similar, data. The number of SMs vary
a lot, and, more importantly, the amount of shared memory, registers and maximum num-
ber of threads in a block vary between different GPU generations. You may design for the
current boards and a few generations back (all the way back to G80 if you are ambitious),
but the boards arriving in the future may have totally different data. You can not assume
that everything grows.

What your program can do is to query CUDA for a list of features. This is made using cud-
aGetDeviceProperties().

Here follows two examples. Both are a bit small, few SMs, because both are portable
chips. Here is the query result from my old laptop (9400M):

---- Information for GeForce 9400M ----
Compute capability: 1.1
Total global memory (VRAM): 259712 kB
Total constant Mem: 64 kB
Number of Streaming Multiprocessors (SM): 2
Shared mem per SM: 16 kB
Registers per SM: 8192
Threads in warp: 32
Max threads per block: 512
Max thread dimensions: (512, 512, 64)
Max grid dimensions: (65535, 65535, 1)

My newer laptop has a more modern GPU, not the absolutely latest but at least a pretty
capable Kepler (GT 650M). Here is the query result for that:

---- Information for GeForce GT 650M ----
Compute capability: 3.0
Total global memory/VRAM: 523968 kB
Total constant Mem: 64 kB
Number of Streaming Multiprocessors (SM): 2
Shared mem per SM: 48 kB
Registers per SM: 65536
Threads in warp: 32
Max threads per block: 1024
Max thread dimensions: (1024, 1024, 64)
Max grid dimensions: (2147483647, 65535, 65535)

That is quite a bit of information. So, what is important to us?

They have different compute capability. This basically means what generation of GPU
architecture we have. The question for this is whether your program use features from a
later chip, so this tells whether your program has any chance at all to work on this chip.

The amount of shared memory is maybe the most important piece of information. Here
you can see whether your assumptions of available shared memory holds, if your program
will fit in the memory.

54 More language features

Then we have the maximum number of threads and the maximum dimensions. Again, you
can check whether we fit in the hardware.

We have the number of threads in warp. This rarely change but some day it might. You will
often ignore this, unless you use warp-based tricks to avoid synchronizations.

The number of SMs basically gives you the lower bound for the number of blocks you
should use. If you try fewer than this, part of the GPU will idle.

8.4 Compute capability

Let us look more closely at the compute capability (CC). This is essentially a CUDA/
architecture version number. Here is a list of compute capabilities:

• 1.0: Original release.

• 1.1: Mapped memory, atomic operations.

• 1.3: Double support.

• 2.0: Fermi.

• 3.0: Kepler.

• 5.0: Maxwell.

• 6.0: Pascal.

For full details see the CUDA C programming guide [3], the compute capability appendix
late in the document. Here, let me cite some details of interest.

Compute capabilities 1.0 to 1.3 are the G80/Tesla architecture. It is now being phased out,
so starting with CUDA 7.0 it is no longer supported.

Atomic functions were enhanced with many new features in CC 2.0. See chapter 9.3.

Unified (managed) memory was introduced with CC 3.0. See chapter 9.6.

Half-precision floating-point operations were introduced with CC 5.3. This is a somewhat
surprising move, since half-precision floating point has been in the GPUs for a long time.

Maximum dimension of blocks in x-dimension was 64k up to CC 2.x, then it was

increased to 231-1.

So, should you care about Compute capability? While learning CUDA, I say not so much.
Stick to the basics, it works everywhere. But if you write professional CUDA code, that is
a different situation. You need to optimize more, and then you may get dependent on new
features.

More language features 55

8.5 Timing and profiling

Since GPU computing is all about performance, we must be able to measure the effect of
what we do. There are a few ways to do this.

Concerning timing, I could say that there are two ways of timing GPU programs. You can
use a CPU timer, or built in events/timing functionality.

8.5.1 CPU timers

An easy timing method that I find pretty reliable is to use the built-in timers of the OS.
Although it can not deliver the same precision as calls built into the computation frame-
work, it makes it possible to use the same measurement for multiple platforms. Under
UNIX-like systems I use the function gettimeofday() and calculate the time from that.
This is quite easy. Here is a function from my timing code “milli.c”:

double GetSeconds()
{

struct timeval tv;

gettimeofday(&tv, NULL);
if (!hasStart)
{

hasStart = 1;
timeStart = tv;

}
return (double)(tv.tv_usec - timeStart.tv_usec) / 1000000.0 + (dou-

ble)(tv.tv_sec - timeStart.tv_sec);
}

The important part is the calculation of time, in this case the difference from one time to
another. There is another call, ResetMilli, which simply stores the current time in the time-
Start variable.

To get correct timing with this call, we must synchronize properly! Synchronizing after
computation is necessary. If you had other computations running before the one you wish
to time, you may also need to synchronize before measuring. Thus, the usage may look
like this:

cudaThreadSynchronize();
ResetMilli();
my_kernel<<<dimGrid, dimBlock>>>(arguments);
cudaDeviceSynchronize();
t = GetSeconds();

The first synchronization may be skipped if no other computation is running, or if you
synchronized after the last.

8.5.2 CUDA Events

CUDA events is maybe not exactly what you expect. They are for two things: Knowing
that a task has completed, and timing computations. The advantage over CPU timing is

56 More language features

quite clear; CUDA events work inside the CUDA framework, closer to the computation,
and is therefore likely to be more exact.

Since CUDA runs asynchronously, you need to synchronize. When using CPU, you
should synchronize both at start and finish, while for CUDA events, you only need that at
the end.

The CUDA Events API contains the following calls:

cudaEventCreate(): initialize an event variable

cudaEventRecord(): place a marker in the queue

cudaEventSynchronize(): wait until all markers have received values

cudaEventElapsedTime(): get the time difference between two events

cudaEventDestroy(): Dispose an event variable.

That is about it. The usage looks something like this:

cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start);
my_kernel<<<dimGrid, dimBlock>>>(arguments);
cudaEventRecord(stop);
cudaDeviceSynchronize();
cudaEventSynchronize(stop);
float milliseconds = 0;
cudaEventElapsedTime(&milliseconds, start, stop);

The API is slightly more complex than the CPU timing, but if timing CUDA is all you
want to do (that is, not comparing to other platforms), CUDA events are recommended.

8.6 CUDA streams and overlapping data transfers

CUDA processes commands in streams. Our basic examples only use the default stream,
which makes the stream concept invisible to us. However, we can create additional
streams. An important reason to do this is to optimize data transfers. This section is based
on material by Harris [26].

Each stream has its own CUDA Events, so we can use them to determine when a computa-
tion in a specific stream has finished.

We must here introduce a new memory mode, even though we are not in a memory access
chapter: It is called pinned memory or page-locked memory. We shall see how it can be
used to boost performance for memory transfers.

More language features 57

So far we have used malloc() and cudaMalloc(). Pinned memory is allocated with a new
call: cudaHostAlloc(). This allocates a page-locked memory. This means that it has a fixed
physical location! This sound practical, but page-locked memory is a limited resource.

For non-pinned memory, CUDA copies it internally to page-locked memory, then DMA to
GPU. Transfer time goes up! By using pinned memory from the start, we can optimize this
a bit.

However, the most interesting application is probably for overlapping computations.
Then, it is no longer just a slight speedup of data transfer, but may provide a significant
boost.

We need a new data copying call: cudaMemCpyAsynch(). This can copy locked memory
asynchronously.

8.6.1 Multiple streams

CUDA commands are placed in a queue, a stream. These are the same queues as you can
post CUDA events to. We usually only use the default CUDA stream.

Multiple CUDA streams can be used to overlap work - especially computing and data
transfers!

With single stream computations, the kernel can not run until the data is transferred. See
Figure 17. For this example, 2/3 data transfer, 1/3 computation

FIGURE 17. Single stream computation

With more than one stream active, we can gain flexibility. While one stream runs a kernel,
the other stream performs data copying. See Figure 18. The amount of time free for com-
puting goes up. In the figures, the dual stream example has the kernels running 1/2 of the
time instead of 1/3, a most respectable speedup.

Copy data to GPU

Run kernel

Copy result to CPU

Copy data to GPU

Run kernel

Copy result to CPU

58 More language features

FIGURE 18. Dual stream computation

However, not all devices support this. Asynchronous data copying as well as concurrent
execution is not guaranteed. We should make a device query to make sure that it does, and
of not, switch to the simpler, less efficient solutions. Try the following queries:

CU_DEVICE_ATTRIBUTE_ASYNCH_ENGINE_COUNT: Can we copy memory
asynch?

CU_DEVICE_ATTRIBUTE_CONCURRENT_KERNELS: Can we run multiple kernels?

Copy data to GPU

Run kernel

Copy result to CPU

Copy data to GPU

Run kernel

Copy data to GPU

Run kernel

Copy result to CPU

Copy result to CPU

Copy data to GPU

Run kernel

Copy result to CPU

-

-

-

Memory access part 2 59

9. Memory access part 2

Earlier, we have discussed primary memory and shared memory. However, there are a few
more concepts, memory types and memory access types left to cover. I will start with the
most vital concept, coalescing, and continue with faster access of shared memory as well
as texture and constant memory.

9.1 Coalescing

Coalescing is a technique for optimizing the caching of the GPU when doing global mem-
ory accesses. I would claim that the manual ([3], section G.3.2) is quite confusing and
incomplete on this matter so I will try to sort it out to something that we can somewhat
easier apply on our code.

You are advised always to access global memory in order since nearby accesses will help
caching. This should be made in order of thread numbers. Thus, note that the “access in
order” does not refer to consecutive accesses by one thread, but simultaneous accesses by
neighbor threads!

“In order” does not mean that it has to be strictly in order, but nearby. More precisely,
memory accesses by threads in the same warp will be organized to fewer memory
accesses. This is made in chunks of 128 bytes, the size of a cache line.

Maybe the best example of coalesced versus non-coalesced access is the access of a 2D
array (e.g. image or matrix). When reading a row at a time, your accesses will typically be
coalesced, but if you work column-wise, you will get a jump in memory of a whole row at
a time. Also, note that if you are reading an RGBA image one channel at a time, so each
thread first reads R, then G, then B and finally A, with four separate accesses, this also will
not help coalescing.

As noted by Harris[15], making jumps in memory, strided memory access, will rapidly
reduce memory bandwidth. Harris reports top performance when accessing items that are
immediately following each other, with performance rapidly dropping until coalescing
effects disappear completely with a stride of around 12 to 16.

60 Memory access part 2

FIGURE 19. Coalesced memory access for matrices.

So line up your memory access. Pure memory transfers can be 10x faster by taking advan-
tage of memory coalescing. I end this discussion with a citation from the documentation:

“Perhaps the single most important performance consideration... is coalescing of global
memory accesses.” (CUDA C Best Practices Guide 2018) [16]

9.1.1 Matrix transpose example

A good, and common, example of the importance of coalescing is the problem of trans-
posing a large matrix. It is a very simple problem, just flip an array of data over the diago-
nal. There are only memory accesses, no computations at all. A naive implementation
would look like this:

__global__ void transpose_naive(float *odata, float* idata, int width,
int height)
{
 unsigned int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
 unsigned int yIndex = blockDim.y * blockIdx.y + threadIdx.y;

 if (xIndex < width && yIndex < height)
 {
 unsigned int index_in = xIndex + width * yIndex;
 unsigned int index_out = yIndex + height * xIndex;
 odata[index_out] = idata[index_in];
 }
}

How can this be bad? The problem is the access pattern, it is not coalesced. It is reading
row by row, that is coalesced, but it is writing column by column, as in Figure 20.

The trick to get this right is, again, to use shared memory. We read coalesced from shared
memory, write to shared memory in any order. (This is not strictly true, see chapter 9.2,
but for many cases it will work out fine.) Then we read from shared memory in an order
that is transposed to when we wrote to it, and write coalesced to global memory.

Good! Bad!

Memory access part 2 61

FIGURE 20. Transposing means swapping rows for columns, causing non-coalesced access

Furthermore, for large matrices we must split the matrix into patches so it fits in shared
memory. This gives us a three-step solution as in Figure 21.

FIGURE 21. Faster transpose by temporarily going through shared memory

Better CUDA matrix transpose kernel

__global__ void transpose(float *odata, float *idata, int width, int
height)
{

__shared__ float block[BLOCK_DIM][BLOCK_DIM+1];

// read the matrix tile into shared memory
unsigned int xIndex = blockIdx.x * BLOCK_DIM + threadIdx.x;
unsigned int yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y;
if((xIndex < width) && (yIndex < height))
{

unsigned int index_in = yIndex * width + xIndex;
block[threadIdx.y][threadIdx.x] = idata[index_in];

}

__syncthreads();

// write the transposed matrix tile to global memory
xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;
yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y;
if((xIndex < height) && (yIndex < width))
{

unsigned int index_out = yIndex * height + xIndex;
odata[index_out] = block[threadIdx.x][threadIdx.y];

}
}

62 Memory access part 2

Coalescing rules of thumb

•

The data block should start on a multiple of 64

•

It should be accessed in order (by thread number) or close to it

•

It is allowed to have threads skipping their item but if you skip a lot of data, like every
other item, you lose bandwidth

•

Data should be in blocks of 4, 8 or 16 bytes

9.2 Optimizing shared memory

Shared memory is fast, but even there we can optimize the access. The memory is split
into multiple memory banks, 32 ones for Compute Capability 2 to recent (6).

Shared memory access is fastest if you access different banks with each thread. This will
often happen effortlessly, but you should be aware of the problem when optimizing.

The memory banks are interleaved in 32 bit chunks. With Kepler (Compute Capability 3)
it was configureable, but this feature did not make a very big difference so it went away
later. Thus, if you are addressing in 32-bit steps, you will get the best performance, but the
most important thing is not to have a stride of 128 bytes (32 bits = 4 bytes, 32 banks),
which would make all accesses go to the same memory bank, linearizing the accesses.

This called a

bank conflict

. The number of threads that access the same memory bank
simultaneously is called the

degree

 of bank conflict, which is how far the memory
accesses will me linearized.

Some algorithms, like FFT, are very likely to have bank conflicts if they are implemented
in a straight forward manner. Bank conflicts are avoided by introducing an offset, a

pad-
ding

, that changes the memory access pattern. This will add some arithmetic operations to
the memory access, but the gain in memory access performance will easily be bigger.

This means that shared memory, like global memory, benefits from accessing data in order
of thread numbers as in Figure 22, but for a different reason.

FIGURE 22. Memory banks in shared memory

9.3 Atomic functions

Atomic functions, or

atomics

, are operations that are guaranteed to be racing-free, so any
memory accesses caused by it can not be intercepted by some other operation by another

Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7
 Address
 space

Memory access part 2 63

thread. Typically they do a read-modify-write as a single operation. This is very useful for
guaranteeing a correct result in some parallel algorithms.

GPUs support atomics. Here follows a fairly complete list of available functions:

atomicAdd(), atomicSub(), atomicExch(), atomicMin(), atomicMax(), atomicInc(), atom-
icDec(), atomicCAS(), atomicAnd(), atomicOr(), atomicXor()

Already a G80, the very first CUDA capable hardware, had atomics, but some of the func-
tions come on 64-bit versions that are only supported on later architectures (Compute
Capabililty3.5 and up).

Although some algorithms are very easy to rewrite using atomics, they should not be over-
used. For example, the rank sort algorithm (chapter 17.2) is very easy to write using atom-
ics, but since that serializes the operations, makes all operations queue up, waiting for
each other, performance will be poor. Thus, atomics can perform well when the number of
conflicts is expected to be low, but not when all threads are fighting for the same memory.

Let us take two examples of usage of atomic functions. First one that works well: Histo-
grams. This is simple method for gathering statistics about a set of data. Much data in, lit-
tle out. It is common in image processing. A sequential implementation looks like this:

for all elements i in a[]

h[a[i]] +! 1

given an input array a and an output h, the histogram. For example, the histogram of the
Lenna test image is shown in Figure 23.

FIGURE 23. The Lenna test image with histogram

If you try to parallellize this operation, multiple threads will write simultaneously at the
same item, you will get

racing

. Non-atomic operations will read h[a[i]], add 1, and write
back. See Figure 24.

64 Memory access part 2

FIGURE 24. Memory access conflicts in the histogram example.

This is quite conveniently solved with atomics. They can read, modify and write in one
operation which is then guaranteed not to be subject to racing

This is a pretty good solution for histograms, since any non-trivial data set will have vary-
ing values and therefore not cause conflicts very often. Thus, the atomics are not likely to
linearize accesses very often, and will guarantee a correct result for a low cost.

However, there are also algorithms where atomics will cost more than the gain. Our next
example is very bad for atomics:

 for all elements i in a[]
maxValue = max(maxValue, a[i])

It is a very simple algorithm, and it will work with atomics. However, is it fast in its paral-
lel version? No, it will be slower than a sequential implementation! The problem is that all
threads write to the same memory element. Thus, we should not use atomics for this prob-
lem. Solution: Use reduction instead! (See chapter 15.)

To conclude, atomic operations simplify some operations, but it serializes conflicting
operations, so it can hurt performance! Use them wisely.

9.4 Constant memory

Constant memory isn’t as trivial and boring as it sounds. The big point with it is somewhat
similar to coalescing; it enables broadcasting over several threads. However, while coa-
lescing detects nearby accesses to make fewer global memory reads, constant memory
optimizes the case where many threads read the

same

 data.

As the name says, it is read-only, that is for the kernels. More specifically, it is data that

does not change during a kernel execution

. You mark it with the __constant__ modifier.
You use for input data, obviously, so it is writable from the CPU.

Read Read Read

ReadAdd 1

Write back

Add 1

Write back

Read

Add 1

Write back Add 1

Write back

10

?

10

10

11

11

Unknown write order Write unsynchronized values in sequence

Memory access part 2 65

FIGURE 25. Memory overview

As we can see in Figure 25 (variant of Figure 12), constant memory is “global” in the
sense that it doesn’t belong to any block. Its size is limited; we have seen numbers like
64k, plus an 8k cache per SM.

The biggest benefit of constant memory is the performance, the ability to broadcast data
when several threads read the same data. This is limited to a

half warp

, but one access
rather than 16 still matters.

Another advantage, which, however, has lost some importance over time, is the fact that
no cudaMemcpy needed for constant memory! You just declare it __constant__, write
from the CPU and use it from the kernel. This was a great advantage before managed
memory arrived. With GPUs/CUDA installations that support managed memory, we have
one more path that has this advantage. See chapter 9.6.

So, we get faster access when all threads are reading the same data

at the same time

. One
read can be broadcast to all

nearby

 threads, same half-warp, that is 16 threads. But it does
not help if the threads are reading different data!

9.4.1 Ray-caster example

Let us look at a case where constant memory matters: a ray-caster! Ray-casting is basi-
cally the first step of a ray tracer. (See Volume 1.) It does not support reflections and
refractions, but it casts ray from the camera into the scene. This is a less impressing way to
render an image, but more suited for a demo. This simple ray-caster will inspect all parts
of the scene for every ray. This is not a good way to write raycaster, and even less so a ray-
tracer, but it creates a situation where all threads read the same data.

The example below is a simplified raycaster, with an arbitrary number of spheres (I use
100) and one checkered plane as floor.

Global memory

Constant memory

Texture memory

Accessible
by CPU

VRAM
on-board

On-chip
memory

memory

Block 0,0

GPU (Grid)

Shared memory

Registers Registers

Local
memory

Local
memory

Block 0,1

Shared memory

Registers Registers

Local
memory

Local
memory

Thread 0,0 Thread 0,1 Thread 0,0 Thread 0,1

66 Memory access part 2

This demo was inspired by a demo in “CUDA by example” [7] but is rewritten from
scratch to allow additional features, like the checkered plane and real-time camera move-
ment.

FIGURE 26. Raycaster demo

I can not justify printing the entire code here, but it is/will be available at computer-graph-
ics.se. I am skipping over the vec3 struct and utility functions like dot products.

In the raycaster, every thread renders

one

 pixel. Every thread loops through all spheres,
and finds the closest with intersection.

The scene is described by an array t of spheres defined as follows:

#define THINGCOUNT 100
typedef struct Thing // Spheres
{

float x, y, z, radius;
float r, g, b;

} Thing;

Thing t[THINGCOUNT] =
{

// x, y, z, radius, r, g, b
{0.78,-6.15,-16.86,1.14,0.60,0.86,0.54},
{5.56,-5.24,-13.47,0.95,0.38,0.44,0.30},
...
{-7.29,-7.00,-19.30,0.79,0.08,0.47,0.52},
{6.12,-3.88,-11.14,0.88,0.41,0.96,0.17},
};

For the ray-casting, the function for calculating the intersection with a sphere is vital. This
is straight out of [1].

__device__ float intersectSphere(vec3 p, vec3 v, vec3 c, float radius)
{

Memory access part 2 67

vec3 a = c - p;
float av = dot(a, v);
float arg = sqrt(av*av - dot(a, a) + radius * radius);
if (arg > 0)

return av - arg;
else

return -1;
}

The function render() is a straight-forward raycaster. Since we only have one plane, it is
hard-coded. Note that the array t appears here under the name dev_things.

__device__ vec3 render(Thing *dev_things, int x, int y, float gx, float
gy)
{
 const float scale = 0.7;
 float jx = scale * (float)(DIM/2 - x)/(DIM/2);
 float jy = scale * (float)(DIM/2 - y)/(DIM/2);

vec3 ray = normalize(vec3(jx, jy, -1));
float m;
float bestm;
vec3 color = vec3(0,0,0.5);
vec3 p = vec3 (gx, gy ,0);

// Intersect spheres
bestm = 10000;
for (int i = 0; i < THINGCOUNT; i++)
{

vec3 c = vec3(dev_things[i].x, dev_things[i].y, dev_things[i].z);
m = intersectSphere(p, ray, c, dev_things[i].radius);
if (m > 0 && m < bestm)
{

bestm = m;
vec3 intersection = p + ray * m;
vec3 n = normalize(intersection - c);
color = vec3(dev_things[i].r, dev_things[i].g, dev_things[i].b)

* abs(n.z);
}

}
// Checkered plane

{
vec3 n = vec3(0,1,0);
float d = -1;
m = - (dot(n, p) + d)/dot(n, ray);
if (m < bestm && m > 0)
{

vec3 intersection = p + ray * m;
// Find pattern
int dx = (int)(intersection.x * 5);
int dz = (int)(intersection.z * 5);
int bw = abs(dx + dz + 1000) % 2;
color = vec3(bw, bw, bw);

}
}

 return color;
}

68 Memory access part 2

The kernel entry point, kernel(), just calculates global thread numbers and passes that as
well as dev_things to render(). (We also pass gx and gy, which refer to the mouse position
that controls the camera.)

__global__ void kernel(unsigned char *ptr, Thing *dev_things, float gx,
float gy)
{
 // map from blockIdx to pixel position
 int x = threadIdx.x + blockIdx.x * blockDim.x;
 int y = threadIdx.y + blockIdx.y * blockDim.y;
 int offset = x + y * gridDim.x * blockDim.x;

 // Use gx, gy for light source?

 // now calculate the value at that position
 vec3 color = render(dev_things, x, y, gx, gy);
 ptr[offset*4 + 0] = 255 * color.x;
 ptr[offset*4 + 1] = 255 * color.y;
 ptr[offset*4 + 2] = 255 * color.z;
 ptr[offset*4 + 3] = 255;
}

We skip most of the main program, but note that a cudaMalloc() and cudaMemCpy is used
to pass the array t to the GPU.

 err = cudaMalloc((void**)&dev_things, THINGCOUNT*sizeof(Thing));
cudaMemcpy(dev_things, t, THINGCOUNT*sizeof(Thing), cudaMemcpyHost-

ToDevice);

kernel<<<grids,threads>>>(dev_bitmap, dev_things, gX, gY);

The rest is similar to the Julia demo.

On my 650M, this runs in around 38 ms for rendering a frame.

This was the straight forward version with the array t in global memory. Note that the
array is read in the same order by all threads. This is important and is why constant mem-
ory can help. (Shared memory could also help but that is another matter.)

With constant memory, the array t is now declared __constant__:

__constant__ Thing t[THINGCOUNT] =
{

// x, y, z, radius, r, g, b
{0.78,-6.15,-16.86,1.14,0.60,0.86,0.54},
{5.56,-5.24,-13.47,0.95,0.38,0.44,0.30},
...
{6.12,-3.88,-11.14,0.88,0.41,0.96,0.17},
};

In the function render(), we no longer have dev_things but refer directly to t:

// Intersect spheres
bestm = 10000;
for (int i = 0; i < THINGCOUNT; i++)
{

vec3 c = vec3(t[i].x, t[i].y, t[i].z);

Memory access part 2 69

m = intersectSphere(p, ray, c, t[i].radius);
if (m > 0 && m < bestm)
{

bestm = m;
vec3 intersection = p + ray * m;
vec3 n = normalize(intersection - c);
color = vec3(t[i].r, t[i].g, t[i].b) * abs(n.z);

}
}

In the main program, t is no longer copies to dev_things.

kernel<<<grids,threads>>>(dev_bitmap, gX, gY);

This version produces the same results, but only takes 30 ms on my 650M. Thus, the per-
formance improved, for something that simplified the code!

We conclude that constant memory gives relatively fast memory access, but only for the
case when all threads (or groups of threads) read the same memory s

imultaneously

. It is
not something we use for everything.

9.5 Texture memory/ Texture units

 Texture memory is a kind of memory/memory access that clearly shows the graphics heri-
tage. It is also relatively complicated to use. We can see it among the global areas in
Figure 25. The texture memory itself is nothing but VRAM, so what is the point with it?
The answer is that it provides a few extra features that may help you to optimize your
computations. These features are provided for graphics but by making texture memory
available to GPU computing platforms, we can use it for other purposes.

Texture memory is read-only, although writable using “surface objects”. The memory has
its own cache, which can make it fast if the data access patterns are good.

More importantly, the texture access goes though texture units that provide texture filter-
ing, that is linear interpolation between data items, and automatic edge handling.

You can expect it to be especially good for handling 4 floats at a time (float4), since that is
what is used for a pixel. Still, CUDA hides this and we can see the texture as an array of
floats.

9.5.1 Texture memory for graphics

In graphics, texture data is, as the name says, mostly for rendering textures, but even in
graphics it is often used for other purposes like bump mapping, gloss mapping, noise data
and more.

Much of the power of texture memory comes from the features needed by graphics. The
border checks (clamp/repeat) enable repeated textures as well as decals, and the interpola-
tion is vital to limit aliasing effects when scaling and rotating images (as in Figure 27).

70 Memory access part 2

That means that an access in non-integer coordinates will access 4 neighbor pixels (or
more when using mip-mapping, see [1]).

FIGURE 27. Texture access in graphics

 These features give texture memory considerable power compared to the normal memory
access. Let me stress the most remarkable features:

•

Ability to access on non-integer addresses, with hardware interpolation.

•

Automatic border checks with options like clamp and repeat.

These features go far beyond images and it would be bad to ignore them.

9.5.2 Using texture memory in CUDA

The CUDA C Programming Guide describes to APIs for using texture memory, the “Tex-
ture Object API” and the “Texture Reference API”.

Here follows an example of using texture memory, using the “Texture Object API”. It is
based on sample code by NVidia, but stripped down to a minimum. I generate an array of
alternating 1’s and 0’s, and zoom that data to 4x more, thereby using the interpolation fea-
ture.

As we will see, the texture API in CUDA is not exactly intuitive. I find it easier to use tex-
tures through OpenGL.

First, we must have a texture reference:

texture<float, 2, cudaReadModeElementType> tex;

Here is the kernel. It will scale the input to the output.

__global__ void kernel(float* output,
int inwidth, int inheight, int width, int height)

{

Memory access part 2 71

unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

 output[y * width + x] = tex2D(tex, (float)x*inwidth/width+0.5,
 (float)y*inheight/height+0.5);
}

Here I define the size of the input and output.

#define inwidth 16
#define inheight 16
#define insize (inwidth*inheight*sizeof(float))

#define width 64
#define height 64
#define size (width*height*sizeof(float))

float indata[inwidth * inheight];

The host code should also include some error checks but they are removed to increase
readability.

// Host code
int main()
{

// Input is a sequence of 0 and 1.
for (int i = 0; i < inwidth * inheight; i++)

indata[i] = (float)(i & 1);

// Allocate CUDA array in device memory
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 0, 0,

0, cudaChannelFormatKindFloat);
cudaArray *cuArray;
int err = cudaMallocArray(&cuArray, &channelDesc, inwidth, inheight);

// Copy to device memory some data located at address indata in host
memory

cudaMemcpyToArray(cuArray, 0, 0, indata, insize, cudaMemcpyHostToDe-
vice);

Here we set the texture parameters. Important! See below for alternative settings.

 // Set texture parameters
 tex.addressMode[0] = cudaAddressModeWrap;
 tex.addressMode[1] = cudaAddressModeWrap;
 tex.filterMode = cudaFilterModeLinear;
 tex.normalized = false; // access with unnormalized texture coor-
dinates

// Bind the array to the texture
 cudaBindTextureToArray(tex, cuArray, channelDesc);

 // Allocate device memory for result
 float *deviceoutput = NULL;
 cudaMalloc((void **) &deviceoutput, size);

// Host output
 float *hostoutput = (float *) malloc(size);

// Invoke kernel

72 Memory access part 2

dim3 dimBlock(16, 16);
dim3 dimGrid((width + dimBlock.x - 1) / dimBlock.x,

 (height + dimBlock.y - 1) / dimBlock.y);
 kernel<<<dimGrid, dimBlock>>>(deviceoutput, inwidth, inheight,
width, height);

cudaThreadSynchronize();

// Get the ouput data.
err = cudaMemcpy((void *)hostoutput, (void *)deviceoutput, size,

cudaMemcpyDeviceToHost);
if (err != 0)
{

printf("Copy back failed\n");
}
for (int i = 0; i < 16; i++)

printf("%f\n", hostoutput[i]);

// Free device memory
cudaFreeArray(cuArray);
cudaFree(deviceoutput);
free(hostoutput);

return 0;
}

This program produces an output like this, which is a small sample of the actual result:

--- texobjdemo starts ---
0.000000
0.250000
0.500000
0.750000
1.000000
0.750000
0.500000
0.250000
0.000000
0.250000
0.500000
0.750000
1.000000
0.750000
0.500000
0.250000
--- texobjdemo finished ---

Thus, it makes linear interpolation between each pair of 1 and 0.

We see that the example uses cudaMallocArray() and cudaMemcpyToArray to create the
texture. For the output, I use the standard buffers.

The texture is set up with the parameters for interpolation and clamp/repeat. We bind to
texture unit using cudaBindTextureToArray()

We read from data using tex2D(), with the additional freedom to skip border checks and
address between integer positions.

Memory access part 2 73

Being used to OpenGL, I am not very happy about the API. The access is simple, just like
in OpenGL, but I find the setup to be more complicated.

9.5.3 Clamp and repeat

Texture access needs no boundary checks, and this is supported by the hardware so you
get the checks for free! No access violations, you are always inside your buffer! The only
question is whether you want the access to clamp to edge or repeat.

Actually, CUDA gives as much as four edge behaviors, clamp, border, wrap and mirror.

cudaAddressModeBorder

cudaAddressModeClamp

cudaAddressModeWrap

cudaAddressModeMirror

These constants are written into the texture description record, in the dressmaker field.
Note that the field stores three values, one for each coordinate axis.

FIGURE 28. Texture memory access protects you from illegal access with repeat (middle) and
clamp (right).

9.5.4 Interpolation

Another interesting feature of texture access is interpolation. You are allowed to access
textures not only on integer coordinates, but on non-integer coordinates, between the data
entries! What happens then is that the data is interpolated with linear interpolation, as
much as trilinear interpolation, and this, too, is done in hardware!

This can be useful as computation trick when optimizing. One example when it can be
useful is when implementing filters, although only ones with positive weights like the low-
pass filters in chapter 18. Other applications include simulation of liquids.

ERROR ERROR ERROR ERROR

ERROR 1 2 ERROR

ERROR 3 4 ERROR

ERROR ERROR ERROR ERROR

1 2

3 4

3

2

4 4

1

3

3

2 1

4

12

1 2

3 4

1

1

1 2

2

2

4

4 4

3

33

74 Memory access part 2

FIGURE 29. Automatic linear interpolation by accessing between pixels

However, you need to check how good interpolation your GPU performs. It is meant for
interpolating between texels, a visual effect, and the presence of small errors is not a prob-
lem then! Thus, you may find that some GPUs have precision. I have seen one that only
interpolated in 10 steps. That reduced its usefulness significantly.

9.6 Managed/unified memory

Managed/unified memory was briefly introduced before, in chapter 5. Let me describe in
more details how it works. It does not take much detail though. From the programmer’s
side, it is purely a simplification.

What managed memory gives us is a shared memory space, where CPU and GPU can
work in the same memory without any explicit memory transfers. No more cudaMemcpy
calls!

In order to enable this, instead of allocating memory with cudaMalloc() (on the GPU) or
malloc() (on the CPU) you use cudaMallocManaged(). You should also declare your
pointers __managed__.

For small examples, like Hello World!, this simplifies the trivial into something close to
ridiculous. However, for larger, more interesting problems, the difference quickly becomes
less important. So, let us revisit Hello World!

#include <stdio.h>

const int N = 16;
const int blocksize = 16;

__global__
void hello(char *a, int *b)
{

a[threadIdx.x] += b[threadIdx.x];
}

__managed__ char a[N] = "Hello \0\0\0\0\0\0";
__managed__ int b[N] = {15, 10, 6, 0, -11, 1, 0,0,0,0,0,0,0,0,0,0};

int main()
{

printf("%s", a);
dim3 dimBlock(blocksize, 1);

A B

a b x

∆a = |a-x| ∆b = |b-x|

B∆a + A∆b

Memory access part 2 75

dim3 dimGrid(1, 1);
hello<<<dimGrid, dimBlock>>>(a, b);
cudaDeviceSynchronize();
printf("%s\n", a);
return EXIT_SUCCESS;

}

The small and simple was reduced to just a handful of lines! So, why don’t we use this all
the time? Well, we are getting there but at the time of writing this, there are still active
platforms where it can not be used.

This simplification is not isolated to CUDA. OpenCL, for example, has a related concept:
Zero Copy Memory. Memory is allocated with the modified
CL_MEM_ALLOC_HOST_PTR.

So, how about performance? Does it cost to use managed memory? The general answer
seems to be a vague “maybe”, because hardware capabilities and implementations may
vary. However, it is notable that Intel claims that managed memory will always be faster!
[25] It seems your mileage can vary but the general message is not to shy way from it.

76 Memory access part 2

OpenCL 77

10. OpenCL

Besides CUDA, the most famous GPU computing platform is probably OpenCL. OpenCL
stands for “open compute language”. Like OpenGL, it is an open standard, and open spec-
ification, which means that anyone can make their own implementation. Also, like
OpenGL, it is managed by the Khronos Group.

OpenCL was released 2009. The motivation for it was clearly the lack of open alternatives
for GPU computing. CUDA and Direct Compute are both commercial systems limited to
the platforms that the vendors choose to support. A driving force behind OpenCL was
Apple Computer, but there are many providers, and many supported architectures.

From an idealistic perspective, we could say that the dream is an API for all architectures.
We can immediately realize that this is a dream, one system can not be optimal for every-
body. Still, the list of supported architectures is considerable. In includes, but is not lim-
ited to: GPUs (NVidia, AMD, Intel), Intel compatible CPUs (Intel, AMD), ARM, FPGA,
CELL, Intel Xeon Phi...

Who decides? Any company making its own OpenCL implementation! It is an open spec-
ification, so if you are missing a platform, feel free to support it. But that also means that
there is not one OpenCL library but several. This also means that some implementations
may be lagging behind, not getting updated with new features. Ironically, one such imple-
mentation is Apple’s, which is odd since they were a driving force behind the creation of
OpenCL!

There is no such thing as a free lunch, the model does not fit all architectures. It is a one
size fits all solution, which makes platform dependent optimizations hard to do. But for
GPU computing, it fits right in and you can easily see that the GPU platform is its main
focus.

10.1 OpenCL for GPU Computing

OpenCL is strikingly similar to CUDA both in architecture and performance. The big dif-
ference is the setup, which is a lot more complicated, but once you have a working setup,
it is not really a big problem. Computing kernels are quite similar to CUDA. To some

78 OpenCL

extent, performance is similar, but it is easier for NVidia to be first with new features. For
OpenCL, many parties must agree on additions, and then everybody must add support for
the new features. This often makes OpenCL lag behind.

10.2 OpenCL vs. CUDA terminology

Unfortunately, the terminology differs substantially between different platforms, and
CUDA, being first, is the one that is the most different.

OpenCL CUDA

compute unit multiprocessor (SM)

 work item thread

work group block

local memory shared memory

private memory registers

Most notable, OpenCL local memory = CUDA shared memory, while CUDA local mem-
ory is a vague concept which causes confusion. However, NVidia’s manual is fairly clear
on the subject:

“Local memory space resides in device memory, so local memory accesses have the same
high latency and low bandwidth as global memory accesses and are subject to the same
requirements for memory coalescing...” [3]

Which means that CUDA local memory is a slow memory, used when thread local vari-
ables ca not be placed in registers, while OpenCL local memory is fast, the same as CUDA
shared memory.

Due to this confusion, I will primarily use the term shared memory since it is unique.

• CUDA local memory = global memory accessible only by one thread (like registers but
slower)

• CUDA shared memory = OpenCL local memory = memory local inside the SM, shared
within block work group

OpenCL local memory is declared __local:

__local float a[SOMESIZE];

See chapter 17.2 for an OpenCL example using local memory.

10.3 OpenCL memory and thread model

On the subject of computing with OpenCL, let us not waste space and time repeating what
I said in chapter 6. Most of it maps straight over, work groups (blocks) map onto SMs,
each work group consists of work items (threads). The same rules apply.

OpenCL 79

One notable difference is the thread and block identification. While CUDA gives you
block number and thread number within the block, OpenCL is somewhat more convenient.
The built-in calls get_global_id() and get_local_id() returns identification indices on a
local or global scale, which means that a part of the thread ID calculation has been done
for you. Both calls take an integer as parameter which specifies the dimension that you
wish the id for. There is also get_work_dim() for getting the total size, and
get_local_size() for block/workgroup size.

10.4 Heterogeneous

Apart from the superficial syntax differences, the more significant differences from CUDA
comes from OpenCL being designed for heterogeneous systems, not only heterogeneous
as in a GPU controlled from a CPU, but beyond that, for any kind of mix, where the same
task can be assigned totally different hardware. Several devices may be active at once and
contribute to the same computation.

This will mainly affect the setup, where you can specify which device to launch a task to,
and select different OpenCl implementations. This gives us some overhead compared to
CUDA, but the reward is flexibility.

10.5 Language

The OpenCL kernel language is based on C99, but there are some differences.

• No function pointers

• No pointers to pointers in function calls

• (=> no multi-dimensional arrays)

• No recursion

• No arrays with dynamical length

• No bitfields

Some features are optional:

• Pointers with length <32 bit

• Writing support for 3D images

• Double and half types

• Atomic functions

So far, I have mainly listed limitations, but there are also some strong points worth men-
tioning:

• Integrated functions for reading / writing 2D images and

• reading 3D images

• Converting functions incl. explicit rounding and saturation

80 OpenCL

• math.h, all functions with different precisions

• Vector support (2-, 3- and 4-dimensional)

Available primitive datatypes: Bool, char, int, long, float, size_t, void, plus their unsigned
versions.

Mix of OpenCL and OpenGL possible, so OpenCL can share data structures and variables
(without copying). More about that in chapter 15.2.

When talking about features, there is one more thing I would like to mention: In early ver-
sions, there was no possibility to call a kernel from another kernel, but that feature arrived
in OpenCL 2.0.

10.6 Walk through the Hello CL example code

We can identify two major parts of the code, the setup and the computing. For a small
example, the setup is pretty big. It follows these steps:

• 1) Get a list of platforms

• 2) Choose a platform

• 3) Get a list of devices

• 4) Choose a device

• 5) Create a context

• 6) Load and compile kernel code

Then we can start working. Here are the computing steps:

• 7) Allocate memory

• 8) Copy data to device

• 9) Run kernel

• 10) Wait for kernel to complete

• 11) Read data from device

• 12) Free resources

1-5: Where to run

cl_platform_id platform;
unsigned int no_plat;
err = clGetPlatformIDs(1,&platform,&no_plat);

// Where to run
err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device_id, NULL);
if (err != CL_SUCCESS) return -1;

context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);
if (!context) return -1;

OpenCL 81

commands = clCreateCommandQueue(context, device_id, 0, &err);
if (!commands) return -1;

6: Kernel; What to run

program = clCreateProgramWithSource(context, 1, (const char **) & Ker-
nelSource, NULL, &err);
if (!program) return -1;

err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
if (err != CL_SUCCESS) return -1;
kernel = clCreateKernel(program, “hello”, &err);
if (!kernel || err != CL_SUCCESS) return -1;
const char *KernelSource = “\n” \
“__kernel void hello(\n” \
“ __global char* a, \n” \
“ __global char* b, \n” \
“ __global char* c, \n” \
“ const unsigned int count) \n” \
“{ \n” \
“ int i = get_global_id(0); \n” \
“ if(i < count) \n” \
“ c[i] = a[i] + b[i]; \n” \
“} \n” \
“\n”;

Most programs load kernels from files. The Hello World example does not, it stores the
kernel as an inline string. I would not do that for bigger kernels.

7-8: Get the data in there

// Create space for data and copy a and b to device (note that we
could also use clEnqueueWriteBuffer to upload)

input = clCreateBuffer(context, CL_MEM_READ_ONLY |
CL_MEM_USE_HOST_PTR, sizeof(char) * DATA_SIZE, a, NULL);

input2 = clCreateBuffer(context, CL_MEM_READ_ONLY |
CL_MEM_USE_HOST_PTR, sizeof(char) * DATA_SIZE, b, NULL);

output = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(char) *
DATA_SIZE, NULL, NULL);

if (!input || !output) return -1;

// Send data
err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &input);
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &input2);
err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &output);
err |= clSetKernelArg(kernel, 3, sizeof(unsigned int), &count);
if (err != CL_SUCCESS) return -1;

9-10: Run kernel, wait for completion

// Run kernel!
err = clEnqueueNDRangeKernel(commands, kernel, 1, NULL, &global, &local,
0, NULL, NULL);

if (err != CL_SUCCESS) return -1;

clFinish(commands);

11-12: Read back data, release

82 OpenCL

// Read result
err = clEnqueueReadBuffer(commands, output, CL_TRUE, 0, sizeof(char) *
count, c, 0, NULL, NULL);
if (err != CL_SUCCESS) return -1;

// Print result
printf(“%s\n”, c);

// Clean up
clReleaseMemObject(input);
clReleaseMemObject(output);
clReleaseProgram(program);
clReleaseKernel(kernel);
clReleaseCommandQueue(commands);
clReleaseContext(context);

10.7 The Julia example in OpenCL

As one more introductory example, let us look at the Julia example again. The code will be
highly similar to the CUDA version.

From the CPU part, I will only include the part closest to the kernel call, setting up param-
eters, transferring data. Note that this is a simplified version that doesn’t use any OpenGL
bindings.

float theReal, theImag;
cl_kernel k;

int computeFractal(unsigned int *data, unsigned int length)
{
 cl_int ciErrNum = CL_SUCCESS;
 size_t localWorkSize, globalWorkSize;
 cl_mem in_data, out_data;

 in_data = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY |
CL_MEM_COPY_HOST_PTR, length * sizeof(unsigned int), data, &ciErrNum);
 out_data = clCreateBuffer(cxGPUContext, CL_MEM_READ_WRITE, length *
sizeof(unsigned int), NULL, &ciErrNum);

 localWorkSize = 512;
 globalWorkSize = length;

 // set the args values
 int width = dataWidth;
 ciErrNum = clSetKernelArg(k, 0, sizeof(cl_mem), (void *) &out_data);
 ciErrNum |= clSetKernelArg(k, 1, sizeof(cl_uint), (void *) &length);
 ciErrNum |= clSetKernelArg(k, 2, sizeof(cl_uint), (void *) &width);
 ciErrNum |= clSetKernelArg(k, 3, sizeof(cl_float),(void *) &theReal);
 ciErrNum |= clSetKernelArg(k, 4, sizeof(cl_float),(void *) &theImag);

 cl_event event;
 ciErrNum = clEnqueueNDRangeKernel(commandQueue, k, 1, NULL, &global-
WorkSize, &localWorkSize, 0, NULL, &event);

 clWaitForEvents(1, &event); // Synch
 printCLError(ciErrNum);

OpenCL 83

ciErrNum = clEnqueueReadBuffer(commandQueue, out_data, CL_TRUE, 0,
length * sizeof(unsigned int), data, 0, NULL, NULL);

printCLError(ciErrNum);

clReleaseMemObject(in_data);
clReleaseMemObject(out_data);
return ciErrNum;

}

Some error checks are omitted. Apart from this, there is code for setting up OpenCL as
well as providing visual output and user interaction. Note that the localWorkSize may
need to be tuned for optimal performance.

As expected, the kernel is relatively simple:

int julia(int x, int y, float r, float im, int DIM);

int julia(int x, int y, float r, float im, int DIM)
{

const float scale = 1.5;
float jx = scale * (float)(DIM/2 - x)/(DIM/2);
float jy = scale * (float)(DIM/2 - y)/(DIM/2);

int i = 0;
for (i=0; i<50; i++)
{

float jx2 = jx * jx - jy * jy + r;
jy = 2*jy * jx + im;
jx = jx2;

if (jx*jx + jy*jy > 1000)
return i;

}

return i;
}

__kernel void juliaKernel(__global unsigned int *outdata,
const unsigned int length,
const unsigned int width,
const float r,
const float im)

{
unsigned int pos = 0;
unsigned int i;
unsigned int val;

pos = get_global_id(0);

val = julia(pos % width, pos / width, r, im, width);

outdata[pos]= val * 20 + (val * 10 << 8) + (val * 5 << 16);
}

At the time of writing this, there are major OpenCL implementations are still at OpenCL
1.2 so that is what I use here. Unlike the CUDA case, I don’t use C++ extensions. These

84 OpenCL

are available in OpenCL since version 2.1. Even though that version was announced in
2015, as of 2018 it still has not propagated to all major platforms so 1.2 is still of interest.

I chose to make the thread numbering one-dimensional which is kind of questionable
when you are working with 2-dimensional output. That is why I do % and / calculations
for the position sent to the julia function. I also use different scaling factors on each com-
ponent in order to get simple colorizing, and I didn’t bother with overflows that may affect
the next channel. You may fix that as a simple exercise.

We will see more OpenCL examples later, e.g. the rank sorting in chapter 17.

10.8 Some more notes on OpenCL

Let me say a few words about the concepts platform and device. A platform is an OpenCL
implementation, i.e. a library. Not OpenCL itself, but one specific implementation. Several
can co-exist, supporting different devices. A device in OpenCL is therefore a chip which a
platform supports. (Otherwise, I usually use the word platform for a specific API, like
CUDA/OpenCL/Compute shaders.)

Then we have the question of language freedom. OpenCL is both good and bad in this
case. From the CPU side, OpenCL is very easy to call from any language! Anything that
can call into a C API can call OpenCL. I have used it from other languages. The kernel
code, however, is only C-style. It is theoretically possible for a specific implementation
may choose to support more, but the code you write for it will lose portability.

Finally, we have the question of performance. Investigations report remarkably small dif-
ferences, but the differences vary a lot. We have conducted several investigations our-
selves, and the difference can be that one platform is 2x faster than the other. In most
cases, CUDA is faster, but not all the time. We have seen OpenCL winning, we have seen
them going side by side with no significant differences.

It is very hard to compare, due to multiple OpenCL implementations, and we can only
compare NVidia implementations if we want to compare to CUDA.

10.9 Synchronization in OpenCL

As expected, synchronization in OpenCL is largely the same as in CUDA. In OpenCL,
synchronization is made with barriers. Most importantly, kernels can synchronize within
a work group like this:

barrier(CLK_LOCAL_MEM_FENCE)

Like we said above, there is no synchronization between work groups, so these must be
made with multiple kernel runs.

See chapter 17.2 for an example that uses OpenCL barriers.

OpenCL 85

In OpenCL, the barriers are focused on synchronizing memory access. You choose which
kind of memory access to synchronize (global, local).

The host (CPU) can synchronize on global level. This is available for:

• tasks (e.g. clEnqueueNDRangeKernel)

• Memory(e.g.clEnqueueReadBuffer)

• events (e.g. clWaitforEvents)

10.10 Queries in OpenCL

OpenCL can provide information with clDeviceInfo(); Among the options are:

CL_DEVICE_LOCAL_MEM_SIZE
CL_DEVICE_LOCAL_MEM_TYPE
CL_DEVICE_MAX_COMPUTE_UNITS
CL_DEVICE_WORK_GROUP_SIZE
CL_DEVICE_MAX_WORK_ITEM_SIZES

10.11 OpenCL events

OpenCL has events similar to CUDA events. The options and functions include:

CL_PROFILING_COMMMAND_SUBMIT

cl_event
clWaitForEvents
clFinish
clGetEventProfilingInfo

10.12 Conclusions on OpenCL

Don’t fear the complex setup phase! The rest is similar to CUDA.

Performance tend to be on par with CUDA or almost.

The speciality of OpenCL is heterogeneous systems.

One big problem burdens the platform: Apple and NVidia lagging behind. OpenCL 2.0
has major enhancements, but Apple and NVidia seem not to be interested! But we are hop-
ing for a change.

86 OpenCL

Fragment shaders 87

11. Fragment shaders

This section is partially based on a chapter in Volume 2.

General-purpose computing with fragment shaders is the “classic GPGPU”, the original
GPU computing approach. Here, we use graphics shaders, so the graphics heritage is
highly visible. We adapt data and computing to fit the graphics pipeline.

This technique was hot until CUDA arrived. Since then, it is overshadowed by the other
platforms, CUDA and OpenCL in particular. However, I do not want to ignore this path,
for a few reasons that I will discuss. There are a few arguments:

• Highly suited to all problems dealing with images, computer vision, image coding etc.

• Parallellization‚ “comes natural”, you can’t avoid it and good speedups are likely. I
would argue that there are fewer pitfalls.

• Highly optimized (for graphics performance).

• Compatibility is vastly superior!

• Very much easier to install!

This sounds good, but certainly there are some important weaknesses.

• You must map data to image data

• Computing controlled by pixels in output image

• No shared memory access

Out of these, the lack of shared memory access is probably the biggest weakness. How-
ever, OpenGL 4 adds much flexibility, moves closer to CUDA and (especially) OpenCL.
We now have new features like writable textures, atomics and synchronization. With this
added flexibility, fragment shaders have taken some important steps ahead to make them
viable for GPU computing again.

We saw the OpenGL pipeline in Figure 3 on page 20. It consists of multiple stages. Out of
these, three are programmable, but only one creates easily accessible output data, the frag-
ment processing stage.

88 Fragment shaders

The typical OpenGL situation works with complex geometry, many transformations, per-
spective projection, lighting and material calculations for the surfaces, and many texture
accesses for interpolation and supersampling.

Typical GPU Computing with fragment shaders is vastly different. However, it is not all
that alien, since it is also used in filtering in graphics. For this case, we render to a single
rectangle covering the entire image buffer, we use FBOs for effective feedback, floating-
point buffers, and ping-ponging, many pass with different shaders

Thus, the GPGPU model can be summarized as follows:

• We have an array of input data. This is put in a texture (or several).

• We produce an array of output data. This arrives in the frame buffer.

• This is produced by a computing kernel, which is a fragment shader. It is invoked by
drawing graphics.

• The computation is done by one or several rendering passes.

• When we need several passes, the output is rerouted/copied to the input data of the next
pass, usually using FBOs, framebuffer objects.

I will now continue with an example, that makes a trivial computation in many iterations
using FBOs and ping-ponging.

11.1 Input and output

You load your input data from CPU/RAM to GPU/VRAM, usually using glTexImage2D.

If our input data is a one-dimensional array of floating-point values, they will end up dis-
tributed over the four channels of the texture if you use glTexImage2D the standard way. It
is, however, possible to upload into a monochrome texture.

A texture is allocated like this:

glGenTextures (1, &tex1);
glBindTexture(GL_TEXTURE_2D,tex1);

// set texture parameters
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
// define texture with floating point format

We use two textures so we can switch between them. We assign one of the two textures
initial data, in our case just zeroes.

float* data = (float*)malloc(4*texSize*texSize*sizeof(float));
float* result = (float*)malloc(4*texSize*texSize*sizeof(float));
for (int i=0; i<texSize*texSize*4; i++)

data[i] = 0.0;

glBindTexture(GL_TEXTURE_2D, tex1);
glTexImage2D(GL_TEXTURE_2D,0,GL_RGBA32F,

 texSize,texSize,0,GL_RGBA,GL_FLOAT, data);

Fragment shaders 89

Note that the texture size is texSize*texSize, but since we have four color channels, the
total data size is texSize*texSize*4.

Getting the data out afterwards is not harder. It is copied to CPU/RAM from GPU/VRAM
using glReadPixels();

glReadBuffer(GL_COLOR_ATTACHMENT0);
glReadPixels(0, 0, texSize, texSize,GL_RGBA,GL_FLOAT,result);

// print out results
printf("Data before computation:\n");
printf("%f\n",data[texSize*texSize*4-1]);
printf("Data after computation:\n");
printf("%f\n",result[texSize*texSize*4-1]);

11.2 The computation kernel = the shader

The shaders are read and compiled to one or several program objects. A GPGPU applica-
tion may have several shaders loaded. We only have one in our example.

Activate the desired shader as needed using glUseProgram1(); Our shaders are very sim-
ple. The fragment shader adds a small number to all elements of the data:

#version 150
uniform sampler2D texUnit;
out vec4 outColor;
in vec2 texCoord;
void main(void)
{
 vec4 texVal = texture(texUnit, texCoord);
 outColor = texVal + vec4(0.001, 0.001, 0.001, 0.001);
}

Modern OpenGL requires a vertex shader too. All we need is a trivial pass-through shader:

#version 150
in vec3 inPosition;
in vec2 inTexCoord;
out vec2 texCoord;
void main(void)
{

texCoord = inTexCoord;
gl_Position = vec4(inPosition, 1.0);

}

The geometry is, again, a single polygon. I set it up so it matches the viewport (-1 to 1 in
all directions) and with texture coordinates that will match every pixel.

GLfloat vertices[] = {-1.0f,-1.0f,0.0f,
-1.0f,1.0f,0.0f,
1.0f,1.0f,0.0f,
1.0f,-1.0f,0.0f};

GLfloat texcoord[] = {0.0f, 1.0f,
0.0f, 0.0f,

1. glUseProgramObjectARB for older SDKs

90 Fragment shaders

1.0f, 0.0f,
1.0f, 1.0f};

GLuint indices[] = {0,1,3, 3,1,2};

This allows the vertex shader to be a pure pass-through, which is what we want. We load
the geometry to the GPU using vertex buffers. In our demo, we hide that in a Model struc-
ture provided by our lab code loadobj.c.

// Upload geometry to the GPU:
m = LoadDataToModel(vertices, NULL, texcoord, NULL, indices, 4, 6);

For more details on vertex buffers and vertex arrays, see Volume 1.

11.3 Feedback

In Volume 2, I described how shaders can work in several passes, by using the output from
one iteration as input to the next. This kind of feedback is ever-present in GPGPU applica-
tions. The bandwidth over the bus to the CPU is limited, so the more that can be done
before passing back the data to the CPU, the more efficient will the processing be.

This is most efficiently done by rendering to textures, which is done using framebuffer
objects. We create multiple textures, use one or more as input and others as output for each
stage, and they can switch roles as needed. This technique is called “ping-ponging”. We
discussed this for graphics in Volume 2. Let us do it for a general computing perspective.

First of all, we need two FBOs, created like this:

glGenFramebuffers(1, &fbo1); // frame buffer id
glBindFramebuffer(GL_FRAMEBUFFER, fbo1);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,

GL_TEXTURE_2D, tex1, 0);

Now we can run multiple iterations like this:

for (int loop = 0; loop < loopCount; loop++)
{

// Ping-pong between fbo1 and fbo2
if ((loop & 1) == 0)
{

glBindFramebuffer(GL_FRAMEBUFFER, fbo2);
glBindTexture(GL_TEXTURE_2D, tex1);

}
else
{

glBindFramebuffer(GL_FRAMEBUFFER, fbo1);
glBindTexture(GL_TEXTURE_2D, tex2);

}
DrawModel(m, shader, "inPosition", NULL, "inTexCoord");
glFlush();

}

If all is well, we will get a number out that matches the number of iterations.

Fragment shaders 91

11.4 Image filter in fragment shader

The shader can, for example, look as follows. This particular shader comes from a demo
that I believe was an introductory example at GPGPU.org. This is a Laplacian filter for
detecting high frequencies, shown in Figure 30. Edges will give a high response, but even
more so will local maxima and noise.

FIGURE 30. A simple 3x3 Laplacian filter for detecting high frequencies

If this filter had been properly normalized, it should divide the result by 8, but that would
make the resulting signal too low to view.

uniform sampler2D texUnit;
void main(void)
{
 const float offset = 1.0 / 512.0;"
 vec2 texCoord = gl_TexCoord[0].xy;"
 vec4 c = texture(texUnit, texCoord);"
 vec4 bl = texture(texUnit, texCoord + vec2(-offset, -offset));"
 vec4 l = texture(texUnit, texCoord + vec2(-offset, 0.0));"
 vec4 tl = texture(texUnit, texCoord + vec2(-offset, offset));"
 vec4 t = texture(texUnit, texCoord + vec2(0.0, offset));"
 vec4 ur = texture(texUnit, texCoord + vec2(offset, offset));"
 vec4 r = texture(texUnit, texCoord + vec2(offset, 0.0));"
 vec4 br = texture(texUnit, texCoord + vec2(offset, offset));"
 vec4 b = texture(texUnit, texCoord + vec2(0.0, -offset));"
 outColor = -8.0 * (c + -0.125 * (bl + l + tl + t + ur + r + br + b));
}

See Figure 31 below for an example of the effect of this filter.

FIGURE 31. High-pass image filter performed in fragment shader.

-1 -1 -1

-1 8 -1

-1 -1 -1

Texture Frame buffer

Shader

92 Fragment shaders

11.5 Reduction in fragment shaders

Reduction, discussed in chapter 15, is slightly different when using fragment shaders, but
only slightly. We can work pretty much the same way. However, a few things are different.

With 4-channel data we should take that into account. GLSL has a max() function that
works on a vec4, producing the maximum of each channel. This suggests that we should
handle each channel separately until the data is sufficiently small.

The focus on images makes it very tempting to work with 2D images. 3D is also possible
for very large data, but harder to handle. It is pretty natural to reduce the data equally
along every axis. That makes Figure 36 illustrate a typical reduction for this case. Each
kernel run is now one rendering pass, and the number of threads is controlled by the size
of the drawn geometry (quad).

OpenGL Compute shaders and Vulkan 93

12. OpenGL Compute
shaders and Vulkan

It is impossible to cover all possible frameworks for GPU computing, but I will here intro-
duce the ones that I judge as the most important ones beside CUDA and OpenCL. The one
I consider most important is OpenGL compute shaders, so that is the one that will get most
space here, but we should not forget Direct Compute and Vulkan.

12.1 OpenGL Compute shaders

The compute shader concept originally appeared in Microsoft’s Direct Compute
(chapter 12.8), but the same concept was later added to OpenGL, since OpenGL 4.3. This
is not the latest version, but still a bit of “bleeding edge” since 4.3 is not fully universal.
We are waiting for some major players to get up to date.

So, why should we consider compute shaders instead of CUDA or OpenCL? I have a few
arguments:

• Better integration with OpenGL

• No extra installation!

• Easier to configure than OpenCL

• Not NVidia specific like CUDA

• If you know GLSL, Compute Shaders are (fairly) easy!

This is pretty good! So what is talking against it? Not very much, actually.

• Higher hardware demands than OpenCL and CUDA: needs a “Kepler generation”
board or better and OpenGL 4.3. This is not much of a problem today.

• Some new concepts. Not much of a problem either since all important things are there.

• No support for 8-bit integers.

94 OpenGL Compute shaders and Vulkan

• Not part of the main graphics pipeline like fragment shaders. But still much closer than
CUDA or OpenCL!

• Some vendors (Apple) are lagging behind. This may be the biggest problem. I can not
run compute shaders on my MacBook Pro, despite modern hardware!

Compute shaders run alone, not compiled together with others, but being part of OpenGL,
it has direct access to much of the OpenGL features. See Figure 32.

FIGURE 32. Data access for compute shaders and other shaders

In the figure, I have lumped together all the graphics shaders (vertex, fragment, geometry,
tessellation) into one. For our purposes we mostly consider fragment shaders, but in this
case I rather consider most kinds of shader input, including attributes to vertex shaders.

Since we have no geometry, there can be no attributes per vertex, Uniforms, however,
work nicely, and so do textures despite not being able to write them to the frame buffer. So
what you see in the upper part of the figure is a data view of the OpenGL pipeline, while
the lower shows the more general purpose paths with arbitrary access to and from SSBOs.

So how do I use it? If you know OpenGL, it isn’t very hard to get it running. Compilation
is just like other shaders, you just don’t compile it together with others the way you do
with vertex, fragment etc. All you need to do is a trivial change from the usual shader
loader/compilation code that you are bound to have already. You just need to compile as
GL_COMPUTE_SHADER.

Many things are just like you are used to. You can send uniforms to the shader, just like in
other shaders, and you access textures the same way. That makes OpenGL integration far
superior than any other solution.

But of course there are a few differences to attend to. We no longer have one thread per
fragment, since there are no fragments (output pixels), and thereby no pre-determined out-
put either. The thread number is set to what you want. Input and output data is even more
special.

Compute shader

SSBOUniforms TexturesAttributes

Graphics shaders

Frame buffer

OpenGL Compute shaders and Vulkan 95

12.2 Shader Storage Buffer Objects

Of course, input data can be textures, but then we are back to the sometimes a bit awkward
situation of having to fit data into textures. As a complement, we now have “Shader Stor-
age Buffer Objects”. This is a general buffer type for arbitrary data. We can declare it as an
array of structures, which gives us great freedom in what data we want to use. These buff-
ers are read and written freely by Compute Shaders.

Upload input data to SSBO works like this:

glGenBuffers(1, &ssbo);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo);
glBufferData(GL_SHADER_STORAGE_BUFFER, size, ptr, GL_STATIC_DRAW);

We also need to tell the shader about it. We do that with this call on the CPU:

glBindBufferBase(GL_SHADER_STORAGE_BUFFER, id, ssbo);

which matches this line in the compute shader;

layout(std430, binding = id, buffer x {type y[];};

The number of blocks (work groups) is controlled from the host. The number of threads
per block can be set either from inside the shade or from the host. In the shader, this is
made by another layout call:

layout(local_size_x = width, local_size_y = height)

In the shader, the thread number is similar to OpenCL, but in this case given as prede-
clared “in” variables: gl_GlobalInvocation and gl_LocalInvocation, together with the
equally intuitive gl_NumWorkGroups, gl_WorkGroupID and gl_WorkGroupSize. Note
that these output vec3’s, that is a 3-component vector.

There is also gl_LocalInvocationIndex, which in an integer giving a unique number of
each work item in one work group.

Thus, in the simplest cases we can access data using gl_GlobalInvocation and each thread
will get a unique item.

You execute the kernel like this:

glUseProgram(program);
glDispatchCompute(sizex, sizey, sizez);

There is also shared memory. In compute shaders, shared memory is declared shared:

shared float a[SOMESIZE];

The arguments to glDispatchProgram set the number of blocks / workgroups. The number
of threads (work items) per block can be set by the shader as above,

In order to access the output data, you use the following calls:

glBindBuffer(GL_SHADER_STORAGE, ssbo);

96 OpenGL Compute shaders and Vulkan

ptr = (int *) glMapBuffer(GL_SHADER_STORAGE, GL_READ_ONLY);

Then read from ptr[i]. When you are done, release the data like this:

glUnmapBuffer(GL_SHADER_STORAGE);

12.3 Example code

Here follows the complete main program:

int main(int argc, char **argv)
{
 glutInit (&argc, argv);
 glutCreateWindow(“TEST1”);

// Load and compile the compute shader
 GLuint p =loadShader(“cs.csh”);

 GLuint ssbo; //Shader Storage Buffer Object

 // Some data
 int buf[16] = {1, 2, -3, 4, 5, -6, 7, 8, 9,

10, 11, 12, 13, 14, 15, 16};
 int *ptr;

// Create buffer, upload data
 glGenBuffers(1, &ssbo);
 glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo);
 glBufferData(GL_SHADER_STORAGE_BUFFER,
 16 * sizeof(int), &buf, GL_STATIC_DRAW);
// Tell it where the input goes!
// “5” matches “layuot” in the shader.

 glBindBufferBase(GL_SHADER_STORAGE_BUFFER,
 5, ssbo);

// Get rolling!
 glDispatchCompute(16, 1, 1);

// Get data back!
 glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo);
 ptr = (int *)glMapBuffer(
 GL_SHADER_STORAGE_BUFFER,
 GL_READ_ONLY);
 for (int i=0; i < 16; i++)
 {
 printf(“%d\n”, ptr[i]);
 }
}

Here follows a simple Compute Shader:

#version 430
#define width 16
#define height 16

// Compute shader invocations in each work group

layout(std430, binding = 5) buffer bbs {int bs[];};

OpenGL Compute shaders and Vulkan 97

layout(local_size_x=width, local_size_y=height) in;

//Kernel Program
void main()
{
 int i = int(gl_LocalInvocationID.x * 2);
 bs[gl_LocalInvocationID.x] = -bs[gl_LocalInvocationID.x];
}

Note: In this example there are too many threads for data (16*16*16)

12.4 Synchronization in OpenGL compute shaders

Compute shaders has a similar synchronization mechanism. Much of it is shared with the
rest of OpenGL. These include:

barrier(); synchronizes the execution. Other barrier calls relate to the memory access:

groupMemoryBarrier(); synchronizes within a work group.

See also: memoryBarrier(); memoryBarrierShared(); memoryBarrierImage(); memoryBa-
rrierBuffer();

There are also synchronization commands from the CPU, e.g. glMemoryBarrier().

12.5 Compute shader timing with query objects

With compute shaders, timing is made with query objects. Start timing with

glBeginQuery(GL_TIME_ELAPSED, myQuery);

and end with

glEndQuery(GL_TIME_ELAPSED);

Check if it has finished with

glGetQueryObjectiv(myQuery, GL_QUERY_RESULT_AVAILABLE, &query_done);

Finally, get the time with

glGetQueryObjecti64v(myQuery, GL_QUERY_RESULT, &elapsed_time);

12.6 Queries in compute shaders

In OpenGL, thereby available both to compute shader and fragment shader solutions, you
can use glGetIntegerv/glGetBooleanv/glGetFloatv and glGetInteger64v with various
parameters. Perhaps the most vital ones are:

MAX_COMPUTE_SHARED_MEMORY_SIZE
MAX_COMPUTE_WORK_GROUP_COUNT
MAX_COMPUTE_WORK_GROUP_SIZE

98 OpenGL Compute shaders and Vulkan

12.7 Conclusions on Compute Shaders

OpenGL Compute Shaders are not only available for stationary computers. They were
originally, but since 2014 they are also supported in GLES 3.1 (OpenGL for embedded
systems). That was also the time when MESA (the open source OpenGL implementation,
e.g. for Linux) became available for Intel GPUs (Haswell). So the support improved over
time. Alas, as of 2018 they are still not supported by Apple.

So, do Compute Shaders provide an important alternative? They provide good portability
between different GPUs and OSes. They are supported on most GPUs that are of interest
today, graphics integration can’t be easier, it has the vital features to be competitive. Thus,
I only see advantages with them.

12.8 Vulkan

At the time of writing this, Vulkan is still the new player on the field. It was released in
2016. It has been called the new OpenGL, but it is also a new open parallel computing
platform.

Will it step in and take over? Well, I would not say that it has so far, but it has made con-
siderable success in the gaming arena. It is cross-platform, it is built for both graphics and
general-purpose computations. This is true for OpenGL as well, but Vulkan solves prob-
lems that has surfaced in OpenGL over time.

To be precise, the speciality of Vulkan is that it is designed for multi-threaded host appli-
cations. OpenGL is single-threaded on the host. In many cases I would consider this a
minor problem, since many of the big problems run best on the GPU anyway, but there are
still many problems of more sequential nature that are best computed on the CPU.

The big challenge in Vulkan is to set up the CPU environment. The compute shaders in
Vulkan are identical to the ones in OpenGL. Thus, Vulkan as GPU computing platform is
little more than one more vote for the importance for OpenGL Compute Shaders.

Direct Compute 99

13. Direct Compute

I don’t think it would be serious of me to ignore Microsoft’s Direct Compute in a volume
like this. Direct Compute is part of Microsoft’s Direct X, and first appeared in Direct X 11,
but also supports Direct X 10. It first appeared in 2009.

Direct Compute is based on its own kind of compute shaders, and predates the OpenGL
compute shaders, which have been in core OpenGL since 2012. In Direct Compute, the
shaders are written in HLSL, MicroSoft’s shader language. However, the differences are
not major between HLSL and GLSL.

In most ways, Direct Compute is similar to OpenGL compute shaders or OpenCL. You
compile with the built-in HLSL compiler, you load data to buffers, you execute the kernel,
you download the result.

An unusual concept in Direct Compute is the resource views. This is a “view into buffers”,
access paths into buffers, that allow hardware acceleration of format conversions as well
as (less surprising) hardware accelerated filtering when sampling data.

Otherwise, much is as usual, and again we need to translate some concepts. A thread
group is the same as what we know as a work group or block. A thread vector is a warp.
But let’s not dig deeper into that.

Here follows a simple demo. It is based on MicroSoft’s “BasicCompute11” demo but sim-
plified further. Reusable calls (which are very convenient to keep the complexity down)
are not listed.

All the code is now doing is to load an array of floating--point numbers, and computing
the square root of each element. The problem is embarrassingly parallel, no dependencies.
Here follows the shader:

// Floating point numbers in a raw

ByteAddressBuffer Buffer0 : register(t0);
RWByteAddressBuffer BufferOut : register(u0);

[numthreads(1, 1, 1)]

100 Direct Compute

void CSMain(uint3 DTid : SV_DispatchThreadID)
{
 float f0 = asfloat(Buffer0.Load(DTid.x*4));
 BufferOut.Store(DTid.x*4, asuint(sqrt(f0)));
}

Note that the number of threads is specified from within the shader, just like it is in
OpenGL Compute Shaders.

The access to the input and output buffers is a bit different than before, but otherwise the
differences are not major.

Here follows the CPU program (main program only, reusable code, error checks and dec-
larations excluded):

int __cdecl main()
{
 CreateComputeDevice(&g_pDevice, &g_pContext, false);
 CreateComputeShader(L"SimpleDCa.hlsl", "CSMain", g_pDevice, &g_pCS
);

printf("Creating buffer and fill it with initial data...");
 for (int i = 0; i < NUM_ELEMENTS; ++i)
 g_vBuf0[i] = (float)i;

 CreateRawBuffer(g_pDevice, NUM_ELEMENTS * sizeof(float),
&g_vBuf0[0], &g_pBuf0);
 CreateRawBuffer(g_pDevice, NUM_ELEMENTS * sizeof(float), nullptr,
&g_pBufResult);

 printf("Creating buffer views...");
 CreateBufferSRV(g_pDevice, g_pBuf0, &g_pBuf0SRV);
 CreateBufferUAV(g_pDevice, g_pBufResult, &g_pBufResultUAV);

 printf("Running Compute Shader...");
 ID3D11ShaderResourceView* aRViews[1] = { g_pBuf0SRV };
 RunComputeShader(g_pContext, g_pCS, 1, aRViews, nullptr, nullptr, 0,
g_pBufResultUAV, NUM_ELEMENTS, 1, 1);
 printf("done\n");

 // Read back the result from GPU
ID3D11Buffer* debugbuf = CreateAndCopyToDebugBuf(g_pDevice,

g_pContext, g_pBufResult);
D3D11_MAPPED_SUBRESOURCE MappedResource;
float *p;
g_pContext->Map(debugbuf, 0, D3D11_MAP_READ, 0, &MappedResource);
p = (float*)MappedResource.pData;

// Verify that if Compute Shader has done right
printf("Printing some output...");
for (int i = 0; i < min(NUM_ELEMENTS, 10); ++i)

printf("%f %f\n", g_vBuf0[i], p[i]);

 g_pContext->Unmap(debugbuf, 0);

 debugbuf->Release();

 printf("Cleaning up...\n");
 g_pBuf0SRV->Release();

Direct Compute 101

 g_pBufResultUAV->Release();
 g_pBuf0->Release();
 g_pBufResult->Release();
 g_pCS->Release();
 g_pContext->Release();
 g_pDevice->Release();

printf("Press key to finish.\n");
getch();

 return 0;
}

Is it mostly similar to OpenGL Compute Shaders or OpenCL? You can be the judge off
that, but I conclude that it reminds mostly of those two, with a considerable setup, and
support for all important GPU computing needs.

I am not an expert on Direct Compute, so there may be superfluous code, simplifications
that I don’t see. Corrections are welcome.

13.1 Shared memory

In Direct Compute, shared memory is called... shared memory! Or more precisely, Thread
Group Shared Memory (TGSM), but we feel rather at home with it anyway, don’t we? Just
like shared memory in CUDA, it is local to one block/thread group. It is declared like this
(in the shader, obviously):

groupshared float2 myArray[N];

The usual rules apply, using it as temporary storage, and avoiding bank conflicts.

13.2 Synchronization

The second vital detail to add is that of synchronization. Within a group, in shader code,
synchronization is made with

GroupMemoryBarrierWithGroupSync();

Synchronization on CPU level is implicit in the Dispatch() call, which launches the com-
pute shader (according to the more advanced demos from Microsoft)

There is always more to say and more code to show, but for our needs I believe that this is
a sufficient introduction to Direct Compute.

102 Direct Compute

Comparisons of the platforms 103

14. Comparisons of the
platforms

Performance is important, so we should ask ourselves if these different frameworks per-
form equally well. I have been involved in several such investigations. There are, of
course, also many elsewhere, but I will here refer to the ones we have made locally.

One early project, shown in Figure 33, was made by Marco Fratarcangeli, building large
mass-spring systems, comparing CPU, CUDA, GLSL and OpenCL. This was originally
made as a project in my PhD course in GPU computing, but has since then been published.
[18]

FIGURE 33. Cloth simulation performance comparison

In his investigation, the CPU quickly fell behind. OpenCL was noticeably behind GLSL
and CUDA but still a lot faster than the CPU. CUDA and GLSL were almost side-by-side,
with a slight advantage to CUDA. On the largest sizes, however, OpenCL either failed
completely or had very poor performance.

104 Comparisons of the platforms

In 2016, Torbjörn Sörman made the “FFT everywhere” project as his diploma thesis [19].
The Fast Fourier Transform was implemented, in comparable and reasonably optimized
implementations. These were then measured for different data sizes, and the result for one
of the test cases is shown in Figure 34.

FIGURE 34. Example results from “FFT Everywhere”

Apart from Sörman’s implementation, NVidia’s cuFFT and the FFTW implementations
were also used. It is clear from the graph that cuFFT is extremely well optimized, and out-
performed everything else by an order of magnitude.

However, the main focus of the investigation was to see how a comparable implementation
would perform. For that, we can see that CUDA, Direct Compute and OpenCL were the
winners. There was also a test on AMD, where Direct Compute, OpenCL and OpenGL
Compute Shaders ran side-by-side.

There are many if’s and but’s in a comparison like this, but there were two clear conclu-
sions:

• Hard optimization (cuFFT and FFTW) pays, and not just by a little.

• OpenCL and Compute Shaders tend to be very close.

An even more recent study (2018) by Adam Söderström reports a different picture. In his
study, OpenCL and Direct Compute clearly beat CUDA.

These studies are scarily inconclusive, pointing in different directions, but I believe they
tell us one thing: No platform stands out as clear winner every time. There are often a clear
winner for your application, and it can pay to try one more platform than whatever you
find the most obvious one.

Reduction 105

15. Reduction

An interesting class of problems for GPU computing is reduction problems, where a small
amount of data is extracted from a larger set. This is a problem of limited parallel nature
which still lends itself to parallel implementation.

Examples of reduction algorithms include finding maximum or minimum, calculating
median or average, and histograms. These are all common problems.

They are often sequentially trivial, you just loop through the data and find the answer. You
add, takes min or max, you accumulate results, you may compute an intermediate histo-
gram to find the answer. But these solutions fit badly in massive parallelism!

A typical solution is to use a tree-based approach, as illustrated in Figure 35, where the
maximum of a dataset is calculated. The figure only shows a trivial sized problem, for
which a GPU implementation is irrelevant. It is just an illustration of a problem which is
rather applied on millions of items.

FIGURE 35. Multi-level reduction

With a tree, each comparison is independent of the others, making every level a trivially
parallel problem which is split to a lather number of threads. It doesn’t have to be 2-to-1.
Rather, it is often beneficial to have each thread calculating the max or 4 or 8 items. With a
2D arrangement, we can reduce 4 to 1 as shown in Figure 36.

106 Reduction

The parallelism is reduced for each level, as the dataset shrinks to smaller and smaller size.
Thus, the computing need to be reorganized to a smaller number of threads. This is done
by launching multiple kernel runs with gradually fewer threads.

FIGURE 36. 2D reduction finding max

Essentially, we do this:

For n = k downto 0 do
Launch 2n kernels

There is a certain overhead in launching a kernel, which is why we should explore how
much work to do in one run. We can merge multiple levels into one, but there is a limit
where we lose too much parallelism. There is a balance between enabling parallelism and
avoiding overhead.

This also means that we should not run the entire algorithm on the GPU. Under a certain
problem size, there will be no gain in launching a GPU kernel and the rest of the problem
should be computed on the CPU.

See Figure 37. Several levels of a 2-to-1 reduction pyramid is performed in each level
(kernel run). The final layer, in the bottom, should be performed on the CPU.

FIGURE 37. Reduction with multiple levels per kernel

Like so often before, we must remember that we can not synchronize between blocks. The
multi-level approach helps us to handle this.

Reduction 107

15.1 Optimization of reduction

As reported by Harris [17], reduction is a great example of how far optimization can go.
These optimizations include:

• Avoid “if” statements, divergent branches

• Coalesced memory access

• Avoid bank conflicts in shared memory

• Optimizing the number of data items handles per thread

• Loop unrolling to avoid loop overhead (classic old-style optimization!)

Harris reports huge speed differences. He reports 30x speedup from naive implementation
to optimized. We must expect the number to change with different hardware, but it still
illustrates the importance of optimization. The “standard” question of coalescing is only
part of the optimization.

We can also note that shared memory has no relevance for the problem. If every item is
only read once, we have nothing to gain of temporary storages.

15.2 Parallel prefix sum on GPU

A particularly important technique for much parallel computing, and not least GPU com-
puting, is the parallel prefix sum or scan. This operation is essential for many algorithms
where a parallel version may seem undoable. It is a key operations in many algorithms, for
example for implementing QuickSort on GPU (chapter 17).

Parallel prefix sums are not only useful for GPUs. It is just as relevant for e.g. parallel
algorithms on CPU. Here, I will describe the principle and some specific details relevant
for GPU. The text is based on texts by Harris [23] and Blelloch [24].

Parallel prefix sum is quite related to reduction algorithm, although the output is not
reduced to a single data item or small set, but a cumulative sum of the whole data set. For
example, the list (1, 2, 3, 4, 5) would be converted to (1, 3, 6, 10, 15). This is, like reduc-
tion, an operation that is trivial to perform sequentially, but requires some tricks to com-
pute in parallel.

Sequentially, it is trivially performed like this:

a: array[0..max] of Integer;

for i := 1 to max do
a[i] := a[i] + a[i-1]

This is called an inclusive scan, where the number produced is the sum of all elements to
the left, including the element itself. For an exclusive scan, the result is the sum of all ele-
ments to the left, excluding the element itself. Thus, our example above, (1, 2, 3, 4, 5)
results in (0, 1, 3, 6, 10). The result is simply shifted one step to the right.

108 Reduction

In order to compute this efficiently in parallel, we use the parallel method by Blelloch
[24]. It is similar to reduction, but computed in two passes, one called the up-sweep and
then the down-sweep. The up-sweep is a straight-forward reduction sum, except for saving
all intermediate sums at the rightmost element of each subset. This data is then used by the
down-sweep, for creating the final cumulative sums.

The following illustrations are based on figures by Harris [23]. These are stated as based
on Blelloch [24], but Harris’ pictures are in my opinion clearer and easier to follow. Each
figure shows the structure left and an example to the right. The algorithm as illustrated
performs an exclusive scan.

FIGURE 38. Up-sweep

The up-sweep (Figure 38) performs a straight-forward reduction sum. The last stage is
actually not needed. Then follows the down-sweep (Figure 39) which is less intuitive, but
if you study the structure, you will see that it will eventually store a cumulative sum in
each element.

FIGURE 39. Down-sweep

On the GPU, we must perform this as a number of kernel runs, just like the reduction
methods above. Most of the optimizations described by Harris [17] (chapter 15.1) apply.

OpenGL Interoperability 109

16. OpenGL
Interoperability

We have already seen an example that visualize its results with OpenGL, namely the Julia
fractal example. There, we did it the simplest, but not fastest way possible: Download out-
put from the GPU computing to the CPU, then upload it to an OpenGL texture. This
works, but moving the whole result over the bus just to upload it again is wasteful.

Figure 40 suggests three different scenarios: No visualization, visualization by download-
ing and uploading again, and finally OpenGL interoperability, where the data stays on the
GPU and goes directly from GPU Computing (e.g. CUDA) to OpenGL.

FIGURE 40. CUDA and visualization

16.1 CUDA-OpenGL Interoperability

Let us start looking at how this works in CUDA. This requires a setup that is a bit more
complex. We must decide beforehand what data should be shared with OpenGL, and allo-

 CUDA
 kernel

 OpenGL
 visuali-
 zation

 CPU

 GPU

No visuali-
zation

 CUDA
 kernel

 CPU

 GPU

Simple
visualization

 OpenGL
 visuali-
 zation

 CUDA
 kernel

 CPU

 GPU

Visualization with
OpenGL

interoperability

110 OpenGL Interoperability

cate that from the OpenGL side. Then we tell CUDA about it, we register with CUDA, and
map a buffer to give CUDA a pointer to the data. Then we can compute, and have OpenGL
visualizing the result. Here follows code snippets from our demo of this process:

• Allocate with OpenGL

• Register with CUDA

• Allocate VBO (vertex buffer)

glGenBuffers(1, &positionsVBO);
glBindBuffer(GL_ARRAY_BUFFER, positionsVBO);
unsigned int size = NUM_VERTS * 4 * sizeof(float);
glBufferData(GL_ARRAY_BUFFER, size, NULL, GL_DYNAMIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);

cudaGraphicsGLRegisterBuffer(&positionsVBO_CUDA, positionsVBO,
cudaGraphicsMapFlagsWriteDiscard);

• Map buffer to get CUDA pointer

• Pass pointer to CUDA kernel

• Release pointer

cudaGraphicsMapResources(1, &positionsVBO_CUDA, 0);
size_t num_bytes;
cudaGraphicsResourceGetMappedPointer((void**)&positions, &num_bytes,
positionsVBO_CUDA);printError(NULL, err);

// Execute kernel
dim3 dimBlock(16, 1, 1);
dim3 dimGrid(NUM_VERTS / dimBlock.x, 1, 1);
createVertices<<<dimGrid, dimBlock>>>(positions, anim, NUM_VERTS);

// Unmap buffer object
cudaGraphicsUnmapResources(1, &positionsVBO_CUDA, 0);

Simple CUDA kernel for producing vertices for graphics

// CUDA vertex kernel
__global__ void createVertices(float4* positions, float time, unsigned
int num)
{

unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;

positions[x].w = 1.0;
positions[x].z = 0.0;
positions[x].x = 0.5*sin(kVarv * (time + x * 2 * 3.14 / num)) * x/num;
positions[x].y = 0.5*cos(kVarv * (time + x * 2 * 3.14 / num)) * x/num;

}

The result of this example is shown in Figure 41. Our example is based on NVidia’s exam-
ple “SimpleGL”, but simplified to significantly briefer code.

OpenGL Interoperability 111

FIGURE 41. Interoperability example

This example only produces a set of vertices, but we are not limited to that. You can draw
surfaces, compute textures etc.

However, we should still ask ourselves if we should use CUDA with OpenGL. It is great
for visualizing, and faster than going over CPU, but do we really have a problem that ben-
efits from CUDA or would it be better to do it all in OpenGL? Also, consider that OpenGL
has CUDA-like functionality built-in, namely Compute Shaders.

We conclude that CUDA can be coupled closer to OpenGL than the simple way we have
done before. Moving data back and forth is wasteful, there is performance to gain.

16.2 OpenCL and OpenGL

Interoperability between OpenCL and OpenGL is more complicated, since it requires a
changes in the setup phase, the context creation, where you need to add additional proper-
ties, and these properties are platform dependent.

With a modified context, the question is what information to share between OpenGL and
OpenCL. There are several options: Texture sharing, pixel buffer objects, map buffers with
glMapBuffer, and vertex buffer sharing. According to Shevtsov [22], texture sharing is the
most efficient choice so it should be preferred.

For doing this, you set up a texture as you always do with OpenGL, except that it should
be using GL_NEAREST as filter parameter. Then we can create a reference to it for
OpenCL with clCreateFromGLTexture().

It is notable that before you start working on the texture with OpenCL, you should call
glFinish() so OpenGL is no longer doing anything with it. Likewise, after OpenCL is
done, call clFinish() to be sure, to synchronize.

The calls glEnqueueAquireGLObjects() and glEnqueueReleaseGLObjects() are used to
give OpenCL control over a buffer.

112 OpenGL Interoperability

Thus, the computation is bracketed with calls like this:

glFinish();
glEnqueueAquireGLObjects()
--- do your OpenCL work here ---
clFinish()
glEnqueueReleaseGLObjects()

16.3 OpenGL, Compute Shaders and fragment shaders

Finally, let us have a look at the platforms where OpenGL interoperability is by far easiest:
Compute shaders and fragment shaders. Since we are working in the OpenGL context all
the time, interoperability is not an issue at all. The only real question is how to write to
data, like textures, but that is a minor issue. For writing to a texture that you also read
from, you use the ImageStore() call. When using fragment shaders, you typically use
FBOs so you are writing to textures all the time. You can also consider transform feedback
for modifying vertex buffers.

These are all standard operations in OpenGL. Therefore, I choose not to go further on the
subject, as being relatively trivial. Just let me stress once more: OpenGL interoperability is
by far easiest for these platforms!

Sorting on GPUs 113

17. Sorting on GPUs

Sorting is an important problem that is a challenge to do efficiently on GPUs. I will here
present simple but not efficient approaches, the popular bitonic sort and the challenging
but efficient QuickSort.

An important aspect when considering a sorting algorithm for parallel implementation is
whether the algorithm has data driven execution or data independent execution.

In data driven execution, the computing pattern depends on the data. This makes it harder
to parallellize. One such algorithm is QuickSort.

With data independent execution, the computing pattern is data independent and therefore
always the same. One such algorithm is Bitonic sort.

17.1 Bubble sort

Can the classic Bubble sort be made in parallel? We loop through data and compare neigh-
bors. It is extremely sequential in its usual form, and known to be inefficient.

However, a parallel variant of it is very easy to make. For that, we may use a two-phase
method called “odd-even sort“. We use an “odd phase” and an “even phase” where we
compare even indexed items to either the higher or lower neighbor. This is fully sorted
after n phases.

FIGURE 42. Two-phase Bubble sort variant, odd-even sort

This isn’t as bad as it first sounded. It is data independent and has excellent data locality. If
we have all data available in one chunk, this will work perfectly. However, on a GPU that

O(n2)

 Even phase

 Odd phase

114 Sorting on GPUs

implies that it must fit in one single block. To overcome this, we would need to run multi-
ple kernel runs. And that is where it fails.

17.2 Rank sort

Rank sort is a simple and in its sequential form inefficient sorting algorithm. It requires a
set of items to sort where all values are different, or an extension to expand multiple values
to multiple locations.

The algorithm works like this: For each item, count the number of items that are smaller.
Then you know the position of that item in the sorted data.

This is very easy to parallellize. You need one thread per item. Each thread loops through
the entire data set. When the thread is done, it stores its value in a destination array, using
the count of smaller items as index.

Being an O(n2) algorithm, doesn’t it perform badly? It is not a top performer, but it is not
as bad as it seems at first look. It is data independent, which makes it highly suitable for
parallel implementation. It also has excellent locality, with multiple threads accessing the
same item simultaneously. This makes it especially good for broadcasting (e.g. constant
memory), but also suitable for acceleration using shared memory.

Let us look at how this can be implemented. For this example, I choose to use OpenCL.

The CPU part looks essentially the same as for all OpenCL programs (computing part
only):

int gpu_Sort(unsigned int *data, unsigned int length)
{
 cl_int ciErrNum = CL_SUCCESS;
 size_t localWorkSize, globalWorkSize;
 cl_mem in_data, out_data;

 in_data = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY |
CL_MEM_COPY_HOST_PTR, length * sizeof(unsigned int), data, &ciErrNum);
 out_data = clCreateBuffer(cxGPUContext, CL_MEM_READ_WRITE, length *
sizeof(unsigned int), NULL, &ciErrNum);

 if (ciErrNum != CL_SUCCESS)
 {
 printf("Error: Failed to allocate memory on the device\n");
 return ciErrNum;
 }

 localWorkSize = 128; // Can be adjusted for best balance
 globalWorkSize = length;

 // set the args values
 ciErrNum = clSetKernelArg(gpgpuSort, 0, sizeof(cl_mem), (void *)
&in_data);
 ciErrNum = clSetKernelArg(gpgpuSort, 1, sizeof(cl_mem), (void *)
&out_data);

Sorting on GPUs 115

 ciErrNum |= clSetKernelArg(gpgpuSort, 2, sizeof(cl_uint), (void *)
&length);

 if (ciErrNum !=CL_SUCCESS)
 {
 printf("Error: clSetKernelArg failed");
 return -1;
 }

 gettimeofday(&t_s_gpu, NULL);

 cl_event event;
 ciErrNum = clEnqueueNDRangeKernel(commandQueue, gpgpuSort, 1, NULL,
&globalWorkSize, &localWorkSize, 0, NULL, &event);

 clWaitForEvents(1, &event); // Synch
 gettimeofday(&t_e_gpu, NULL);
 printCLError(ciErrNum);

ciErrNum = clEnqueueReadBuffer(commandQueue, out_data, CL_TRUE, 0,
length * sizeof(unsigned int), data, 0, NULL, NULL);

printCLError(ciErrNum);

clReleaseMemObject(in_data);
clReleaseMemObject(out_data);
return ciErrNum;

}

Most of the CPU code is similar to any OpenCL code. One detail deserves mentioning:
The localWorkSize is set to 128 here. With 1024 or more threads per block (work group) a
larger number can make better use of the hardware.

Here is simple kernel for the problem. All threads are independent and perform their task.

__kernel void sort(__global unsigned int *data, __global unsigned int
*outdata, const unsigned int length)
{
 unsigned int pos = 0;
 unsigned int i;
 unsigned int val;

 //find out how many values are smaller
 for (i = 0; i < get_global_size(0); i++)
 if (data[get_global_id(0)] > data[i])
 pos++;

 val = data[get_global_id(0)];
 outdata[pos]=val;
}

As mentioned above, this can be optimized using constant or shared memory. Here is a
kernel that uses shared memory:

__kernel void sort(__global unsigned int *data, __global unsigned int
*outdata, const unsigned int length)
{

unsigned int pos = 0;
unsigned int i, b;

116 Sorting on GPUs

unsigned int val;
unsigned int this;

unsigned int __local buf[128];

// loop until all data is covered

this = data[get_global_id(0)];

for (b = 0; b < length; b += 128)
{

// Get data
buf[get_local_id(0)] = data[get_local_id(0) + b];

// Synch
barrier(CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE);

//find out how many values are smaller
for (i = 0; i < 128; i++)

if (this > buf[i]) // data[b + i])
pos++;

// Synch
barrier(CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE);

}

outdata[pos] = this;
}

Note how the shared memory (__local) is used to read blocks of data, just a single item per
thread, which is then read by all threads. Also, synchronization (barrier) is now essential.

What is interesting here is really the performance of such a simple algorithm, and the
impact of the optimization. With 16384 items, I measured the following times (single-
threaded on CPU);

• CPU: 1303 ms

• Not optimized: 71 ms

• Optimized: 61 ms

This was computed on a MacBook Pro with a 2.3 GHz Intel Core i7 CPU and an NVIDIA
GeForce GT650M with 512 MB.

However, 16k items is a rather small problem for a GPU. With 65536 items (64k) we see a
considerable difference:

• CPU: 28857 ms

• Not optimized: 535 ms

• Optimized: 272 ms

As the startup cost of the GPU computing gets less and less significant, the acceleration
compared to the CPU gets bigger, 21 times at 16k, 106 times at 64k. At the same time, the
impact of the optimization gets more and more significant.

Sorting on GPUs 117

17.3 Bitonic sort

Bitonic sort, also known as Bitonic Merge Sort, or Batcher’s Bitonic Sort, is a sorting
method based on the properties of bitonic sets. A bitonic set is defined as a range of num-
bers consisting of two monotonic sub-parts, varying in different direction, one increasing
and the other decreasing. See Figure 43.

Ken Batcher, who invented the algorithm [21], states (not exact quote):

“Let a be a bitonic set with a maximum at k, consisting of two monotonic parts, one
increasing, a- (from item 1 to k) and one decreasing, a+ (k+1 to n)

Then two new sets can be constructed as

a’ = min(a1, ak+1), min(a2, ak+2)…

a” = max(a1, ak+1), max(a2, ak+2)…

These two sets are also bitonic and max(a’) ≤ min(a”).”

The algorithm is based on this property. It lets us split the data set in exact halves. See
Figure 44. Since these halves are also bitonic, they can also be split in half and eventually
the entire data set is sorted.

FIGURE 43. A bitonic data set is simply a “pyramid”, two sorted halves, sorted in different
direction

FIGURE 44. By comparing each side with the other, two new bitonic sets are created.

In order to do this, we just have to get to the first bitonic set. But this can, too, be made by
bitonic sort! Start by sorting very small parts (pairs) to make small bitonic sets. These are
sorted alternating increasing or decreasing, so each pair of subsequences form a bitonic set

The full algorithm is illustrated in Figure 45. Note the grouping. Each part sorts the data to
a certain size, and then the following stages can use that data for sorting to parts of double
size of the previous level. Figure 46 shows the algorithm with example data.

a”

a’a- a+

118 Sorting on GPUs

FIGURE 45. Bitonic sort. Phases marked, each producing sorted data for a part of the data.

FIGURE 46. Bitonic sort with example data.

I found the code below on-line. If I understand the comments right, it was written by
Nikos Pitsianis. [20] Since this implementation relies on nested for loops, it is very suit-
able for converting to GPU code. Most other examples that I find are written as recursive
code, which is not only likely to be less efficient on the CPU but also much harder to par-
allellize.

static void exchange(unsigned int *i, unsigned int *j)
{

int k;
k = *i;
*i = *j;
*j = k;

}

void bitonic_cpu(unsigned int *data, int N)

15
12
1
3
16
9
13
8
10
6
7
5
14
4
2
11

12
15
3
1
9
16
13
8
6
10
7
5
4
14
11
2

3
1
12
15
13
16
9
8
6
5
7
10
11
14
4
2

1
3
12
15
16
13
9
8
5
6
7
10
14
11
4
2

1
3
9
8
16
13
12
15
14
11
7
10
5
6
4
2

1
3
9
8
12
13
16
15
14
11
7
10
5
6
4
2

1
3
8
9
12
13
15
16
14
11
10
7
6
5
4
2

1
3
8
7
6
5
4
2
14
11
10
9
12
13
15
16

1
3
4
2
6
5
8
7
12
11
10
9
14
13
15
16

1
2
4
3
6
5
8
7
10
9
12
11
14
13
15
16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Sorting on GPUs 119

{
 unsigned int i,j,k;

 printf("CPU sorting.\n");

 for (k=2;k<=N;k=2*k) // Outer loop, double size for each step
 {
 for (j=k>>1;j>0;j=j>>1) // Inner loop, half size for each step
 {
 for (i=0;i<N;i++) // Loop over data
 {
 int ixj=i^j; // Calculate indexing!
 if ((ixj)>i)
 {
 if ((i&k)==0 && data[i]>data[ixj])

exchange(&data[i],&data[ixj]);
 if ((i&k)!=0 && data[i]<data[ixj])

exchange(&data[i],&data[ixj]);
 }
 }
 }
 }
}

From the same source, I could also find a recursive implementation. That code is bigger,
most likely slower due to too many function calls, and irrelevant for us since it is much
harder to rewrite to GPU code.

The code above is rather so compact that it is hard to understand. The “magic” is to get
those steps right, which is made with a few simple calculations to figure out whether we
are in the upper or lower part of a pair that should be compared, and what direction it
should go. This is calculated from the stage number and stage length.

Bitonic sort is data independent. There is no worst case, it always runs in the same time

for a certain size. It is pretty fast, O(nlog2n) (Why?) However, this is higher complexity
than the fastest algorithms, which run in O(nlogn).

A critical question is that of locality. It has good locality in some parts, namely the parts
where the subpart being sorted fits in a single block. However, if this is not the case, we
need to make multiple kernel runs. This can be elaborated on quite a bit. We can handle
several comparisons in a single thread in order to handle more data in a single block. That
way we can run rather large parts of the algorithm in each block, but we should avoid to
not leave SMs idle just to avoid multiple kernel runs. We need to find the best balance to
optimize the problem.

17.4 QuickSort

QuickSort is a very popular algorithm for sorting. It is very efficient for sequential imple-
mentations. It can be summarized as follows (see Figure 47):

• Choose a pivot item

• Compare to pivot, form two subsets.

120 Sorting on GPUs

• For each subset, sort subset with QuickSort.

FIGURE 47. QuickSort; Choose pivot and split

The algorithm is data driven; it makes a data dependent reorganization. The execution and
data sizes are non-uniform, the recursion goes to different depth in different parts.

QuickSort is fast: O(n·logn) in typical cases, but it is O(n2) in the worst case.

It has a fancy name - nobody expect QuickSort to be nothing but optimal. It is indeed
good, but not perfect. The data dependent execution makes it less suited for parallel imple-
mentation. QuickSort on GPU was initially ignored as impractical, but CUDA implemen-
tations exist. This can be motivated by GPUs becoming increasingly flexible, but the GPU
implementations are actually perfectly suited even for early CUDA capable GPUs.

The description below is loosely inspired by Cederman & Tsigas [11].

To make a parallel QuickSort, we should consider each stage:

• Pivot selection.

• Partitioning

• Concatenate result

17.4.1 Pivot selection

Usually just grab one. There is little parallelism in this stage, more than that it needs to be
performed for each current subsection.

17.4.2 Comparisons

These can easily be run in parallel. On thread for a single comparison works well on a
GPU. What is more important is where to put the result. Use an intermediate array of bool-
eans. After each comparison, store the result in the array. Note that we can not immedi-
ately put the data items densely packed in two arrays because that would cause racing
problems. If we try doing it with atomics, we would serialize the access and performance
would suffer.

Choose
pivot

Compare to pivot, form two
subsets, repeat

Sorting on GPUs 121

17.4.3 Partitioning

This is the critical stage, the one that is hardest to run in parallel. For doing that, we can
use a parallel prefix sum (see chapter 15.2).

Once we have filled the array of booleans above, we can do the partitioning using the
array. In order to do that, we need to perform a parallel prefix sum, making a cumulative
sum of the number of zeroes (false) and one for the number of 1’s (true) in the array of
booleans. This means that the prefix sum gets sums that tell exactly how many zeros och
ones that exist to the left of an item. This number tells a thread exactly where to store an
item.

Thus, the problem turns into a binary parallel prefix sum. Figure 48 shows an example
based on the more general parallel prefix sum in chapter 15.2.

FIGURE 48. Binary parallel prefix sum for calculating partitioning

For every item corresponding to a 1 in the left figure, the prefix sum in the right can be
used as local index in the data array.

Like with reduction algorithms, the parallel algorithm above should be replaced with
sequential versions when the amount of data in each part is small enough.

17.4.4 Concatenate result

Concatenation is a matter of storing the size of each section in partitioning. With proper
bookkeeping of data sizes, each subpart can store its data in proper places.

We conclude that QuickSort is not impossible, but more complex than before.

17.5 Recursion, Concurrent kernels, Dynamic Parallelism

QuickSort is written as a recursive process, but GPUs can’t do recursion efficiently, or can
they? An option for GPU algorithms that may suit sorting well is recursion though concur-
rent kernels. These are available since Kepler, that is compute capability 3, which is cur-

122 Sorting on GPUs

rently (2018) the bottom line for GPUs actively supported by NVidia. This allows kernels
to spawn new kernels, so kernels are no longer only launched from CPU!

This means that we can perform recursion by spawning new kernels! This can mean less
work for the CPU to manage the computation.

Image filters 123

18. Image filters

Since GPUs are designed for synthesizing images, other image technologies are obvious
applications for GPU computing, and the task of filtering images is perhaps the most fun-
damental problem of this kind.

I will focus on linear filters, that is filters that can be applied as convolution. I assume that
you know the definition of convolution, which is a very common concept in signal pro-
cessing.

Convolution filters include low-pass (blur) filters (Figure 49), gradient filters and Lapla-
cian. The simplest low-pass filter is the box filter, while what you most likely want is a
gaussian filter.

FIGURE 49. Example of low-pass filter on the dandelion image.

In Figure 50, we see a 5x5 box filter (left), a 5x5 approximation of a gaussian (middle), a
gradient filter (a.k.a. Sobel filter, top right) and a Laplacian (bottom right).

124 Image filters

Note the normalization at the corner! For the low-pass filters, we should normalize in
order to create a result with the same average level as the original. How the high-pass fil-
ters should be normalized is not as obvious.

FIGURE 50. Linear image filters, convolution filters.

These convolution kernels can be applied as is and produce the expected results. However,
the number of computations and memory accesses can get pretty large as kernels get big-
ger. Let us continue with possible ways to optimize them.

Now, how does this map to the GPU? We can trivially apply the filters just by accessing all
pixels in the neighborhood, multiplying with the weight and get a result.

Making a more optimized version can be made using shared memory. The solution is
slightly more complicated than the matrix multiplication. Just like for that, we read
patches to shared memory and have multiple threads use that data. However, each patch
now needs to access an input that is larger than the output patch. The requires some con-
sideration.

Each block should be responsible for the output to a specific output patch. Each thread
should be responsible to reading a part of the input. I would balance this work as well as
possible, having each thread reading as equal amounts of memory as possible. However,
what is likely to be more important is that the reads are coalesced. These two demands are
in no conflict with each other. Rather, they fit well as long as you are not tempted to make
strided accesses. If you have 2x the output, have all threads read one item each in succes-
sion, and then the next sequence.

Also, don’t read image data one byte at a time. One 4-byte pixel at a time is a good chunk.

Remember that a thread does not have to read the same pixel into shared memory that it
will output! Giving each thread an equal amount of data (or less) to read to shared memory
is both easy and efficient. The amount of work for each thread should be as balanced as
possible.

Don’t forget to plan for the border of the patch, the overlap between patches. With an NxN
filter, you will get a (N-1)/2 overlap on each side.

Image filters 125

18.1 Separable filters

Two convolution kernels applied after each other on the same signal (image) will produce
the same result as the convolution of the two kernels applied on the image. A common
way to accelerate filters, not least LP filters like this, is to design separable filters, two or
more filters that in combination will produce the desired filter, and since these filters are
smaller, they may provide good optimizations. This is particularly true if we can split a 2D
filter into two 1D filters.

We can trivially split an NxN box filter in two, one in each direction, 1xN and Nx1.
Applying these in succession will produce the same box filter. See Figure 51.

FIGURE 51. Separable box filter.

The same principle holds for some more complicated filters. The gaussian approximation
shown in Figure 50 is such a filter.

FIGURE 52. Separable gaussian filter.

However, we can take this to extremes! The gaussian in Figure 50 can be separated all the
way down to small 1x2 filters. See Figure 53.

This is not only an elegant trick. This can be mathematically proven, using the Central
limit theorem.

1

1

1

1

1

1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

/5

/25/5

⊕ =

1

4

6

4

1

1 4 6 4 1

1

4

6

4

1

4

16

24

16

4

6

24

36

24

6

4

16

24

16

4

1

4

6

4

1

/16

/256/16

⊕ =

126 Image filters

FIGURE 53. Multiple box filters approximating a gaussian.

More intuitively, you can compare this to the statistical outcome when rolling dice. If you
roll a since 6-sided die, you have 6 outcomes, all with the same probability. If you roll two,
the sum has a probability distribution with the shape of a pyramid. With three dice, you get
a distribution that starts to look gaussian, just like the 1x5 filter in Figure 53

18.2 Non-linear filters

Non-linear filters are all filters that can not be expressed as a convolution. One such filter
is the median filter. The median filter outputs the median of a neighborhood. In the 1D
case, that means that the median of the set [1,1,2,7,9] is 2 while the average is 4. In image
processing, an application of median filters is noise suppression. The method suppresses
noise while preserving edges better than a low-pass filter does.

We need some way to find the median. A naive way that works well for small neighbor-
hoods is sorting. For larger amounts of data, a histogram based solution is more efficient.

It should be noted that a 2D median filter is not separable! You can, however, make a sepa-
rable approximation, making a 1D median in one dimension, and then the median of the
result. That is, however, only as approximation.

18.3 Edge checks, clamping

When applying a filter kernel to an image, you will unavoidably reach outside the image.
This has to be handled somehow.

If you use texture memory (chapter 9.5), you can take advantage of the hardware edge
tests, which will give a good result automatically, and avoid wasting code and cycles on
edge tests. For this, you can use clamp or repeat. I would recommend clamp. That will
mean that we create an estimation of the first pixels outside the image. Repeating the same
pixels as the edge is a pretty decent estimate.

One alternative, which I don’t like, is to skip edges altogether, leaving them without filter-
ing or not producing any output. That will shrink your image or produce visible artifacts. I
can’t recommend that.

Image filters 127

But you can do clamping in software too! In my code for the current (2018) lab 5 in the
TDDD56 course, this is solved for you, like this (un-optimized code):

if (x < imagesizex && y < imagesizey)
{

// Filter kernel (simple box filter)
sumx=0;sumy=0;sumz=0;
for(dy=-kernelsizey;dy<=kernelsizey;dy++)

for(dx=-kernelsizex;dx<=kernelsizex;dx++)
{

// Use max and min to avoid branching!
int yy = min(max(y+dy, 0), imagesizey-1);
int xx = min(max(x+dx, 0), imagesizex-1);

sumx += image[((yy)*imagesizex+(xx))*3+0];
sumy += image[((yy)*imagesizex+(xx))*3+1];
sumz += image[((yy)*imagesizex+(xx))*3+2];

}
out[(y*imagesizex+x)*3+0] = sumx/divby;
out[(y*imagesizex+x)*3+1] = sumy/divby;
out[(y*imagesizex+x)*3+2] = sumz/divby;

The clamping is made with the min() and max() functions in the middle. Note that I use
min() and max() rather than if statements. Why? It avoids branching! Branching may
cause extra processing, but a max or min operation can be made without branching.

18.4 Color images

In the text above, I discuss images as if they were monochromatic. Most images are, of
course, color images. They are usually represented in RGB format. There are other repre-
sentations, like HSV, which can be advantageous for analysis, but I will assume RGB. The
three channels are usually processed independently.

The image data is usually stored in interleaved format, “chunky pixels”. A common format
is to use one byte per color plus optimally one for alpha (transparency) which requires 24
or 32 bits, that is 3 or 4 bytes.

However, this may not be so practical when processing. GPUs are not made to process
bytes, but are best at 32-bit numbers. Perhaps most importantly, if you only load 3 chan-
nels, and load one at a time (which I deliberately do in the code example above) you can
end up with a strange memory access pattern, with no coalescing. It would be preferable to
load an entire pixel at a time, plus include the alpha even if you are not using it.

18.5 Scatter vs. gather

When writing filters, we have one important choice: To make a “scatter” or “gather” filter.
The “scatter” filter takes the center pixel, produces the product with each weight and adds
the result to a neighbor, while a “gather” filter takes each pixel in the neighborhood, multi-
plies it with a weight, and stores the result as the center pixel of the output.

128 Image filters

In fragment shaders, the shader produces the output for one pixel. Although it is possible
for a shader to write into other pixels, the setup is really made for gather solutions.

How about when using CUDA, OpenCL or compute shaders? You should still prefer
gather. It requires less synchronization, which comes for a cost. A scatter solution will eas-
ily get racing problems.

Questions 129

19. Questions

This chapter is dedicated to exercises, various questions and tasks that you can use for
checking that you picked up what I think you should know. It is a collection of past exam
questions, and of course I may reuse them in the future. For the 2018 edition, I will not
have time to find all duplicates or disturbingly similar questions. I am sorry about that, but
I think you would be more sorry about not getting this material.

19.1 Lecture questions

This collection of questions go all the way back to my PhD course in GPU Computing. I
still think they are a nice and still use them as “teasers” for my lectures. There is currently
an overlap between these and the questions below.

19.1.1 Lecture 1

1. How can a GPU be much faster than a CPU?

2. Why is the G80 so much faster than the previous GPUs (e.g. 7000 series)?

3. A texturing unit provides access to texture memory. What more is it than just another
memory?

4. What current trend is driven by the GPU evolution?

19.1.2 Lecture 2

1. What concept in CUDA corresponds to a SM (streaming multiprocessor) in the archi-
tecture?

2. How does matrix multiplication benefit from using shared memory?

3. When do you typically need to synchronize threads?

130 Questions

19.1.3 Lecture 3

1. Why can using constant memory improve performance?

2. What is CUDA Events used for?

3. What does coalescing mean and what should we do to get a speedup from coalescing?

4. How can you efficiently calculate the maximum of a dataset in parallel?

19.1.4 Lecture 4

1) What kind of devices will OpenCL run on?

2) What does an OpenCL work group correspond to in CUDA?

3) What geometry is typically used for shader-based GPU computing?

4) Are scatter or gather operations preferable? Why?

19.1.5 Lecture 5

1) How can you efficiently compute the average of a dataset with CUDA?

2) In what way does bitonic sort fit the GPU better than many other sorting algorithms?

3) What is the reason to use pinned memory?

4) What problem does atomics solve?

19.2 GPU Algorithms and Coding (GPU Algorithms)

These questions tend to ask for more algorithmic answers. Therefore, they tend to be the
hardest. In older exams, I had a single 5 point question for this section. Later, I tend to split
it in two, which makes life easier for me as well as for students.

The following CUDA kernel performs a rank sort (as in lab 6). However, the code is inef-
ficient. Rewrite it for better performance. For full score, the code should be able to accept
any length. Make comments to clarify what you do and why.

You may make any assumptions you like about block size, document as necessary.

Minor bugs, syntax errors, as well as mistakes in names of built-in symbols are generally
ignored, no point deductions for things that you would easily look up in documentation
(like, how many underscores you should use for that particular modifier or exact names on
function calls) or that is trivial to fix on the first compilation (within reason). Your effort

Questions 131

should be on describing your algorithm properly, including important concepts. Relevant
pseudo-code qualifies for score (partial or even full depending on detail and relevance).

__global__ void gpu_Sort (unsigned int *data,
 unsigned int *outdata, int length)
 {
 unsigned int pos = 0;
 unsigned int i, ix;
 ix = blockIdx.x * blockDim.x + threadIdx.x;
 //find out how many values are smaller
 for (i = 0; i < length; i++)
 if (data[ix] > data[i])
 pos++;
 outdata[pos] = data[ix];

Matrix transposing is an operation with no computations, but its efficiency depends
heavily on a certain GPU computing feature. Which feature, why is it important? With
code or pseudo code, describe an efficient way to implement matrix transposing. (5p)

(Hint: The operand matrix is given in global device memory of the GPU. The matrix trans-
pose needs not be done in-place.)

A histogram is an array h that records for each possible (integer) value the number of its
occurrences in a large integer-valued data structure, e.g., an array a. It can be computed
like this:

 for all elements i in a[] do
 h[a[i]] += 1

(a) With what feature can this algorithm be made to run in parallel in CUDA? (1p)

(b) Suggest a different approach that should give good (better) performance and does not
rely on this feature (written in ”plain” CUDA, OpenCL or shaders). (2p)

(c) Write this algorithm in CUDA or OpenCL code. (Minor syntax errors are ignored.)
(2p)

Describe, in code or sufficient detail, how matrix multiplication of large matrices can be
implemented on the GPU. (GPU kernel code only.) Emphasize the most vital consider-
ations for good performance. (5p)

Write code/pseudo-code for computing a 2-dimensional color image filter of size 5 x 5
pixels in a reasonably optimized way. Clearly describe what optimizations you do and
why. The filter weights should be specified (i.e. a 5 x 5 matrix), and should be normalized

132 Questions

properly. Full score requires a close-to-real-code solution taking more than one optimiza-
tion technique into account. You may use CUDA-style syntax or OpenCL- style syntax as
you please.

(a) A Mandelbrot algorithm is given as sequential code as follows:

 for (int x = 0; x < SIZE; x++)
 for (int y = 0; y < SIZE; y++)
 data[x, y] = computeFractal(x, y);

that is, the fractal computing code is already available. How can you port this to an effi-
cient GPU implementation? Outline vital parts of the code. (2p)

(b) Describe, in pseudo code and figures, how an optimized matrix multiplication can be
performed on the GPU. Your answer should focus on structure and vital features rather
than detailed code. (3p)

(a) A large matrix is given, stored in global GPU memory. Describe, using code or pseudo
code, an efficient way to transpose it on the GPU. The transposing does not have to be
done in-place. Vital features of the algorithm should be clearly stated. (3p)

(b) The following algorithm (given as OpenCL code) performs rank sort on the GPU, a
simple but not very efficient sorting algorithm for data with unique keys. However, it has a
bug, plus, it can be significantly accelerated.

 __kernel void sort(__global unsigned int *data,
 const unsigned int length)
 {
 unsigned int pos = 0;
 unsigned int i;
 unsigned int val;
 //find out how many values are smaller
 for (i = 0; i < get_global_size(0); i++)
 if (data[get_global_id(0)] > data[i])
 pos++;
 val = data[get_global_id(0)];
 data[pos]=val;
 }

What is the bug? (1p)

(c) Describe a way to accelerate the code. (2p)

(a) Describe, using code or pseudo code, how to transpose large matrices efficiently on the
GPU. You may be assume square shaped matrices. (2p)

Questions 133

(b) Describe, with code or pseudo code, how reduction can be used to calculate the maxi-
mum value of a large array of scalar values on a GPU. (3p)

(a) Write code or detailed pseudo code for calculating the maximum value of a dataset
using reduction on a GPU. Both GPU code and the relevant CPU code should be included.
The approach should be reasonably optimized. Point out the most important optimization
considerations and mark where in the code this occurs. (3p)

(b) A Mandelbrot algorithm is given as sequential code as follows:

 for (int x = 0; x < SIZE; x++)
 for (int y = 0; y < SIZE; y++)
 data[x, y] = computeFractal(x, y);

that is, the fractal computing code is already available (you do not have to write it). How
can you port this to an efficient GPU implementation? Outline vital parts of the code, both
CPU and GPU sides. (2p)

19.3 GPU Conceptual Questions (AKA GPU Architecture concepts or
GPU Computing)

This is the section with questions that are (generally) not supposed to be answered with
code or code-like descriptions.

(a) A GPU computation calculates 2048 elements. Each element can be computed in its
own thread. The algorithm is not sensitive to any particular block size. It may run on many
different GPUs. What number of threads and blocks would you use in such a case? Moti-
vate your answer. (2p)

(b) Describe how computing is mapped onto graphics in shader-based computing (ex-
pressed as kernel, input data, output data and iterations over the same data). What limita-
tions are imposed on your kernels compared to CUDA or OpenCL? (3p)

(a) List three different kinds of GPU memory and describe for each their characteristics in
terms of performance, usage and accessibility. CUDA terminology is assumed, please note
if you use OpenCL terminology. (3p)

(b) If you have a modern GPU with 512 cores, how much speedup can you expect to get?
Yes, it depends on the algorithms, but in what way? Make a reasonable assessment and
back that with hardware and algorithm based arguments. (2p)

134 Questions

(a) Describe the major architectural differences between a multi-core CPU and a GPU
(apart from the GPU being tightly coupled with image output). Focus on the differences
that are important for parallel computing. (3p)

(a) Describe three sorting algorithms in terms of their suitability for GPU implementation.
Computational complexity should be considered. (3p)

(b) The GPU design in centered around a number of features vital for its primary use,
graphics. List three such features, as significant as possible, which are also important for
GPU computing and assess their importance. (2p)

(a) In many algorithms, one thread can produce values that affect other threads. Suggest
two different ways to make sure that the results are produced without conflicts. The two
approaches do not have to be relevant for the same situations. What is the performance
impact of each approach? (Only dependencies within the same block are taken into
account here.) (3p)

(b) You are given the task of implementing an algorithm that you decide needs to be imple-
mented in a number of blocks, but there are dependencies between the blocks. How can
you handle dependencies between different blocks? (2p)

(a) Describe how Bitonic Merge Sort can be implemented on a GPU. A figure to clarify
the algorithm is expected. Your solution must be able to handle large data sets (i.e. 100000
items or more). (3p)

(b) Why can coalescing improve performance? How can you take advantage of coalescing
for an algorithm with a non-coalesced memory access pattern? (2p)

(a) Motivate why GPUs can give significantly better computing performance than ordinary
CPUs. Is there any reason to believe that this advantage will be reduced over time? (2p)

(b) Compare shared memory, global memory, constant memory and register memory in
terms of performance, usage and accessibility. CUDA terminology is assumed, please note
if you use OpenCL terminology. (3p)

(a) Describe the major architectural differences between a multi-core CPU and a GPU
(apart from the GPU being tightly coupled with image output). Focus on the differences
that are important for parallel computing. (3p)

Questions 135

(b) Compare shared memory, global memory and register memory in terms of perfor-
mance, usage and accessibility. CUDA terminology is assumed, please note if you use
OpenCL terminology. (2p)

(b) Describe how reduction can be used to calculate the maximum value of a large array of
scalar values on a GPU.

Also give at least two examples of other problems that are solved by reduction. (2p)

(b) List three different kinds of GPU memory and describe for each their characteristics in
terms of performance, usage and accessibility. CUDA terminology is assumed, please note
if you use OpenCL terminology. Constant memory should not be included since that is a
separate question below. (2p)

(a) Outline how reduction is implemented in an efficient way, using text and figures. You
may assume that the reduction problem in question deals with finding the maximum of a
large dataset. Assume that the dataset can be of highly varying size, including very large.
(2p)

(b) Three important kinds of GPU memory include shared (local), global and texture
memory. Describe these in terms of performance, usage and accessibility. CUDA termi-
nology is assumed, please note if you use OpenCL terminology. (2p)

(b) Why can coalescing improve performance? How can you rewrite an algorithm with
non-coalesced memory access patterns to take advantage of coalescing? (2p)

(a) Shared memory is fast temporary storage, but its access times still depends on some-
thing. What do you need to do to get the fastest possible shared memory access? (2p)

(b) Explain why is it not possible to synchronize between blocks/work groups. What can
you do about it? Give a demonstration of the problem and its solution based on bitonic
merge sort. (3p)

(b) Some image filters are separable. A typical case is to split a filter into one horizontal
and one vertical filter, often of the same size. This has potential to improve performance.
However, the two parts may each run with significantly different performance, one much
faster than the other. Suggest a likely reason why this could happen. (2p)

136 Questions

19.4 GPU Quickies

This is my section for “fast points”, both for me and for the students. One point each, and
the answer is typically just a single line.

memory

(a) In what way(s) is a texturing unit more than just another memory? (1p)

(c) Texture memory provides interpolation in hardware. Why is this a questionable feature
to rely on? (1p)

(c) How can pinned (page-locked) CPU memory improve performance? (1p)

(c) How can a non-coalesced memory access be converted to a coalesced memory access?
(1p)

(e) When can constant memory give a performance advantage? (1p)

(b) Why can using constant memory improve performance?

(c) What kind of algorithms benefit from using constant memory? (1p)

(b) In what way(s) is a texturing unit more than just another memory? (1p)

(a) What do you have to do for achieving better performance by coalescing? (1p)

(b) Constant memory is fast under a certain condition. Which condition is that? (1p)

(c) Texture access provides two unique features that we otherwise do not have. Name one,
and describe with a brief sentence. (1p)

thread management

(a) Imagine a CUDA programmer who uses the practice to always use as big block size as
possible. Why will this not always result in the highest possible performance? (1p)

(e) Can you rely on any threads/work groups in a GPU computation to be literally exe-
cuted in parallel? If so, which ones? (1p)

(e) When do you typically need to synchronize threads? (1p)

(e) Why is load balancing often not a (big) problem in GPU computing, e.g. when comput-
ing fractals? (1p)

history and development

Questions 137

(b) List and briefly explain (short comments of a few words) the importance of two major
features of the Fermi architecture that were not available in earlier GPUs. (1p)

(e) Explain why the G80 architecture had significantly higher performance than earlier
GPUs. (1p)

(a) Why is the G80 so much faster than the previous GPUs (e.g. 7000 series)

(d) Suggest one important feature in GPUs that was added for performing some specific
graphics effect. Name the effect too. (1p)

(a) GPUs have evolved around the needs of graphics applications. Give an example fea-
ture, apart from multiple threads, that was added for the needs of graphics which is valu-
able for GPU computing. (1p)

shaders

(e) For what kind of problems are shader-based GPU computing most suitable? Give one
specific example. (1p)

(c) What kind of shaders is most interesting for GPU computing? (What part of the pipe-
line?)

(a) In graphics, data is always input as geometrical shapes. What geometry is usually used
for fragment shader based GPU computing?

(d) In GPU Computing using the graphics pipeline, in what stage are the computations
usually carried out? (1p)

(c) If you want to process a large array in fragment shader based computing, how will that
data typically be represented (stored in memory)? (1p)

platforms

(b) Translate the following CUDA concepts to corresponding concepts in OpenCL:(1p)

i. shared memory

ii. block

iii. thread

(d) Give one argument each in favor of using

i. CUDA

ii. OpenCL

iii. GLSL

138 Questions

for a general computing task (which can benefit from a parallel implementation).

(e) List three different kinds of hardware that OpenCL runs on. (Similar systems by differ-
ent vendors count as one.)

(b) What does a Streaming Multiprocessor correspond to in CUDA and OpenCL, respec-
tively? (1p)

(c) With shader-based GPGPU computing, suggest one limitation that prevents it from
performing as well as CUDA and OpenCL. (This may apply to certain GPU generations,
not necessarily the latest.) (1p)

(b) What concept in CUDA corresponds to a streaming multiprocessor (SM) in the GPU
architecture? (1p)

(d) List three different kinds of hardware that OpenCL runs on. (Similar systems by differ-
ent vendors count as one.) (1p)

(e) Compare OpenCL and Compute Shaders in terms of portability. You should know at
least one strong point of each. (1p)

(e) State one advantage with CUDA/OpenCL over fragment shader based GPU comput-
ing. (1p)

misc

(a) Describe how multiple CUDA streams can be used to accelerate a computation. (1p)

(a) Where does GPU computing fit in Flynn’s taxonomy? What name(s) does the architec-
ture type have according to Flynn’s taxonomy? (1p)

(d) Some operations can be implemented either as scatter or gather operations. Which is
most suitable for parallel implementation (on GPUs in particular)? Why? (1p)

(b) What particular algorithm feature makes bitonic merge sort particularly suitable for
parallel implementation? (1p)

(d) Some operations, like image filters, can be implemented using scatter or gather algo-
rithms. If you use scatter, what specific operation must be used to make it work correctly?
(1p)

(a) In CUDA, you can use the modifiers __global__ and __device__. What is the differ-
ence between them? (1p)

(a) In CUDA, you can use the modifier __host__. What does this signify? (1p)

(a) In CUDA, you can use the modifier __global__. What does this signify? (1p)

(a) In CUDA, you can use the modifier __device__. What does this signify? (1p)

Final words 139

20. Final words

For a long time, I thought I would never write this book. Other books appeared, the univer-
sity disencourages book authoring and considers it not qualifying and implies that it is
done to rip off money off the students.

That is not the purpose with any of my books. My books are written with the only purpose
to improve the courses with fitting course material, at low or even no cost. I provide my
books as low-cost paperbacks as well as on-line digital versions, the latter for free.

One important help in making this book, and keeping the cost low, is the new on-line book
production facilities, like CreateSpace and Publit. I can now produce a good-looking book
much easier than before, for a lower cost, and perfect control over its appearance. With
those tools, authoring felt easy and fun, and I got new inspiration to write this. I hope you
enjoy it!

I went up one morning,

sat on the porch in the dawn sun

and pondered about some idea.

I took up my notebook and scribbled down my thoughts.

Then I read what I had written

and I saw, that there was a thought in it

and only then I knew for sure

that I exist.

140 Final words

References 141

21. References

[1] I. Ragnemalm, “Polygons feel no pain”, 2008/2017.

[2] Erik Pettersson, “Signal- och bildbehandling på moderna grafikprocessorer”, LiTH-
ISY-EX--05/3761--SE, 2005.

[3] NVidia GPU Programming Guide, http://developer.download.nvidia.com/
GPU_Programming_Guide/GPU_Programming_Guide.pdf

[4] A. Blackert, “Evaluation of Multi-Threading in Vulkan”, thesis performed 2016.

[5] colfaresearch.com/xeon-2017 (retrieved 2018-02-26)

[6] www.nvidia.com/sv-se/titan-v/#specs (retrieved 2018-02-26)

[7] Kenneth E. Hoff III, Tim Culver, John Keyser, Ming Lin and Dinesh Manocha, “Fast
Computation of Generalized Voronoi Diagrams Using Graphics Hardware”, in Computer
Graphics, SIGGRAPH Annual Conference Proceedings, ACM, 1999.

[8] E. Scott Larsen, David McAllister, “Fast Matrix Multiplies using Graphics Hard-
ware”, in Proceeedings, Supercomputing 2001.

[9] David M. W. Powers, “Parallelized QuickSort with Optimal Speedup”, Proceedings
of International Conference on Parallel Computing Technologies, Novosibirsk, 1991.

[10] Naga K. Govindaraju, Nikunj Raghuvanshi, Michael Henson, David Tuft, Dinesh
Manocha, “A Cache-Efficient Sorting Algorithm for Database and Data Mining Computa-
tions using Graphics Processors”, technical report, University of North Carolina, Chapel
Hill, 2005.

[11] Daniel Cederman, Philippas Tsigas, “GPU-Quicksort: A Practical Quicksort Algo-
rithm for Graphics Processors”,

[12] Erik Sintorn, Ulf Assarsson, “Fast parallel GPU-sorting using a hybrid algorithm”,
Journal, of Parallel Distributed Computing 68, pp 1381-1388, October 2008

142 References

[13] Jörgen Ahlberg, “Model-based Coding”, PhD thesis, Linköping University, 2002.

[14] Introduction to Data-Oriented Design, DICE, www.dice.se/wp-content/uploads/
2014/12/Introduction_to_Data-Oriented_Design.pdf (retrieved 2018-03-02)

[15] Mark Harris, “How To Access Global Memory Efficiently in CUDA C/C++ Ker-
nels”, NVIDIA Developer Blog, devblogs.nvidia.com/how-access-global-memory-effi-
ciently-cuda-c-kernels (retrieved 2018-03-05)

[16] CUDA C Best Practices Guide 2018, docs.nvidia.com/cuda/cuda-c-best-practices-
guide/index.html (retrieved 2018-03-05)

[17] Mark Harris, “Optimizing parallel reduction in CUDA”, developer.down-
load.nvidia.com/assets/cuda/files/reduction.pdf (retrieved 2018-03-26)

[18] Marco Fratarcangeli, “Cloth simulation using GLSL, OpenCL and CUDA”, Game
engine gems 2, 2011.

[19] Torbjörn Sörman, “Comparison of Technologies for General Purpose Computing on
Graphics Processing Units ”, LiTH-ISY-EX--16/4923--SE, 2016.

[20] Bitonic sort implementation by Nikos Pitsianis, www2.cs.duke.edu/courses/fall08/
cps196.1/Pthreads/bitonic.c (retrieved 2018-05-27)

[21] Ken Batcher, “Sorting networks and their applications”, Spring Joint Computer Con-
ference, 1968, pp 307-314.

[22] Maxim Shevtsov, “OpenCL and OpenGL Interoperability Tutorial”, soft-
ware.intel.com/en-us/articles/opencl-and-opengl-interoperability-tutorial (ret 2018-05-03)

[23] Mark Harris, “Parallel Prefix Sum (Scan) with CUDA”, NVidia, 2007 (retrieved
spring 2018)

[24] Guy E. Blelloch, “Prefix Sums and Their Applications”, in J.H.Reif (ed), Synthesis
of Parallel Algorithms, Morgan Kaufmann, 1990.

[25] Adam Lake, “Getting the most from OpenCL 1.2: How to increase performance by
minimizing buffer copies on Intel Processor Graphics”, Intel, 2014 (retrieved 2018)

[26] Mark Harris, “How To Overlap Data Transfers in CUDA C/C++”, NVIDIA Devel-
oper Blog, devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc (retrieved 2018)

[27] Sanders, J., Kandrot, E, “CUDA by example”, Addison-Wesley, 2010

Index 143

22. Index

Numerics
3dfx Voodoo1 .. 10

A
Atomic functions ... 62

atomics.. 54, 62

B
bank conflict... 62

barrier .. 116

block... 36, 40, 41

blockDim ... 38, 41

blockIdx.. 38, 41

box filter ... 123

C
Cell.. 12

clock doubling... 9

coalescing.. 46

compute capability.. 54

Compute Shader... 32

compute shaders... 93

concurrent kernels ... 121

constant memory.. 64

convolution ... 123

crypto currency mining... 17

CUDA.. 10, 25, 35

cudaFree... 37

cudaMalloc ... 37

cudaMallocManaged ...37

cudaMemCpy .. 37

cudaMemcpyDeviceToHost ... 37

cudaMemcpyHostToDevice... 37

144 Index

D
data driven execution... 113

data independent .. 113, 119

Data Oriented Programming.. 20

deep learning.. 17

degree of bank conflict.. 62

Direct Compute .. 99

F
filter .. 91

Flynn’s taxonomy.. 19

fractal... 42

G
G70 ... 21

G80 ... 10, 21

gaussian .. 123

GFLOPS race .. 10

global memory .. 46

GPGPU... 14, 29

grid.. 40, 41

gridDim .. 38

H
Hello World .. 25, 74

I
image processing ... 17

integrated source .. 35

interpolation ... 73

J
Julia .. 42

K
kernel ... 41

L
Laplacian ... 123

Larabee ... 12

layout ... 95

linear filters... 123

load balancing ... 22

local memory... 78, 116

M
managed memory .. 27, 54, 65

Index 145

median filter ... 126

modifiers .. 36

N
nvcc... 38

O
OpenCL .. 10, 27, 114

OpenGL interoperability.. 109

P
parallel prefix sum... 107, 121

R
Rank sort.. 114

recursion... 121

S
scan ... 107

separable filters... 125

shader storage buffer objects ... 95

shaders... 89

shared memory ... 23, 45, 46, 78, 95, 101, 114, 116

SIMD ... 13, 19, 20

SIMT.. 14, 19, 20

SMs... 22

Sobel filter ... 123

SPs .. 22

SSBO ... 95

stream processors .. 22

streaming multiprocessors .. 22

synchronization .. 101, 116

T
texture memory... 69

thread ... 36, 40, 41

threadIdx .. 38, 41

transform feedback ...112

U
unified architecture ... 10, 21

unified memory... 27, 37, 65

unified shaders .. 21

V
Voodoo1 ... 10

Vulkan ... 98

146 Index

W
warp.. 20, 40

X
Xeon Phi... 12

