...When They
Attack In Packs

“Polygons feel no pain” Volume 3

Ingemar Ragnemalm

Course book in GPU computing

Foreword

In the past, | wrote “Polygons feel no pain” and “so how can you make them scream?’.
For several years | have considered making a small course book for my part of TDDD56
“Multicore and GPU programming” so you have something that firmly summarizes my
part of the course, complete and without too much fluff.

There are other books on the topic, of course, and some are pretty neat and non-bulky.
However, they are usually focused entirely on CUDA, possibly with some OpenCL mate-
rial but hardly more. This book, although brief, has the ambition to give an introduction to
the field with awider scope, including severa other platforms of interest.

I may not be a known expert in the field, but having worked with this concept since 2005,
giving my first GPU computing course before CUDA even existed, | feel that | should be
capable of providing a decent book.

Parts of the book are based on the GPU computing chapter of Volume 2. Much of the con-
tentsis also based on NVidia's CUDA programming guide. [3] Another important source
isMark Harris' blog entries, e.g. [15]

You should immediately see that the name fits with the names of the earlier books. It also
refersto ararely heard joke that | remember, | think it was from a crowded university

party:

“Ingen panik! Anfall i flock! Allapaen gang!”

which tranglates to

“No panic! Attack in packs! Everybody at the same time!”

For some reason | never forgot that and it fitsright in.

Cover image by myself, “apack of ‘cudas’.
Related web page: http://www.computer-graphics.se

All content of the book is© Ingemar Ragnemalm 2018 except for cited material as docu-
mented.

ISBN 978-91-7773-719-3

First edition 2018.

1. Introduction

This book was written as course material for the latter part of the coursein “TDDD56
Multcore and GPU programming”.

1.1 Who should read this book?

Since this book iswritten for part of the course TDDD56 at the University of Linkdping,
attendants of that course are the target audience. It isalso likely to be used in PhD courses
on the GPU Computing concept. Anyone else interested in the subject is also in the target
audience!

The purpose of the book isto provide abroad overview of the GPU Computing program-
ming subject, far broader than most other books.

1.2 What should you expect to learn from this book, and its cour se?
Thisbook spends most of its pageson CUDA, but it isnot a CUDA book. Rather, it hasan
unusually broad scope, covering most GPU computing technologies of interest.

* 1. GPU history and architecture.

« 2.CUDA

e 3. OpenCL

* 4. Compute Shaders

* 5. Fragment shaders

* 6. Specific problem areas.

We start with CUDA for the simple reason that it isthe API that is by far easiest to get

started with. Once you know it, however, you will find it pretty easy to move to any of the
others.

Most code examples will bein CUDA, but the book will aim towards covering the other
platforms as well, with emphasis on OpenCL and OpenGL Compute Shaders. We can not

Introduction 3

put all code examplesfor al platformsin the book, but there will be a (slowly) growing
amount of accompanying code on my website, computer-graphics.se.

Thus, let us emphasize this: Thisis not a CUDA book, this book is not only about CUDA.
It isagenera GPU Computing book, although mostly using CUDA for examples for
space and readability reasons, but | strongly advocate diversity and being knowledgeable
of alternatives. And there are some strong ones to consider.

1.3 Acknowledgments
The material for this book comes from avariety of sources, books, papers, web pages.

The first contributor was Erik Pettersson [2]. In 2005, he made an early GPU Computing
project as master thesis, with me as examiner. Later, Johan Hedborg, Fredrik Viksten and
Jens Ogniewski have contributed, first to my PhD courses and later to the TDDD56
course. Finally, the collaboration with Christoph Kessler and his group over the course has
been most important and fruitful. The recent (2017) move towards more image processing
in the course was particularly nice for me, since | have a background in image processing,
and has influenced chapter 18.

Finally, al previous students on the courses have contributed in various ways. Your inter-
est for certain problems have been very important for the course.

At the top-right in this pile isan NVidia 8500 GT, my first CUDA capable GPU, and on
top-left (that isleft in the picture) is an ATl Radeon 9800 PRO, the card on which | made
my first GPGPU experiments.

4 Introduction

2. Table of contents

1 110 1 Tox o o FO SRS OSOUSO 3
11 Who should read thiSBOOK?...........ou e 3
12 What should you expect to learn from this book, and itS CoUrse?cceeceviveveveeieieenns 3
13 ACKNOWIEAGMENTS......ccveieeitiiesie ettt st st e st e e e e e e esa e e e e enessesneenens 4
Table Of CONLENTS.......ooiiieeee e ere e 5
HOW did WE QEL NEIEY....... ettt s 9
31 REIGIEA Eff OIS, s esr e s s re e sreenneas 11
32 Why did GPUSs get So much performancCe?...........cooeeierereiene e 13
33 The arrival of GPU computing: General Purpose computation on Graphics Processing

Unitsl4
3.3.1 Key components of the GPGPU trend............cccovveeierieniceseceseeee e 14
3.3.2 GPGPU/GPU computing approaChes.........ccecceeverceeieeieeseriesteeesseesnesseensesneenas 15
3.3.3 FiXed PIipelin€ GPGPUc.ccciiiieiiceee ettt 15
3.3.4 Fragment shader based GPGPUcccccoiiieeie it 15
T T O U SRS 16
TR G T @ o 1= o [TSRS 16
3.3.7 OpenGL Compute SNAENSccueeiiieieee et 16
3.3.8 DIreCt COMPULEecueeieceeesieeie ettt see e ste e te e s e e este et e be e s e sreenesneennas 16
TG I V¥ (1 o 1SS 17
34 F N o] 01T = 4o 1 17
34.1 Image processing, image analysis and video coding........c.ccceevveveereerierieseeeennnne. 17
3.4.2 Crypto CUMTENCY MINING....ceiterrereeeereereeeeseeesesressessessessessessessessessesesssssssssessssesses 17
G T B == o 1 ==] o T 17

4. GPU @ICHITECIUIE.......c.eeeieece ettt et e e e e e e sae e s aneennee s 19
4.1 SIMD @N0 SIMT oottt b et se st s et ne st ene s e nensenensenes 19
4.2 SIMT, Single Instruction, Multiple Thread...........ccccoeieieeiecirce e 20
4.3 The unified arChitECIUNEocciieeee e e 21
4.4 SMs, SPS and Shar€d MEMOTYccivrirerereeieeeereeeeeee ettt seesee e e seeeeseeeeneenens 22

5. [1= 1 Fo TN AT o g Vo | R 25
51 HEITO CUDA ..ottt bbbttt ettt et se et e b e 25
52 HEIO OPENCL ...ttt ettt b et sb ettt ne b 27
5.3 HEIO GPGPU........cctiiciiiee ettt sttt st st st a st e et e e be e ebesaetesaeseneas 29
54 Hello COMPULE SHAOEY'S ..ottt et 32

L Nt R Y = T g I oo o | = USSR 32

Table of contents 5

55 Direct Compute and VUIKENcceiieiiiiicre et e 34
L1 5 35
6.1 SIMPle CUDA @XaIMPIE......oiiiiieie ettt e e b e 36
6.2 MOGITIEIS FOr COUE ...ttt 36
6.3 MEMOIY MANAGEMIENLeceeitieierteeteeteeee e e seeeeesreseeseeeaesreetesreentesseessesseenseeseesseaneesseanees 37
6.4 KEMNE EXECULION. ...ttt 38
6.5 COMPIHTING CULA ...ttt bbb et 38
6.5.1 Compiling CUDA for larger appliCations..........ccccoererereninenneneseneesee e 39
6.5.2 Example of multi-unit COMPIlatioN..........c.cooreininiennere e 39
6.5.3 Compiling fOr MACOSXccciriiirieiiriet ettt 40
6.6 EXecuting 8 CUOA PrOGraMc.coveuirieuerieerieesieesiee sttt 40
6.7 Computing With CUDAL ..ot e e b e 40
6.8 LA 2 0L TSRS 40
6.9 KEBINEL <. 41
6.10 Grid, blocks @and threads.........cccovireriiirners e 41
6.11 Indexing data with thread/blOCK IDS.........coeiriiiriirieeee e 41
6.12 JULIBEXAIMPIE. . .e ettt b et b b e bbbt n s 42
IMEBIMOIY @CCESS.....eeiiieiiiteeesitieesteesssteesssteesssbeessbteesbeeesbaeesbe e e sabeessabeeesabeeesnbeeenaneas 45
7.1 GlODA MEMOTY ...ttt sttt b e sttt nees 46
7.2 Shared MEMOTY ..ot b e 46
7.3 Example: MatrixX MUItIPlICELIONceeeeeiirieeee e 46
7.31 Matrix multiplication 0N CPUcoiiiiiiieneeee e 47
7.3.2 NAIVE GPU VEISION ...ttt 47
7.3.3 Optimized GPU VEISION......c.oiiiiiieiieie ettt st sre e 48
74 Modified COMPULING MOUELccoevieiereeee e e 50
MOre |angUABgE FEAIUIES.ccuoiirieresieeeeee et 51
8.1 Y] 0@ a0 a 2= 1 Lo o FOO USSR 51
8.1.1 Global SyNChIrONIZatiONciuerieieeeieeeeeeee et 52
8.2 0] e 1 (] o S 52
8.3 (0 81= 0 L= Yo 53
84 (@001 ol¥1 (=T or="0 7= o 1 11 Y/ 54
85 Timing and ProfiliNg........coceiii s 55
o TNt R O o U I] 0= T 55
8.5.2 CUDA EVENES... .ottt ettt st sae st s te e sbeeneesbeensesbeensenseenes 55
8.6 CUDA streams and overlapping data transfers.........cooevennennenseseseseecsee e 56
8.6.1 MUILIPIE SLIEAMS.....cuiictirectiieee ettt b e 57
MEMOIY GCCESS PAIT 2eeie ettt sb e s be e naneas 59
9.1 COBIESTING ... ettt sttt ettt et e b e e bbbt bt bbbt b et b e st et e e b e ebe st b e 59
9.1.1 MatriX transPOSE EXAMPIE......c.civiirieieieriete ettt b e er e 60
9.2 OptiMiZing SNArEH MEMOIYcuerieiirieerreeeteeet ettt eb e eb et sr e b e b e b e ere e 62
9.3 ATOMIC FUNCHIONS ...ttt 62
9.4 CONSLANE MEIMOIY ..ottt e e ae e b e steesbeessbeesbeesaseesbeesnseenbenans 64
9.4.1 Ray-Caster EXaMPIE....ccccciicieeieciiecte ettt r e ere s 65
9.5 Texture MemMOrY/ TEXTUIE UNITS.......oieieeeereeeeeeiesesese e st te e s te e e e e ene e e e esessessesnens 69
9.5.1 Texture memory for QraphiCs.......ccccvcieieeieeieeese e e 69
9.5.2 Using texture memory iNn CUDA ..ot 70
953 Clamp and FEPEEALccvveeeererrereerer et 73

Table of contents

10.

11.

12.

13.

14.
15.

16.

17.

LS o S 101 = g oo =i o] o ISR 73

9.6 Managed/UNified MEMOTYccecieiiee et sae e e sreeaesreeneeas 74
(@07 3 O PRSP RPURPR PRSI 77
10.1 OpenCL for GPU COMPULINGccuerteruireirtariereesteeeseeseeesesessessesaessessesesseessessesssssnsssesessens 77
10.2 OpenCL vS. CUDA tErMINOIOQYcceeveereerieeeerieseesieseessesaesesaesesssessesssessesssessesssesseenses 78
10.3 OpenCL memory and thread MOCEL..........cccovueieiereeieceee e s eneas 78
104 HELEIOQENEOUS......c..eeveeeiesieee s et et st ee st e e e tesse e e ss e e teeneesseeseesseeeesneensesnnesensneens 79
10.5 (IS 1010 (U= o PPN RPRIN 79
106 Walk through the Hello CL example COOE.........cccoiiieerieirieirieerees e 80
10.7 The JduliaeXxamplein OPENCLccoiiiiiirie et sttt s e e eeaea 82
10.8 Some MOore NOLES 0N OPENCLcocuiiiieiie et e eeere e e 84
10.9 Synchronization iN OPENCLccciviiiiieie et sa e e e e neenens 84
10.10 QUENTESTN OPENCL ..ocueeeeeeeeeeeierie st ste st e e st se e e e e ssesresaesresbestesreeeseneeneeneeneeneesens 85
JO.11 OPENCL BVENES....ceceeueeieeieeteeterie ettt sttt sr e et r e b sb e sr e r e rese e s et e sn e e ene e e eaeenen 85
10.12 ConClUSIONS ON OPENCLcueeeiiieiirieirieesi ettt n e enne 85
Fragment SNAdENS.........couviiiiiecececeee ettt nne s 87
111 INPUE BN OULPUL -....ceeeeeeeeeee ettt sttt sttt b e eb e et ne b e 88
112 Thecomputation kernel = the Shader ..o 89
113 FEEADBCK ..ottt bbbt b bbbt b e)
114 Image filter in fragment ShadErccoociiieii e 91
115 Reduction in fragment ShAOErS..........voeieiirererieeceees e 92
OpenGL Compute shaders and Vulkan............c.cooiiiiiiiiiinieneeeseeeeees 93
121 OpenGL ComMPULE SNATEIS.ccecieciececeee et r e e nas 93
122 Shader Storage BUFfer ODJECES........ccccviiiieieiieerieeeee ettt a e s 95
12.3 TGz 100 = oo o TS 96
12.4 Synchronization in OpenGL cOMPULE SNAEIScocirieirieirierrie e 97
125 Compute shader timing with query ODJECES ..o 97
126 QUENES TN COMPULE SNATEIS.......ecuiitiriiititesie ettt bbb st b et e e e e e e enea 97
12.7 Conclusions 0N CoMPULE SNAAEIScceeieiiee e s ee 98
12,8 VUIKBN oo 98
DiITECE COMPULE.......c.eiiteeieieeeee ettt ettt sn e b e 99
131 SNArEA MEIMONY ...ttt e e e sae e sre s e e sresnaesteeneesreeneenes 101
13.2 Y710 10 114 4 o] o 1S 101
Comparisons of the PlatformS............coeeeieriiee e 103
REAUCTION ...t bbb bbb 105
151 Optimization Of FEHUCTION.........cciuiiriieriiert e 107
152 Parallel prefix SUM 0N GPU ... 107
OpenGL INteroperabilitycccceeeereeieseere e nne s 109
16.1 CUDA-OpenGL INteroperabilityccooveerieirieirieerieesieesi e 109
16.2 OpENCL aNd OPENGLcveiiiiiieiecrer ettt e 111
16.3 OpenGL, Compute Shaders and fragment shaders..........cccocveeerecciceece e 112
SOMING ON GPUS ...ttt sttt e b e e 113
170 BUDDIE SO ...ttt sttt b et ettt sn b 113
17.2 RANK SO ... et b e bbb s e et et 114
17.3 BItONIC SOM.....eieteiete ettt st sttt sttt et et 117

Table of contents 7

174 QUICKSOIT ...eveueteiesteeete ettt ettt b et bt b et b e se b e b e s bt re e nnne 119

1741 PIVOL SEIECHION ...ttt ene 120

17.4.2 COMPAITSONS .. .evieeieiteeeseeeeseeieeeesessessessesbessesaestesaeseessasseseeseensenseeeneasessessessens 120

17.4.3 PartifiONiNg.....ccceoeereriererieirieesieesieesieseseesesseessesessessssessesessesessesessesessesessensssenes 121

17.4.4 CONCAENGLE FESUIT........oeeeeeeieeeeeee ettt e e ene s 121

175 Recursion, Concurrent kernels, Dynamic Parallelism...........ccccocvicevieiceveccesesecee 121

18. IMAJE TIHTENS ...t 123
181 SEPArall @ filTrS. .o e 125

18.2 NON-HNEAN FIITEIS .. et ene 126

18.3 Edge checks, ClampPing........ccoiieieieceseeeces et ene s 126

ST ©o o g 3= = 127

185 SCALLEN VS GALNET ...ttt bbb 127

19. QUESLIONS......ccutee e ciee ettt ettt ettt e e etee e st e e s b e e et e e e eabeeeeaseessaeeeeseeesbeeesnbeeesareeesnreeans 129
191 = o (=Y 0 (U1 o R 129

TO. 11 LECHUME Lottt e ene s 129

1912 LECIUMNE 2 ..ottt e et ene s 129

1913 LECIUME 3.ttt et ere s 130

19114 LECIUME A ...ttt et ne e ere s 130

TO.15 LECIUME S oo ere s 130

19.2 GPU Algorithms and Coding (GPU AIQOrithms).........ccoeeienennineseeeees e 130

19.3 GPU Conceptual Questions (AKA GPU Architecture concepts or GPU Computing) ... 133

19.4 GPU QUICKIES.....coieieteieiesiete ettt sttt sttt sttt st s be s st st 136

20. FINGI WOTAS.......eeieeece ettt e neene e 139
21. REFEIENCES. ... et e e re e e reenree s 141
22. 170 1= SO SROSUSRS 143
8 Table of contents

3. How did we get here?

Let us start with having alook at how we got here, what developments that led us to the
hardware that we have today. Thisis more than just a peek back in history, it may also give
some insightsin what to expect from the GPU hardware.

Since personal computers arrived, the development of CPUs can be summarized as fol-
lows:

80's: CPU and the memory bus had the same speed, the same clock frequency. The con-
cept “Zero wait states’” was an honor word, the CPU never had to wait for the bus more
than one clock cycle.

1993: About this time, the 1-1 mapping between CPU and the system was scrapped,
instead the term “clock doubling” described the new way; The CPUs was faster than the
rest of the system, by 2 or 3 times. This gave us arapid raise of CPU frequency, making it
possible to do more computations between every memory access.

Late 90’'s to present: We saw multi-CPU systems in the late 90's, but they were initially a
limited success. Since then the operating systems have been adapted to fully support mul-
tiple CPUs, and we got multi-core CPUs with two cores on a chip. Today, 8 coresis get-
ting increasingly common while 16 cores is available but expensive. Even embedded
systems like phones are multi-core, and systems with less than 2 cores are getting rare.

CPUs are still improving, but going for higher frequency is not as obvious as before.
During this time, graphics hardware has undergone an even faster evolution.

80's: Graphics hardware in these days mainly referred to hardware that read pixels from
VRAM and put them on a screen. The fanciest hardware acceleration was probably hard-
ware sprites. Graphics programming was very focused on writing pixelsto VRAM with
low-level code, optimized assembly code.

1993: With the clock doubled/tripled CPUs we got enough power to produce textured 3D
games like Wolfenstein 3D and Doom. In a glorious 320x240 resol ution, these games
were sensations! However, rendering was still ajob for the CPU.

How did we get here? 9

But were there not any GPUS?Yes, there was, but they were professional 3D boards,
insanely expensive from a home computing point of view. This all changed 1996:

1996: With the 3dfx Voodool board, we suddenly got a GPU that anyone could buy! It was
priced pretty much like today’s mid-range boards. Of course it did extremely little from a
modern point of view, and had a strange solution for switching between 2D and 3D graph-
ics, with a special cable over to the 2D board, but it took gaming from a blocky 320x240
resolution to a slick-1ooking 640x480.

2001: Thisyear gave us arevolution that was bigger than most people understood: Pro-
grammable shaders. For thefirst time, we could put our own program code into the GPU!

2006: The G80 gave us the “unified architecture”, which was much more suited for GPU
computing than the older architectures, and with that followed NVidia's CUDA.

2009: The non-NVidia part of the world struck back with OpenCL.

2010: The Fermi architecture was the first GPU architecture that was clearly aimed at
GPU computing. It was no success, it made NVidiafall behind in gaming performance,
but it was still amilestone, showing what was to come.

During this process, the number crunching performance of GPUs has increased extremely
fast. NVidiatends to show off with graphics like Figure 1.

TFLOPS (theoretical)

NVIDIA GPU, single precision

=
et

NVIDIA GPU, double precision

Intel CPU, single precision
Intel CPU, double precision

Pm W s e N ®©® O
"+ "/ —’"//"""1"//—/7°

2004 2006 2008 2010 2012 2014 2016

FIGURE 1. Typical “GFLOPSrace’ graph

These graphs ook impressive and we get the impression that GPUs areimproving at arate
that isway over what CPUs can perform, accelerating away leaving CPUs standing still at
the starting line. However, the picture is somewhat misleading. Note that the graphs are
always with linear scales. If you would make them with logarithmic scale for perfor-

10 How did we get here?

mance, it would look much more like what it is; GPUs and CPUs are both improving at
similar rates. GPUs are faster, but the proportions are not changing so much.

But isthisafair comparison? Let us compare apples with apples:
GFLOPS for both!

If we take thisin numbers, we get atablelike this:

GPU CPU
1995: 0.001 0. 09
2005: 40 5.6
2011: 2488 91
2015: 7000 176
2016: 16380 400- 700*
2017: 110000** 4000* **

* Theoretical, 16 cores

** Clainmed by Nvidia on Titan V [5]

*** Theoretical peak perfornmance [6]

(G her data fromvarious sources, not docunented.)

The 2017 part of the table reflects late 2017/early 2018.

CPUs can not compete in peak performance. Even after the biggest steps of progress, they
are far behind. On the other hand, remember that thisis for the most optimal problems.
The advantage of GPUs drop significantly on problemsthat are less suited for the architec-
ture.

L et us also consider economy. How much does a GFL OPS cost?

1961; 8.3 trillion

1984: 42 mllion

1997: 42000 (CPU cl uster)
2000: 836- 1300

2007: 52

2012: 0.73 (AVD 7970)
2013: 0.22 (Ps4)

2015: 0. 08 (Radeon R9 295)

(Source: W ki pedi a)

That is a price/performance improvement of 104 trillion times since 1961, and only since
2000 computing has become 16000 times cheaper! And that isin an erawhere CPU clock
frequency has stalled, and thus many people may believe that performance doesn’t
improve! If so, they are just 16000 times wrong (and that is not even counting the
improvement since 2015).

3.1 Related efforts

So, NVidiaand AMD have been the two big ones in graphics and gaming, and had consid-
erable success in general purpose computing. We also have Intel making GPUs integrated
in CPUs. They, however, tend to be of little interest for high performance applications.

How did we get here? 11

The GPUs are, of course, mostly compared to the main cores of CPUs. It should be noted
that they are less often compared to the processing power of CPUs while using the vector
processing unitsin the CPUs. But there have aso been other parallel architectures. At this
time, many of them are counted out. IMB had the Cell processor, which even made it into
Sony Playstation 3 as well as Namco Bandai arcade boards, but in 2009, its next genera-
tion was cancelled, signalling its decline. Intel made the Larabee, which was cancelled in
2010.

However, a successor of Larabee, the Xeon Phi, is actively developed, competing with
NVidiaand AMD for the growing GPU computing market.

The following two tables come from an investigation on the performance on the Phi com-
pared to a CPU, using vector processing extensions, and a high performance GPU. Alas, |
have lost the source and am unable to find it. If anyone involved in it reads this, please
enlighten me.

Xeon E5-2670 Xeon Phi 5110P Tesla K20X

Cores 8 60 14 SMX

Logical cores 16 (HT) 240 (HT) 2688 CUDA cores
Frequency 2.60 GHz 1.053 GHz 735 MHz
GFLOPS (double) 333 1010 1317

SIMD width 256 bits 512 bits N/A

Memory =16-128 GB 8GB 6GB

Memory BW 51.2 GB/s 320 GB/s 250 GB/s
Threading software software hardware

So, how does it complete? The same investigation (I think it was) also gave us bench-
marks, with the following table:

Paths Sequential Sandy-Bridge CPU* Xeon Phi* Teda GPU
128K 13.062 s 694 ms 603 ms 146 ms
256K 26.106 s 1.399 s 795 ms 280 ms
512K 52.223 s 2771s 1.200s 543 ms

* using SIMD vector intrinsics

My conclusion of this particular investigation is that the GPU still wins, even by a consid-
erable margin, but the Phi, and even a CPU using vector extensions, are till fighting to
giveit arun for the money.

Note how much faster the CPU was by using the often ignored vector intrinsics. A 20
times speedup, for something that we always have available! But all these except the
poorly performing sequential CPU solution require you to code in parallel! So whatever
you do, if you want to compete in performance, you must learn parallel programming, you
must attack in packs!

And that iswhy you are here, right?

12 How did we get here?

3.2 Why did GPUs get so much perfor mance?

So, the GPU is pretty fast. Let me now argue for why the GPU got all that power in the
first place.

There have been many earlier attempts to construct parallel computers. However, gener-
ally speaking, they have al failed to be mass market product due to lack of abig problem
suited for parallel implementation with wide enough user base to get the volumes up.

This problem was provided by the gaming industry, by the demand for good graphics. This
makes it an early problem with large amounts of data, with its complex geometry and mil-
lions of output pixels. It could, with great benefits, be accelerated. The graphics pipelineis
designed with excellent opportunities for parallelism!

So, we got a volume product! The 3D graphics boards quickly became a central compo-
nent in the game industry. Everybody wants one, so every producer of game equipment
needsto put onein.

An interesting bonus was that the hardware was designed to hide memory latency by par-
allelism. Thisisasmart trick that suits the thread model in the GPU shaders well.

So, graphics performance went up, but it didn’t stop there. If anew GPU could make new
impressive features, it would sell both games and GPUs. Thus, many important advance-
ments started as game features.

So, it al started with that a GPU must process many pixels fast! This was the #1 task, so
early GPUs could draw textured, shaded triangles much faster than the CPU.

The next generation could do matrix multiplication and divisions fast, in order to trans-
form vertices and normalize vectors, which had then become a bottleneck on the CPUs.

The next step was programmability, programmable shaders. This was added to make
Phong shading and bump mapping, new visual effects that were hard to do, or could only
be done in inflexible ways.

Finally, floating-point support was added! This, too, was for visual effects, namely for

light effects, using high dynamic range.

So a GPU should

* process vertices, many in paralel, applying the same transformations on each

» process pixels (fragments) in parallel, applying the same color/light/texture calculations
on each

Both these tasks are suitable for parallel implementation. It is better than that, the problem
iseasily split into parts can be processed by one single program executed for multiple
data. This makesit a SIMD friendly problem, single instruction, multiple data!

How did we get here? 13

For such computations, we need less control per computation. The hardware will control
many calculations instead of one.

Thisalso gave usadifferent kind of threads. The whole process could have been expressed
as avector processor, explicitly grabbing chunks of data and feeding them to a vector pro-
cessor. However, it was instead expressed as separate threads, processed in paralée run-
ning the same program.

Thisgave usthe SIMT model, single instruction, multiple threads, which is SIMD hidden
under an thread-like abstraction, but also with hardware support for this, providing each
thread itsidentity, giving us an impression of independent threads. This model was good
for graphics operations. Shader threads cal culate one pixel or one vertex. CUDA/OpenCL
threads may cal culate anything, but typically one part of the output, and this can usually be
made independent of each other.

Thus, these vital improvements all are based on needs of the game programmers, and
thereby the needs of the gamers. They paid for our parallel computing platforms!

3.3 Thearrival of GPU computing: General Purpose computation on
Graphics Processing Units

The concept of GPU computing was first called GPGPU, General Purpose computation
on Graphics Processing Units, coined by Mark Harrisin 2002. The ideaisto perform
demanding cal culations on the GPU instead of the CPU. At first, this appeared to be awild
idea, or at least a marginal possibility, but since then it has grown into a very important
factor in modern computing. Results were highly varied in the early years, but the GPU
advantage has grown bigger and bigger.

The concept has since then been renamed GPU computing, and more general platforms
have appeared, making it easier to program and also enabling better optimizations.

3.3.1 Key components of the GPGPU trend

What made this possible was of course the massive parallelism of GPUs, which comes
directly from the need to process large amounts of vertices and pixels,

The next key component was programmability, the introduction of shader programs,
which made the GPUs much more flexible, reprogrammable for any problem.

The third vital component was the arrival of floating-point buffers. Without them, GPUs
could only store and output integer information. Thereby it was vital for general purpose
computing.

Initially, the support had poor precision. We could have aslittle as 16- or 24-bit floating
point numbers, but with 32-bit floating-point we at least had decent precision, athough
not really impressive. High precision computations were not possible, but granted the

14 How did we get here?

promising results, 64-hit floating-point support eventually arrived and has been steadily
growing since then.

3.3.2 GPGPU/GPU computing approaches

There are several technologies for GPU computing, so let me give abrief overview. Here
isalist of the most important alternatives.

» Fixed pipeline graphics

» Shader programs

 CUDA

¢ OpenCL

» Compute shaders

e Direct Compute

* Vulkan

Thelist is not exhaustive, there are many packages on top of these, and new solutions are
being developed, and the current ones are revised.

3.3.3 Fixed pipeline GPGPU

Even before programmable shaders, there were severa results based on the old, fixed
pipeline technology. Some problems could successfully be reformulated to something that
could be, at least partially, computed by standard graphics operations.

Early results include Voronoi diagrams by Hoff et. al. 1999 [7], matrix multiplication by
Larsen and McAllister [8] and face tracking by Ahlberg in 1999/2002 [13].

Thus, GPUs were usable for computing even back then, but the scope of algorithms was
highly limited. This kind of algorithmsis not of any practical interest today.

3.3.4 Fragment shader based GPGPU

When programmabl e shaders arrived, the scope widened considerably. In 2005, | took part
of a GPGPU project for the first time [2], and we could see an overall speedup of image
processing operations of about 8 times, an amazing improvement in a business where you
are happy when you can squeeze out a 10% speedup with alot of work.

Programming is made in shader languages such as GLSL, Cg or HLSL. Initialy, an
assembly language was used but it was quickly phased out.

This solution has two major drawbacks. First, it requires you to re-map your data to tex-
tures, to image data, typically with four channels per pixel. This gives us a data organiza-
tion that can be rather clumsy to work with. Second, the visibility of hardware features,
most notably shared memory (see chapter 7), is bad compared to the following platforms.

How did we get here? 15

Thus, fragment shader based GPU computing is likely to be outperformed in many appli-
cations by CUDA and other later platforms.

Still, this approach should not be counted out. It is by far the most portable one. It runson
old and new GPUs. It is easy to make your algorithm run as efficiently on the latest GPUs
aswell as 10 year old ones. All GPUs on the market can use shaders, so there is no need
for extra software, and you can run on all brands, NVidia, AMD and Intel. All you need is
the standard software/drivers.

3.3.5 CUDA

A popular platform is CUDA from NVidia. It only works on NVidia hardware, which lim-
itsit considerably, but on the other hand, it is probably the most actively developed GPU
computing platform.

It requires extra software installations, and there is abig risk that a software using CUDA
has steep hardware demands due to its rapid changes. However, the active development
also means that new features come here early, which often give CUDA the edge.

We often see excellent results with CUDA. For problems of highly parallel nature, 100x
speedups are common, even before optimizing! Even low-end GPUs give significant
boosts.

3.3.6 OpenCL

OpenCL is often considered the main alternative to CUDA. It works on various hardware,
not only GPUs. It is developed by Khronos Group, and initially had significant support by
Apple.

It is noticeably harder to get started, partially due to the wider scope of hardware, but also
since the whole model is closer to OpenGL, to the extent that there are considerable simi-
larities in how you program shaders.

3.3.7 OpenGL Compute shaders

An dlternative that is given much less attention is OpenGL compute shaders. Thisisa
GPU computing solution built into OpenGL. That makesit similar to OpenCL, but being
part of OpenGL makesit easier to make programs with OpenGL visualization. (See
chapter 15.2.) Thisalso givesit good portability, because just like fragment shaders, it
exists on all installations with a recent enough OpenGL, and all you need isthe GPU driv-
ers.

3.3.8 Direct Compute

DirectX also has compute shaders, a part of DirectX/Direct3D called Direct Compute. It
predates the OpenGL Compute Shaders significantly. Its biggest weaknessis of course
that it islimited to Microsoft systems only.

16 How did we get here?

3.3.9 Vulkan

Vulkan has sometimes been called the “new OpenGL”. It isaredesign that focuses on pro-
viding good multi-thread support to graphics programming, which has become aweakness
with OpenGL. It arrived officially in 2016, but now, in 2018, it is still in the process of
propagating. This makesit a“Bleeding edge” technology that is not the easiest to get
started with.

This could be the future main generic GPU platform for both graphics and computing.
However, lack of interest from major players like Apple and Microsoft may pose prob-
lems.

3.4 Applications

| claim that thisis so important, but isit? Isit being used? Let me summarize some of the
strongest application areas.

3.4.1 Image processing, image analysis and video coding

From the very first steps of GPU computing, it was clear that almost any kind of image
processing fits the concept well. Among the first GPU computing results were image pro-
cessing tasks, and even today, it remains one of the strongest fields. Any decent video
coder must use the GPU today or it will be unreasonably slow compared to the competi-
tion.

3.4.2 Crypto currency mining

In the early days of bitcoins, they were often mined using GPUs. Today, that task has been
taken over by ASICs, but other crypto currencies have appeared, less suited for ASIC solu-
tions, and those currencies are mined with GPUs.

3.4.3 Deep learning

Deep learning basically means learning systems based on very large neural networks.
Learning with neural networks has been around for along time, and was a hot topic in the
90's, but until GPU computing arrived, it was unfeasible to handle large networksin real
time.

But thisisagood problem for GPUs! Simulating and updating a neural network isa
highly parallel problem. And it has produced remarkable results and is now a hot trend in
computer vision as well as other fields. And it was the GPUs that opened the door!

How did we get here? 17

18

How did we get here?

4. GPU architecture

So far, | have discussed why we got here and what the performance is. Now, let us ook
closer to how that performance is made possible.

4.1 SIMD and SIMT

How is this possible? In the CUDA design guide, they talk about area use, that the GPU
has more space assigned to computations, while CPUs waste much space on cache. This
pictureisno longer valid since GPUs aso use alot of space on caches these days. Instead,
I would claim that the difference is that the GPU isa SIMD machine, single instruction,
multiple data, while the CPU isa MIMD. These terms come from Flynn’s taxonomy
(Figure 2), where we also find SISD, that is old single-core systems, and the must more
exotic MISD, multiple instruction, single data, where multiple processors do the same
work for redundancy, for safety.

SISD MISD
Single instruction, single data Multiple instruction, single data
Old single-core systems Multiple for redundance
SIMD MIMD
Single instruction, multiple data | Multiple instruction, multiple data
GPUs, vector processors Multi-core CPUs

FIGURE 2. Flynn’staxonomy

SIMD, single instruction, multiple data, has a couple of advantages. It smplifiesinstruc-
tion handling, in that several cores get the same instruction. That means that the whole
system for handling instructionsis shared between many computations. In this sense, there
IS better area use.

Thisis, obviously, excellent for operations where one operation must be made on many
dataelements. So, isthat so common? It is more common than you may realize, and many
algorithms can be rewritten to be more SIMD-friendly.

GPU architecture 19

But what about algorithms that are not SIMD-friendly, where there are differences? That
can be managed by boolean operators, boolean variables used as masks. If you need two
different variants, two branches, you compute both, and then trash the one that one partic-
ular line of computations does not need.

Moreover, SIMD computations are also easier to synchronize. You know exactly when the
other computations (or at least part of them) are computed so some synchronizations can
be skipped.

A rule of thumb hereisto store datain arrays. Linked lists, pointers, tree structures, they
can be hard to processin parallel, while arrays are easily passed to multiple processors.

Thiskind of processing situation is called (or at least closely related to) Data Oriented
Programming (DOP). [14] While OORP tries to optimize programming for the program-
mer, DOP optimizes for performance, for the machine and the end user. Data structures
are selected to fit the computations, instead of the programmer!

Optimizing for the end user instead for the programmer sounds like agood idea! Thisview
is popular in the game industry, but seems virtually unknown otherwise.

4.2 SIMT, Single Instruction, Multiple Thread

NVidia uses the concept SIMT, Single Instruction, Multiple Thread, for their computing
model. Thisisavariant of SIMD. | would argue that SIMT is areformulation of SIMD,
hiding the SIMD processing from the programmer, who sees the parallelism as separate
threads, and gets the view of the computing as to be made in independent threads. This,

however, is not the case. The threads are computed a number at atime, awarp.

Primitive
— g | Vertex processing: > assembly, | g Clip & cull
. Transformations geometry | o . tives
Vertices processing
Frame buffer l

operations: .
Fragment processing:

Z-buffer & stencil shading & texture
test, write pixel

¢ Pixels

FIGURE 3. The OpenGL pipeline (simplified)

L §—— Rasterization
Fragments

Parallelism expressed as threadsis still a great improvement over handing arraysin
chunks. This gives us a programming model that demands that the hardware can handle
threads very fast, which isalso the case for GPUs. As mentioned in chapter 3.2, this model
fits a graphics processor very well.

20 GPU architecture

4.3 Theunified architecture

The current GPUs have a unified architecture. Thisis unlike early GPUs, which had a
structure that closely followed the graphics pipeline, like the OpenGL pipeline, shownin
Figure 3. The hardware basically had separate hardware for each step, including a number
of computing coresin the vertex and fragment stages. For NVidia, this was the case up to
the G70 architecture, which was roughly structured as shown in Figure 4. Note that it very
closely follows Figure 3.

T T T
Vertex processors
| | 1

Geometry/Clip/Cull

Fragment processors

T T T 1 T T T 1
Frame buffer operations
TN N T O N B |

VRAM

FIGURE 4. Schematic overview of the G70 GPU

In 2006, the G80 changed this, totally, All the coresin the vertex and fragment stages were
collected into a pool of computing cores, all capable of performing the tasks for both
stages, unified shaders. The data flow now passes twice through the pool of cores, as
shown in Figure 5.

|

Unified processors Geometry/Clip/Cull

T T1 L
Fragment processors
| T I I A |

A

A 4

VRAM

FIGURE 5. Schematic overview of the G80 GPU

Thiswas agreat success. The big advantage was that both the vertex and fragment stage
could now access the whole pool, balancing the needs of the two, limiting the problem
with computing bottlenecks.

GPU architecture 21

For graphics, this optimized extreme situations where the balance between the difference
stagesis big. One such case is when there are very detailed models, with alot of vertex
computations, but little fragment processing, simple or no lighting effects etc. Thisis typi-
cal for 3D design situations, like CAD, where you need to see exactly how the model
looks but there is no need for visual effects like Phong shading.

The other extreme is when you have less detailed models, but much computations at the
pixel level, that isin the fragment shaders. This could be when thereisalot of visual
effects, multiple light sources, bump mapping, ray marching per fragment, or even GPU
computing in the fragment stage. The balancing problem isillustrated in Figure 6.

Separate vertex and fragment Unified processors (G80)
processors (G70)

Vertex Shader i
Unified Shader

Vertex LT
problem (e.g.
complex Fragment Shader 258

s R T T T T

Vertex Shader Unified Shader
agmeny LI R IRELILRIRS
P adVanQEd Fragment Shader
rendering) ‘ . 22222222;&2222

SR

FIGURE 6. How G80 improved performance with load balancing

Thisnew design was thefirst architecture that was truly suitable for GPU computing, with
most of the chip dedicated to programmable computing.

4.4 SMs, SPsand shared memory

So let us have a closer look at the inside of the G80. What we find there is the design that
all following GPUs are based on. See Figure 7.

We see how the processors of the G80 are grouped into eight TPCs, texture processing
clusters. Each such cluster has two SMs, streaming multiprocessors, and hardware for tex-
turing.

The SM concept iswhat we should care the most about. Inside each SM we find eight SPs,
stream processor s, which are the processing cores. However, they are not the processor
cores we are used to. They aretightly coupled to a SIMD array, a vector processor, so they
are essentially lanes in a single processor.

22 GPU architecture

G80 | TPC TPC TPC TPC TP

@)

TPC TPC TPC

SP SP

SP SP

TPC SFU SFU

SP

/ sP

SP

SP

EERE

SM SM

Shared memory |

JJiCEEE

Texture Processor Cluster Instruction handling |

Streaming Multiprocessor

FIGURE 7. Vital componentsin the G80

We also find the SFUs, special function units, which corresponds to the ALU in a CPU,
performing operations that we can’t afford to provide separately for each SP. Thereisalso

instruction handling, register memory for each SP (not shown in the picture), and shared
memory.

There is more inside the chip, of course. Perhaps most important to usis the thread man-
agement. Although the processing is performed as a vector processor, the computing from
our point of view is made in threads, each with its own memory. These threads are man-
aged in hardware, with automatic switching between groups of active threads. This thread
switching is another key component to the efficiency. However, we don’t see anything of
thisthread handling, we just useit and it seems totally seamless.

When doing shader programming, we see even less of the architecture. We see threads,
and that isit. With CUDA, OpenCL etc., we see more. We don’t care too much about the
number of SM's, because the work is automatically queued over available SMs, but we do
specify the split over number of threads per SM, and it is often important to make this split
as optimal as possible, to distribute the work to keep the hardware busy, but also to avoid
too much synchronization and passing data. We also need to plan the usage of the shared
memory. More about that later.

Important note: The queuing of work over a number of SM's, which are not capable of
communicating during processing other than by writing and reading global memory, and
even then you can’t rely on a specific block/work group being active since they are
queued, is both effective, simplifying work balancing, as well as complicating many algo-
rithms. Many seemingly simple algorithms are hard to parallelize due to the lack of com-
munication.

GPU architecture 23

So, the numbers we see in a G80 are 16 SMs and 8 cores (SPs) for each SM. These num-
bers are not magical in any way and change with each new architecture. The subsequent
architecture from NVidia, the GT200, sports 10 SPs per SM and 30 SMsin 10 clusters, a
straight upscaling.

The Fermi, in 2010, was the next magjor change in the hardware. Apart from even more
upscaling, it surprised us by adding on-chip cache memory, the very thing that NVidia had
earlier implied that was aweakness with CPUs. There was also adramatic increase in dou-
ble precision floating-point performance, 4x higher than before, implying that it was
intended to strengthen the GPU computing use. Otherwise, it was business as usual with
some more upscaling, 16 SMswith 32 SPs each, support for 24576 threads.

The Fermi has even had its own name, a Computing Graphics Processing Unit, CGPU.
However, marketing-wise this generation was a failure for NVidia, because their strong
emphasis on GPU computing let AMD take the lead, and for quite some time, AMD was
the brand of choice for gamers. NVidia could not afford falling behind on their core mar-
ket, so the next generation, Kepler, had more single precision support and NVidiawas
back on track. The following architectures, Maxwell and Pascal, has kept NVidia high on
the price/performance scale again.

But don’t count out AMD. While NVidiawas busy taking back what they had lost in the
gaming market, AMD took the lead in GPU computing with the R9 series, which for a
while was the chip of choice for mining crypto currencies!

| have not said anything about the GPU architectures from AMD, but generally, they fol-
low the lead of NVidia, in order to match the same OpenGL and DirectX generations.

24 GPU architecture

5. HelloWorld!

This chapter does something completely trivial in anon-trivial way, which is even pretty
unique asfar as| know: We will take the super simple “Hello World” problem and solve it
in parallel, not once but several times, for different GPU computing platforms. Thereby
we get afirst introduction to all the GPU computing platformsthat | intend to cover. As
you will see, the solution requires very different amounts of setup, but in the end they use
kernelsthat are quite similar.

L et me define the problem to be solved: “Hello World!” should produce the string “Hello
World!” and nothing more. For our purposes, it hasto be made in parallel. Thisis, for all

examplesin this chapter, made like this: Take the string “Hello ” and add, using one thread
per character, the offsets 15, 10, 6, 0, -11, 1, to each character, thereby producing “World!”

This super ssmple problem, embarrassingly parallel and far too small for a parallel prob-
lem, thereby provides us with afirst introduction to each platform. Naturaly, it isatrivial
problem, so we will go further with more interesting things, which isjust what the original
Hello World! isfor. Get your first, smple program, running.

5.1 Hello CUDA

Most CUDA tutorials start with some simple example that is often dubbed “Hello World”,
although that is usually an ignorant statement since the examples usually do not output
“Hello World!” astheir result. Thisis understandable, sinceit is not entirely obvious how
to make an example of parallel computing which has the sole purpose of producing the
string “Hello world!”. However, not without pride, | can present you with exactly that: A
program that is short, smple, does perform parallel processing on the GPU using CUDA,
and the result isindeed “Hello World! !

So, hereitis, thereal “Hello world” for CUDA:
#i ncl ude <stdi o. h>

const int N= 16;
const int blocksize = 16;

__global __

Hello World! 25

void hello(char *a, int *b)

a[threadl dx. x] += b[threadl dx. X];
}

int main()

char a[N = "Hello \0O\0O\0\0\ 0\ 0";
int bfNN = {15, 10, 6, O, -11, 1, 0, O, O, O, O, O, O, O, O, 0O};

char *ad;
int *hd;
const int csize
const int isize

Nt si zeof (char) ;
Nt si zeof (int);

printf("9%", a);

cudaMal | oc((voi d**) &d, csize);
cudahMal | oc((voi d**) &bd, isize);
cudaMercpy(ad, a, csize, cudaMentpyHost ToDevice);
cudaMerrcpy(bd, b, isize, cudaMentpyHost ToDevice);

di n8 di nBl ock(bl ocksize, 1);

dinB dimxid(1, 1);

hel | o<<<di mM&xi d, di nBl ock>>>(ad, bd);

cudaMercpy(a, ad, csize, cudaMenctpyDevi ceToHost);
cudaFree(ad);

cudaFree(bd);

printf("9%\n", a);
return BEXI T_SUCCESS,
}

| hope the source itself explains what it is doing; it takes astring and an array of offsets to
produce “World!” from “Hello “. But afew more clarifications are called for.

What you see hereis, in one and the same file, both CPU and GPU code. This integration
Is very elegant. The amount of code to compile and launch the GPU kernel is extremely
small.

The _global __ codeisthe kernel, executed on the GPU, in parallel. Note the threadl dx.x.
That isthe thread identifier, which must be used to calculate where in the data to operate.
“Real” CUDA programs use both thread and block identifiers.

We allocate memory on the GPU from the CPU, using cudaMalloc. We can then upload
and download data with cudaM emcpy, using the arguments cudaM emcpyDeviceToHost or
cudaMemcpyHostToDevice to denote the copying direction. Finally, we can dispose of
GPU memory using cudaFree.

One of the most challenging issues when you start with CUDA is the concepts of grid,
block and thread. The grid is the whole computing, which is split into a number of blocks,
which each contains anumber of threads. This division scheme describes how the comput-
ing is distributed over the GPU.

26 Hello World!

The weird statement
hel | o<<<di nxi d, di nBl ock>>>(ad, bd);
is the actual execution of the kerndl.

This version of the Hello World for CUDA works on any CUDA version. It should be
noted that a simpler version exists for newer CUDA versions, using managed memory.
More about that later (chapter 9.6).

5.2 Hello OpenCL

Hello World for OpenCL is substantially longer. However, much of the complexity isthe
setup.

#i ncl ude <stdi o. h>
#i ncl ude <nmat h. h>
#i f def APPLE

#i ncl ude <QpenCL/ opencl . h>

#el se
#i ncl ude <C./cl . h>
#endi f
const char *Kernel Source = "\n" \
" __kernel void hello(\n" \
" __global char* a, \n" \
" __global char* b, \n" \
" __global char* c, \n" \
" const unsigned int count) \n" \
"{ \n" \
" int i =get _global id(0); \n"\
" if(i < count) \n" \
" c[i] =a[i] + b[i]; \n" \
" \n" \
"\n";
#def i ne DATA S| ZE (16)
int main(int argc, char** argv)
int err; [/ error code returned fromapi calls

cl _device id device id; // conmpute device id
cl _context context; // conpute context
cl _command_queue comrands; // conpute comrand queue

¢l _program program /1 conpute program

cl _kernel kernel; /1 conpute kernel

cl _meminput; /1 device menory used for the input
array

cl _mem i nput 2; [/ device nenory used for the
i nput array

cl _nmem out put ; /1 device menmory used for the
out put array

size t global; /1 gl obal donain size for our
cal cul ation

size t local; /1 local domain size for our cal-
cul ation

Hello World! 27

int i;
unsi gned int count = DATA Sl ZE;

[/ Input data

char a[DATA Sl ZE]

char b[DATA Sl ZE]
0};

[/ Qutput data

char c[DATA Sl ZF];

"Hel 1o \0O\O\ 0O\ 0\ O\ 0";
{15, 10, 6, O, -11, 1, O, O, O, O, O, O, O, O, O,

[/ Print original data
printf("9%", a);

cl platformid platform
unsigned int no_plat;
err = clGtP atform Ds(1, &l atformé&no_plat);

Il Where to run

err = cl GetDevi cel Ds(platform C._DEVICE TYPE GPU, 1, &device_id,
NULL) ;

if (err '= CL_SUCCESS) return -1,

context = cl GeateContext(0, 1, &device id, NULL, NLL, &err);

if ('context) return -1,

commands = cl O eat eCommandQueue(context, device_id, 0, &err);

if (!commands) return -1,

/1 What to run

program = cl O eat eProgramNt hSour ce(context, 1, (const char **) &
Ker nel Source, NUL, &err);

if (!'program return -1,

err = clBuildProgram(program O, NULL, NULL, NULL, NULL);
i f (err = CL_SUCCESS) return -1;

kernel = cl O eateKernel (program "hello", &err);

if ('kernel || err '= CL_SUCCESS) return -1,

/1 Oreate space for data and copy a and b to device (note that we
could al so use cl EnqueueWiteBuffer to upl oad)

input = cl OeateBuffer(context, CL_MEM READ O\LY |
CL_MEM USE HCST PTR, S|zeof(char) * DATA SIZE, a, NULL);

“input2 = cl OreateBuffer(context, C._MEM READ ON\LY |
CL_MEM USE HOST_PTR, si zeof (char) * DATA SIZE, b, NULL);

output = cl OeateBuffer(context, CL_MEMWR TE_O\LY, si zeof (char) *
DATA SI ZE, NULL, NULL);

if (Yinput || 'output) return -1,

[/ Send data

err = cl SetKernel Arg(kernel, 0, sizeof(cl_mem, & nput);

err | = cl SetKernel Arg(kernel, 1, sizeof(cl_men), & nput?2);

err | = cl SetKernel Arg(kernel, 2, sizeof(cl_men), &output);

err | = cl Set Ker nel Arg(kernel, si zeof (unsigned int), &count);
if (err '= CL_SUCCESS) return -1,

wr

| ocal = DATA Sl ZE;

/1 Run ker nel !

gl obal = DATA SIZE, // count;

err = cI EnqueueNDRangeKer nel (commnds kernel, 1, NUL, &gl obal,
&l ocal , O NULL, NULL);

28 Hello World!

if (err '= CL_SUCCESS) return -1;
cl Fi ni sh(comrands) ;

/!l Read result

err = cl EnqueueReadBuf f er (commands, output, CL_TRUE, 0, sizeof (char)
* count, ¢, O, NUL, NULL);

if (err '= CL_SUCCESS) return -1,

[l Print result
printf("9%\n", c);

/1 dean up

cl Rel easeMen(hj ect (i nput) ;

cl Rel easeMen(hj ect (out put) ;

cl Rel easePr ogr an{ program ;

cl Rel easeKer nel (kernel);

cl Rel easeComrandQueue(comrands) ;
cl Rel easeCont ext (cont ext) ;
return O;

}

In this case, the kernel is defined as a set of text strings at the top of the program. A red
OpenCL program will rather put that in a separate file.

5.3 Hello GPGPU

In this section, we will have alook at how to write Hello World! for afragment shader in
the OpenGL pipeline. This means that the entire computation takes place by drawing
bogus graphics and make computations per fragment, that is per pixel in the generated
geometry.

This example existsin no less than three variants, one for old-style OpenGL, which | try to
avoid, one with few dependencies, and one that uses my lab material for simplifying
shader compilations and model/buffer handling (loadobj.c, GL _utilities.c and MicroGlut).

[/ Hello Wrld in a shader.
/1 Kind of twisted, since it uses signed chars.
/1 Modern pen@., using ny lab naterial for sinplicity.

#i ncl ude <stdi o. h>

#i ncl ude <Qpen@./ gl 3. h>
#include "McroQ ut. h"
#include "Q@ _utilities.h"
#i ncl ude "l oadobj . h"

#i ncl ude <sys/tines. h>

/1 uses framework Cocoa

[/ Add offset (texUnit2) to string (texUnit)
/1 Negative values end up as > 0.5, adjust theni
static const char *fragSource =

"#version 150\ n"

"uni formsanpler2D texUnit;"
"uniformsanpler2D texUnit2;"
"out vec4 outColor;"

Hello World! 29

"in vec2 texCoord;"
"void mai n(void)"

Il{ll

" vecd texVal = texture(texUnit, texCoord);"
" vecd texVal 2 = texture(texUnit2, texCoord);"
" if (texvVal2.r > 0.5) texval2.r -=1.0;"

" if (texvVal2.g > 0.5) texVal2.g -= 1.0;"

" if (texVal2.b > 0.5) texval2.b -= 1.0;"

" if (texVal2.a > 0.5) texVal2.a -= 1.0;"

" out Gol or = texVal + texVal 2;\n"

Il}ll

H

/!l Vertex shader, pass position and texcoord
char *vs =

"#version 150\ n"

"in vec3 inPosition;"
"in vec?2 i nTexCoord; "
"out vec2 texCoord;"
"void main()"

" texCoord = i nTexCoord;"
" gl _Position = vec4(inPosition, 1.0);"

ll}ll

h

G.float vertices[] = {-1.0f,-1.0f,0.0f,
-1.0f, 1. 0f, 0. Of ,
1.0f,-1.0f,0.0f,
1.0f, 1.0f, 0. 0f };

QA float texcoord[] = {0.0f, 1.0f,
0.0f, 0.0f,
1.0f, 1.0f,
1.0f, 0.0f};

unsigned int indices[] ={0,1,2, 2, 1,3};

Model *m
QLui nt shader;

/! declare texture size, the actual data will be a vector
[/l of size texS ze*1*4 = N

#define N 16

/] test data

char a[N = "Hello \0\0\0\0\0\0O\O\O\O\ O

char b[N = {15, 10, 6, O, -12, 1, 0, O, O, O, O, O, O, O, O, 0};
unsi gned char c[N;

#define texSi ze 4

}loi d display()

Dr awMbdel (m shader, "inPosition", NUL, "inTexCoord");
gl ut SwapBuf fers();

printf("9%", a);
/1 and read back
gl ReadPi xel s(0, 0, texSi ze, 1, Q_RGBA A_UNSI G\ED BYTE, ¢);

30 Hello World!

/1l print out results
printf("%\n",c);
exit(0);

}

/1 Not exported by G _utilties:
Q.ui nt conpi | eShader s(const char *vs, const char *fs, const char *gs,
const char *tcs, const char *tes,

const char *vfn, const char *ffn, const char
*gfn, const char *tcfn, const char *tefn);

Q.ui nt LoadText ure(unsi gned char *a, Quint texunit)
{
Qui nt tex;
gl ActiveTexture(texunit);
gl GenTextures (1, & ex);
gl Bi ndText ure(G-._TEXTURE 2D, t ex);
gl Texl mage2D(G-_TEXTURE 2D, 0, G__RGBA
texSi ze, 1, 0, @_REBA G_UNSI G\ED BYTE, a);
gl TexParameteri (Q__TEXTURE 2D, G__TEXTURE M N FI LTER, G _NEAREST);
gl TexParaneteri (A._TEXTURE 2D, G TEXTURE NAG FI LTER Q. NEAREST);
return tex;

}
int main(int argc, char **argv)

{
[/ set up glut to get valid G context and
[/ get extension entry points

glutlnit (&rgc, argv);

gl utl ni t Cont ext Versi on(3, 2);

gl utl ni t Wndowsi ze (4, 1);

gl ut Cr eat eW ndow(" TEST1") ;

[l create string texture
Quint tex = LoadTexture(a, G _TEXTUREQ);
[l create offset texture
Quint offtex = LoadTexture(b, GQ._TEXTUREL);

/1 Conpil e shader
shader = conpil eShaders(vs, fragSource, NJL, NULL, NULL, "vs", "fs",
NULL, NULL, NULL);

/1 Informshader of texture units

gl Uni formili (gl Get Uni formnmLocati on(shader, "texUnitl"), 0); // Texture
unit O

gl Uni formili (gl Get Uni fornbiocati on(shader, "texUWnit2"), 1); // Texture
unit 1

m = LoadDat aToModel (vertices, NUL, texcoord, NUL, indices, 4, 6);

[/ Ask for a redraw
gl ut O spl ayFunc(di spl ay) ;
gl ut Mai nLoop();
exit(0);

}

Some notes: We are using all four channels of the texels, which iswhy the texture width is
1/4 of the data size. We also need to mess a bit with the data since we upload to unsigned
chars. This problem disappears when using floating-point buffers. See chapter 11.

Hello World! 31

5.4 Hello Compute Shaders
OpenGL Compute Shadersis arelatively new devel opment.

In this case, | choseto use MicroGlut for creating an OpenGL context. On the computer-
graphics.se page, you can also find a stand-alone Linux version complete with context cre-
ation.

Also note that this code also contains afile loader, so the kernel can be in a separatefile.
Thisisdesirable for the OpenCL code as well.

Like with the fragment shader version, | have skipped some code for compiling shaders,
loading afile and printing out errors.

5.4.1 Main program

Here isthe main program code. It sets up an OpenGL context, loads and compiles a shader
(by standard code, not included).

int main(int argc, char **argv)

{
/1l Let GUT create a (. context

glutlnit (&rgc, argv);

glutlnitContextVersion(4, 4); // Failed with 4.5 on ny PC. The com
put e shader works even on ol d-style QA!

gl ut OreateWndow "Hel 1 0");

/! Load and conpil e the conpute shader
Quint p =l oadShader ("hell 0. cs");

Q.ui nt ssbo, ssbo2; //Shader Storage Buffer (bject

/1 Some data
#define N 16
char a[N = "Hello \0\0O\0\0\0\0";
int ac[N;
int bfNJ = {15, 10, 6, O, -11, 1, 0, O, O, O, O, O, O, O, O, O};
int *ptr;
int i;
printf("9%", a);
PRCBLEM No bytes in shaders!
I chose to package to int on the CPU.

Convert string to int:
for (i =0; i <N i++) ac[i]=a[i];

~ S~
~~

[l Create buffer, upload data

gl GenBuffers(1, &sshbo);

gl Bi ndBuf f er (GL._SHADER_STCRAGE_BUFFER ssbo);

gl Buf f er Dat a(@._SHADER STCRAGE BUFFER, 16 * sizeof (int), &ac,
Q__STATI C_DRAW;

[/ Tell it where the input goes!

32 Hello World!

/1 The "5" matches a "layuot" nunber in the shader.
/1 (Can we ask the shader about the nunmber? | must try that.)
gl Bi ndBuf f er Base(G._SHADER STCRAGE BUFFER, 5, ssbo);

/'l Same for the other buffer, offsets, ID6

gl GenBuffers(1, &ssbo2);

gl Bi ndBuf f er (A._SHADER STCRAGE BUFFER, ssbo2);

gl Buf f er Dat a(@._SHADER STCRACGE BUFFER, 16 * sizeof (int), &b,
Q__STATI C_DRAW;

gl Bi ndBuf f er Base(G._SHADER STCRACGE BUFFER, 6, ssbo2);

/1 Get rolling!
gl D spat chConpute(1, 1, 1); //Wrk groups |aunch

/1 Get data back!

gl Bi ndBuf f er (G._SHADER STCRACE BUFFER, ssbo);

ptr = (int *)gl MapBuf f er (GL_SHADER STCRAGE BUFFER, G._READ QO\LY);
/1 Convert int to string:

for (i=0; i < 16; i++)

a[i] =ptr[i];
printf("9%\n", a);
}

The main program should be of most interest, the rest is reusable code. First we create an
OpenGL context. We load and compile the shader. Above, we find code that will print out
error messages from the compilation. Then we create buffers on the GPU and upload the

data to them, and tell the shader about the buffers.

Then we are ready to run and call glDispatchCompute(). Finally, download the resullt.

54.2 Kernel
Asfor all other cases, the kernel itself is comfortably simple.
There are afew notable peculiarities here:

You may note that the work group size is defined by the compute shader, not by the main
program. However, thisis not alimitation, but rather afreedom, because we can aso do
that from the CPU.

A more disturbing limitation is that a compute shader does not allow byte-sized variables!
Therefore, the CPU part convertsthe data to standard-sized integers. Given that, the shader
itself is as simple as the earlier ones.

#versi on 430

#extensi on G._ARB conput e_shader : enabl e

/[#ext ensi on A__ARB shader_storage buffer : enable
#define width 16

#define height 1

/1 Conpute shader invocations in each work group

Hello World! 33

| ayout (std430, binding = 6) buffer offsbuf {int offs[];};
| ayout (std430, binding = 5) buffer strbuf {int str[];};
| ayout (1 ocal _size x=wi dth, |ocal size y=height) in;

/I Kernel Program
voi d mai n()

int i =int(gl_doballnvocationlD x);
str[i] =str[i] + offs[i];

5.5 Direct Compute and Vulkan

Although we do acknowledge Direct Compute and Vulkan to be significant frameworks
for our purposes, they are left out in order not to make the focus too scattered and this
chapter not too repetitive. See chapter 13 for a discussion and simple example of Direct
Compute.

34 Hello World!

6. CUDA

Our first pick for learning GPU computing is CUDA, for the simple reason that it isthe
easiest starting point. It sports an integrated code model that makes simple programs very
simple, which is, as you saw in chapter 5, not quite the case for the others. For bigger
problems, the difference rapidly gets insignificant, but for an easy start, let us use CUDA.

CUDA isofficially an acronym for “Compute Unified Device Architecture” (but see the
cover for my interpretation). It is developed by NVidiaand is only available on NVidia
boards. A G80 or better GPU architectureis required, and as you may expect, the newer
hardware, the newer CUDA version you can use. It is designed to hide the graphics heri-
tage and add control and flexibility.

Since this means that computing is taken place outside the domain of your CPU, we can
consider the following model for our computing:

* 1. Upload datato GPU
o 2. Execute kerndl
+ 3. Download result

The same holds for other platforms, like shader-based solutions and OpenCL However, a

major difference to other platformsisthat CUDA hasintegrated source, which means that
the source of host and kernel code can be in the same source file! This makes the most dif-
ference for small examples, and that is also why we start with it.

Since CPU and GPU code can reside in the same file, CUDA uses special modifiers to
identify kernel code. We will soon see how that 10oks.

Thus, CUDA is both an architecture (essentially the G80 architecture) and a C/C++ exten-
sion. The basic model is that we spawn alarge number of threads. These threads will be
ranin parallel, or rather virtually in parallel. They will not al be computed in paralel, they
will be processed in batches, as much as the GPU can handle at atime. Thisis exactly
what happens in graphics rendering as well; fragments and vertex computations not quite
executed in parallel, but in batches. The differenceisthat in CUDA, these batches are
more visible to you.

CUDA 35

Compared to a graphics program, a CUDA program looks much more like an ordinary C
program! Even though the hardware is made to process pixels, we don’'t see them any
more, just arrays of whatever data we want to work with.

6.1 Simple CUDA example

Here follows aworking, compileable example. Thisis as simple as Hello World!, but |
believe that another simple example doesn’t hurt, and it iseven alittle bit simpler since my
goal wasto make atruly minimal example. The central components remain the same.

#i ncl ude <stdio. h>

const int N= 16;
const int bl ocksize = 16;

__global
voi d sinple(float *c)

c[threadl dx. x] = threadl dx. x;

int main()

int i;

float *c = newfloat[N;

float *cd;

const int size = Nsizeof (float);

cudaMal | oc((voi d**) &cd, size);

di n8 di nBl ock(bl ocksize, 1);

din8 dinGid(1, 1);

si npl e<<<di "M@ i d, di nBl ock>>>(cd);

cudaMencpy(c, cd, size, cudaMenctpyDevi ceToHost);
cudaFree(cd);

for (i =0; i <N i++)
printf(“% “, c[i]);

printf(“\n”);

delete[] c;

printf(“done\n”);

return EXI T_SUCCESS

}

In the code, you can easily spot the computing kernel, athread identifier, allocation of
GPU memory, specification of 1 block and 16 threads, the kernel call, the readback of data
to CPU, and deallocations.

6.2 Modifiersfor code

Since we are mixing CPU and GPU code, we must instruct the compiler on what is what.
Three modifiers are built into CUDA to specify how code should be used:

__global___executes on the GPU, invoked from the CPU. Thisisthe entry point of the ker-
nel.

36 CUDA

__device__islocal to the GPU, not callable from the CPU. You use this for subroutines
and methods used by the main kernel, the __global .

__host__isCPU code. Thisis superfluous, since it is the default. You may use it for mak-
ing your code more readable.

The modifiers are illustrated in Figure 8.

CPU GPU
__device__ myDeviceFunc()
__host__ myHostFunc() /
\
\
—» __global__ myGlobalFunc()

FIGURE 8. CUDA code modifiers

6.3 Memory management

The memory management calls are similar to the callsin the C libraries, where we have
malloc(), calloc() and free(), but now they are calls done by the CPU to allocate and man-
age memory on the GPU.

cudaMal | oc(ptr, datasize)

This allocates a chunk of memory on the GPU.
cudaFree(ptr)

This frees the memory allocated by cudaMalloc.
cudaMenCpy(dest, src, datasize, arg)

This copies data between CPU and GPU, datasize bytes from src to dest. Thisis rather
peculiar, you must specify direction using these constants:

arg = cudaMenctpyDevi ceToHost

or cudaMentpyHost ToDevi ce

These constants may seem unnecessary, but the dest and src pointers can not be identified
as CPU or GPU memory so we need to keep track of that ourselves.

The easiest way to manage memory with CUDA,, if you are on afairly recent GPU
(CUDA capability 6) isto take advantage of unified memory. Thisallowsyou to accessthe
same memory from CPU and GPU. You must still alocate it with CUDA calls.

cudaMal | ocManaged(ptr, datasi ze)
For this kind of memory, no cudaMemCpy is needed, just pass the pointer.

To make matters even easier, you can declare avariable _managed _, which will then
have the same capability. We will discuss this further in chapter 9.6.

CUDA 37

6.4 Kernel execution

The kernel is executed by acall with very odd syntax:
Si npl e<<<gri ddi m bl ockdi m»>>(...)

That is KERNELNAM E<<<argument1, argument2>>>(some other arguments)

The arguments in the parenthesis are the argument sent to the kernel entry point, the
__global__. The oneswithin <<<>>> are something else, they specify the size of the com-
putation, and how it should be split into blocks and threads.

The griddim argument specifies the number of blocks, and the blockdim argument speci-
fies number of threads per block.

When working with blocks and threads in the kernel, you need to use the built-in variables
threadldx, blockldx, blockDim and gridDim, which tells the thread what thread numer it
has, in what block, and the dimensions of each (as specified above).

If you are used to OpenGL, you may note that no prefix is used for built-in variables, like
GLSL does. We will look further into blocks and threads in chapter 6.7.

6.5 Compiling Cuda

If you start from the CUDA devel opment kit, you will find that the CUDA examples are
compiled by gigantic makefiles. Don’t panic, they are just auto-generated makesfiles with
alot of unnecessary fluff. It al boils down to calling a single compiler, nvce.

nvcc is nvidia's CUDA compiler. On Unix systems you will usually finditin
/usr/ Il ocal / cuda/ bi n/ nvcc

C/CUDA program CUDA Compilation

code .cu behind the scene
v

@ »| CPU program

PTX code

Target binary
code

PTX to target

b

FIGURE 9. CUDA compilation

Source files are suffixed .cu. In order to compile asimple example like “simple” above, all
you need to do is a simple command-line like this:

38 CUDA

nvcc sinple.cu -o sinple

Of courseitisnot quite that smplefor all cases. Like with all compilers, there are options
for including libraries as well as other options, enabling/disabling language features etc.)

However, this simplicity hides a much more complex compilation than we are used to.
What happens behind the sceneisillustrated in Figure 9.

The nvce compiler doesn’t just compile a program, it splits the code into CPU and GPU
parts, sends the CPU part to GCC/G++, and compiles the other to something called PTX
code. This code is an intermediate code, which is compiled to your target GPU when exe-
cuted. Thistwo-step processis there to allow a compilation for any kind of (supported)
GPU, while still alowing each GPU to have the instruction set it needs.

6.5.1 Compiling CUDA for larger applications

It may seem like your CUDA-using application should be written entirely as .cu files.
Anyoneinvolved in alarge project that needs CUDA acceleration late in the process will
realize that that is out of the question. Fortunately, thisis not the situation, we do not need
to port the rest of the project.

For instance, if your program isaC or C++ program, you can compile it with gcc as usual,
and then link with the CUDA parts. You use nvcc for the .cu files and gcc for .c/.cpp files.
You can mix in any language that produces code that can be linked with C/C++. You may
do thefinal linking with gcc or g++. In any event, the final linking must include C++ runt-
ime libs.

This gives us one little hint: .cu files are really C++. Indeed, .cu allows usto use C++
classes, even in the kernel!

6.5.2 Example of multi-unit compilation

Thus, multi-unit compilation is quite easy. Here follows a simple example with one .c file
and one .cu file. They are called cudademokernel .cu and cudademo.c.

| compile them with

nvcc cudadenokernel . cu -o cudadenokernel .o -c

gcc -c cudadeno. ¢ -0 cudadeno. o -1/usr/l ocal / cuda/incl ude

Then | link them. To make it ssimple, | use g++ to include the C++ runtime.

g++ cudadeno. o cudadenokernel . 0 -0 cudadeno -L/usr/local /cuda/lib -1 cuda
-lcudart -Im

| aso included some more common linking options, like the location of the CUDA runt-
ime library and the math library. You will need them in just about any nontrivial example.

CUDA 39

6.5.3 Compiling for MacOSX

Compiling for MacOSX is abit different than Linux. Since you add most libraries as
frameworks, with the -framework option, which nvcc doesn’t have, this information must
be added as linker options.

Thus, a compilation line may look something like this:

{usr/local /cuda/ bi nfnvcc programcu -L /usr/local/cuda/lib -lcudart -0
program - Xl i nker -framework, G.UT, - f ramewor k, QpenG.

for aprogram “program.cu” that uses the frameworks GLUT and OpenGL.

6.6 Executing a Cuda program

CUDA programs are executed like any other program. From the command-line, the pro-
gram simpleislaunched with

.Isinple

Often, thisis all you need. However, this depends on your system, your OS as well as
CUDA version. On some Linux installations, you may need to set environment variableto
find Cudarenting.

export DYLD LI BRARY_PATH=/ usr/ | ocal / cuda/| i b: $DYLD LI BRARY _PATH

Thismay look alittle different between different systems and CUDA versions.

6.7 Computing with CUDA

Let us now look abit closer to the internal organization of CUDA. We have touched upon
blocks and threads. The overall processing organization can be summarized as follows:

e 1warp = 32threads

* 1kernel - 1grid

e 1grid - many blocks

e 1block-1SM

* 1 block - many threads

6.8 Warps

A warp isthe minimum number of data items/threads that will actually be processed in
paralel by a CUDA capable device. This number may vary with different GPUs but has
been surprisingly stable at 32.

We usually don’t care so much about warps but rather discuss threads and blocks, but
warps are useful to take into account when optimizing.

40 CUDA

6.9 Kernd

The kernel isthe GPU program. We usually consider one at atime, although that is not a
necessary limitation in modern GPUs. The kernel is mapped to a computing grid.

6.10 Grid, blocksand threads

A gridisthetop level of the computing structure. It consists of a number of blocks. Any
running block is mapped to one SM. However, there may be many more blocks than SMs.
It is recommended that you use more blocks than SM's, so they can be organized in a
queue, and processed as SMs get freed up.

Every block consists of a number of threads. It is recommended than the number of
threads in a block isamultiple of 32.

You should use many threads and many blocks! More than 200 blocks are recommended,
but it isvirtualy unlimited. The number of threads is more limited, but you should use
plenty of them. About 256 tends to be optimal.

Thus, grid, blocks and threads form a hierarcical model, illustrated in Figure 10.

Grid

Block 0,0

Block 1,0 Block 2,0 Block 3,0

(000000000
(000000000

(000000000
(000000000

(000000000
(000000000

(000000000
(000000000

Block 0,1

(000000000

(000000000

Block 1,1

(000000000
(000000000

Block 2,1

0000000000

Block 3,1

(000000000
(000000000

Block n,n

Thread 0,0 || Thread 1,0 || Thread 2,0

Thread 3,0

Thread 0,1||Thread 1,1 || Thread 2,1

Thread 3,1

Thread 0,2 || Thread 1,2 || Thread 2,2

Thread 3,2

(000000000

Thread 0,3||Thread 1,3 || Thread 2,3 || Thread 3,3

gridDim.x * gridDim.y blocks

—

FIGURE 10. Hierarchy of grid, blocks and threads

blockDim.x * blockDim.y threads

In the figure, it looks like the grids and blocks are organized in 2 dimensions. Thisis not
strictly true, but also not strictly false. It islegal to use up to three dimensions, but the
range in the third dimension is more limited than for the two first, so you will often just
use two.

6.11 Indexing data with thread/block IDs

In order to know which thread that is running, your kernel code should inspect the built-in
variables blockldx, blockDim and threadldx and compute a n index from them, indicating
what data it should process. Here is another simple kernel, which does thisin one dimen-
sion, supporting multi-block computing by calculating an index from both thread and
block numbers.

CUDA 41

/1 Kernel that executes on the CUDA device
__global __ void square_array(float *a, int N

int idx = blockldx.x * blockD mx + threadl dx. x;
if (idx<N) a[idx] = a[idx] * a[idx];

The host part of this program looks like this:

/!l main routine that executes on the host
int main(int argc, char *argv[])

float *a h, *a d;// Pointer to host and devi ce arrays
const int N=10;// Nunber of elements in arrays
size t size = N* sizeof(float);
a h = (float *)mall oc(size);
cudaMal l oc((void **) & d, size); [/ Alocate array on device
/1l Initialize host array and copy it to CUDA device
for (int i=0; i<N i++) a h[i] = (float)i;
cudaMercpy(a_d, a h, size, cudaMentpyHost ToDevice);
/1 Do cal cul ati on on devi ce:
int block size = 4;
int n_blocks = N bl ock_size + (Nobl ock_size == 0 ? 0:1);
square_array <<< n_bl ocks, block_size >>> (a_d, N;
/!l Retrieve result fromdevice and store it in host array
cudaMercpy(a_h, a d, sizeof(float)*N cudaMentpyDevi ceToHost);
[/ Print results and cl eanup
for (int i=0; i<N i++) printf(“% %\n", i, a h[i]);
free(a_h); cudaFree(a_d);

}

Note that there is now avariable number of blocks. We may also note that the block sizeis
only four, which is much too small for agood computation.

The vital part here isthe index calculation, using the block and thread numbers. In this
case, we only use one dimension. For bigger problems, you primarily use two, X and Y.

6.12 Julia example

The Juliaset isafamily of fractals based on iterating of complex functions. It is, together
with the Mandelbrot, one of the most famous fractals. It was described in Volume 1, so
here | will only briefly citeits definition. It is created by iterating the function

Z =2+ L

where L isaconstant. Every pixel is scaled and defines the starting z, and the output isthe
number of iterations until z is outside a certain radius.

Thus, each thread will compute a single pixel. We should assume that the image can be at
least amillion pixels, possibly more. A million threads or more?Yes, and that is no prob-
lem at all for the GPU.

42 CUDA

Thisisabigger problem than before, processing anumber of iterationsfor each pixel inan
entire image. Addressing cal culation should be done in 2D. Not only do we avoid running
out of allowed range for the X coordinate, it is also very convenient since each pixel
comesin 2D.

The problem requires considerable computations for every pixel. However, each computa-
tion isindependent, which makes this trivial to implement in parallel, and we can easily
get full performance out of the GPU. We say that the problem is embarrassingly parallel.
Not only is the problem easy to implement in parallel, the amount of computations for
each thread also means that the problem is not memory limited.

Furthermore, the problem is somewhat tricky when performed with a small number of
threads, on a multi-core CPU. In that case, it isimportant to do proper load balancing to
utilize each core optimally. On the GPU, however, this problem is must smaller. The mas-
sive parallelism makes the problem so fine-grained that it practically balancesitself. There
isacertain waste in areas where deep iterations are processed together (in the same warp -
more about that later) with areas that diverge quickly, but for most of the fractal, we can
finish entire warps quickly and spend more time on the expensive parts automatically.

FIGURE 11. The Juliafractal, rendered in real time

The result is shown in Figure 11. We can hardly wish for anicer problem for showing off
the computational power of the GPU!

For this demo, we use a ssimple OpenGL output. Thiswill waste some performancein
passing data back and forth, but we will still get amazing performance. See further
chapter 15.2.

I will only include the kernel and the julia() subroutine here. The kernel calls the function
julia() which performs the calculation. Notice how the _device modifier isused to
identify GPU code.

_device__ int julia(int x, int y, float r, float im

CUDA 43

const float scale = 1.5;
float jx = scale * (float) M X
float jy = scale * (float) M y

cuConpl ex c(r, im;
cuConpl ex a(jx, jy);

int i =0;
for (i=0; i<200; i++)
{
a=-a®*a-+c;
i f (a.magni tude2() > 1000)
return i;

}

return i;

}

__global _ void kernel (unsigned char *ptr, float r, float in

/1 map frombl ockldx to pixel position
int x = blockldx.x * blockDmx + threadl dx. x;
int y = blockldx.y * blockD my + threadl dx.y;

int offset =x +y * DM

/1 now cal cul ate the value at that position
int juiavalue = julia(x, y, r, im);

--- calculate colors ---
ptr[offset*4 + 0] = red;

ptr[offset*4 + 0] = green;
ptr[offset*4 + 0] = bl ue;
ptr{offset*4 + 3] = 255;

}

We conclude that the Julia demo uses many blocks as well as many treads in each block.
This distribution should be made in away that makes sure all hardware isin use as much
as possible. We a so see an index calculation by thread and block. We have made it to the
first example that makes significant computations with large data output.

Let us also draw some conclusions about indexing: Every thread does its own calculation
for indexing memory! This may seem wasteful but this part of code is expected so the
GPU can optimize it well. We use blockldx, blockDim, threadldx in 1, 2 or 3 dimensions,
with 2 dimensions being the typical choice.

44 CUDA

7. Memory access

The problem of memory accessisvital in GPU computing. Memory accessis all too often
the bottleneck of a parallel computation, so we need to do what we can to handle it. There
are several memory types and memory access paths in a GPU, more than you may expect.

In this chapter, we will mainly deal with global and shared memory. A later chapter will
discuss more memory access, including the important topic of coalescing.

GPU (Grid)
Block 0,0 Block 0,1
Shared memory Shared memory
A A A A On-chip
Registers Registers Registers Registers memory
] \ 4 $] A 4 $
Thread 0,0 | | Thread 0,1 Thread 0,0 | | Thread 0,1
) 3) [
Local Local Local Local
memory memory memory memory
VRAM
Global memory on-board
b memory
Accessible
by CPU Constant memory
Texture memory

FIGURE 12. Memory model for CUDA

We can identify the following memory types/access paths:

Global

Shared

Constant (read only)
Texture cache (read only)
Local

Registers

Memory access 45

When writing a CUDA program, you usually don’'t care so much about these to begin
with, but the difference is so big that you will soon want to take at least some steps to opti-
mize. Thefirst step isto learn about shared memory.

7.1 Global memory

Globa memory isplentiful, but you should expect it to be slow, much slower than most of
the system. A global memory access has a whopping 400-600 cycles latency! The band-
width is very good but the response time for a single access is not asimpressive,

Dueto thislatency, it often paysto use shared memory fast temporary storage, as akind of
“manual cache”. You should also make sure global memory access is ordered properly,
with coalescing for the memory accesses! That means continuous addresses, aligned on a
power of 2 boundary, addressed in order of thread numbers... See chapter 9.1.

7.2 Shared memory

Shared memory isasmall memory bank, local to each SM, and thereby to each block. The
amount of datais not extremely small, but with something like 48k-96k per block in a
modern GPU, it clearly isn’'t abig data buffer but rather a small buffer for temporary use.
But this use isimportant!

This memory isroughly 10 times faster to access than global memory. Let us consider the
case where the global memory has alatency of 440 cycles (actual numbers from the Tesla
K20/Kepler GPU) and the shared memory 48 cycles (same GPU). This means that if you
need to access a certain dataitem 8 times, if you do it directly in global memory, it will
take 3520 cycles, but if we read the item to shared memory, it will only take 824 cycles!

Thisis disregarding cache and queuing effects in the GPU, so the number is not exact, but
it can give you arough estimate of the expected effect.

In CUDA, shared memory isdeclared _shared
__shared__ float a[SOMESI ZE];

In OpenCL, shared memory is called local memory and isdeclared __local:
__local float a[SOMESI ZE];

In OpenGL compute shaders, shared memory is declared shared:
shared float a[SQVESI ZE];

7.3 Example: Matrix multiplication

The task of multiplying two large matricesis one of the most common examplesin GPU
computing. You will find it in the CUDA NVidiaprogramming guide [3], and for areason.
It gives us a pure and (relatively) simple case where shared memory matters alot.

46 Memory access

To multiply two N* N matrices, every item will have to be accessed N times! A naive

implementation uses 2N global memory accesses! How can we improve on that? The
computations are simple, so it islikely that we have a memory bound operation.

FIGURE 13. Matrix multiplication, output isthe dot product of a row tilesa column

7.3.1 Matrix multiplication on CPU

Thisisasimpletriple “for” loop. Thisis so wonderfully simple that you want to believe
that it is good, even optimal. Even on the CPU, we can do better (i.e. split into multiple
threads), but our goal isto make a massively parallel version.

void MatrixMul tCPU(fl oat *a, float *b, float *c, int theS ze)

{
int sum i, j, k;

[/ For every destination el ement
for(i =0; i <theS ze; i++)
for(j =0; j <theS ze; j++)

sum = 0;
// Sumalong arowinaand a columinb
for(k = 0; k < theS ze; k++)
sum= sum+ (a[i*theS ze + k]*b[k*theSize + j]);
c[i*theSize + j] = sum

7.3.2 Naive GPU version

Thetypical first try when porting a CPU program to the GPU is to replace outer loops by

thread indices. So, let us do just that.

__global __ void MatrixMiltNaive(float *a, float *b, float *c, int the-
Si ze)
{

int sum i, j, k;

bl ockl dx. x * bl ockD m x + threadl dx. X;
bl ockldx.y * bl ockDmy + threadl dx.y;

i
J
[/ For every destination el ement

sum = 0; _ _
// Sumalong arowin aand a colum inb

Memory access

47

for(k = 0; k < theSi ze; k++)
sum= sum+ (a[i*theS ze + k]*b[k*theS ze + |]);
c[i*theSize + j] = sum

}

L ooks good, right? Short and easy to understand. Yes, but every thread makes 2N global
memory accesses! This can be significantly reduced using shared memory.

7.3.3 Optimized GPU version

In order to optimize, we can first make this observation: If we want to compute a group of
output pixels, they will share some data. Every pixel in the same row will share the same
input row in the left input matrix, and the same for pixelsin the same column and the right
matrix. See Figure 14.

FIGURE 14. Strategy: For a patch of output, alimited number of rows and columns contribute

We can take advantage of this. What we need to do isto store data that will be used multi-
ple times in shared memory. Shared memory islocal to the SM, and thereby much faster.

However, assuming that the matrices can be very large, we must limit ourselvesto a part of
the input data that we know fits in shared memory. We can handle that by reading a part of
the input data at atime. See Figure 15.

Our strategy islikethis:

1) We split the input (A, B) and output (C) matrices into patches of equal size that will fit
in shared memory. This split isfor a specific output patch (C) that will be produced by one
single block.

2) Each thread in the block is now responsible for reading one single item of A and B.
Note that this does not have to me an item that the tread itself needs! For some problems,
it may be more convenient to have each thread reading a part of the data, but the general
principleisto split the reading to several threads.

3) Synchronize! All threadsin the block must have read its data before continuing.
4) Compute and accumul ate the dot product result for this part of the matrix only.

5) Synchronize again, continue with the next two input patches.

48 Memory access

Destinaton C A B
element for
thread \’. m m = = =
54
Destination | -
patch for All patches on the
thread same row in A are And all patches
needed to produce the = in the same
destination patch column of C
]

For every patch, the thread reads one
element matching the destination element

FIGURE 15. GPU implementation, using a sequence of input patches

For each patch that is processed, the whole (shaded) areais|oaded into shared memory,
and then we cal cul ate the contribution to the dot product that should end up in the output
item for the thread in question. See Figure 16.

=0,

\—\

FIGURE 16. Output is accumulated asthe dot product of sub-rows and sub-columns of parts of
the matrices

The optimized GPU version follows here.

__global _ void MatrixMiltQptinmized(float* A float* B, float* C int
t heS ze)

{
int i, j, k, b, ii, jj;
/1 _Gobal i ndex for thread

i bl ockl dx. x * bl ockD m x + threadl dx. X;
i bl ockldx.y * bl ockDmy + threadl dx.y;

float sum= 0.0;

[/ for all source patches

for (b =0; b <gridDmx; b++)

{
__shared__ float As[BLOCKSI ZE*BLOCKSI ZE] ;
__shared__ float Bs[BLOKSI ZE*BLOCKSI ZE] ;

/1 1ndex | ocked to patch
ii = b * blockD mx + threadl dx. x;

Memory access 49

jj = b * blockDmy + threadl dx.y;

As[threadl dx. y*bl ockDmx + threadldx.x] = Alii*theSize + j];
Bs[t hreadl dx. y*bl ockDim x + threadl dx.x] = B[i*theSize + jj];

__syncthreads(); // Synchronize to nake sure all data is | oaded

/1 Loop, performconputations in patch
for (k = 0; k < blockD mx; ++k)
sum += As[t hreadl dx. y*bl ockD m x + K]
* Bs[k*bl ockD mx + threadl dx. x];

__syncthreads(); // Synch so nobody starts next pass prematurely

}
di*theSize + j] = sum

We can find these parts of the code:

« Allocate shared memory

» Calculate indices both local to the patch and globally

» Copy one element to shared memory

» Loop over row/column in patch, compute, accumulate result for one element

» Write result to global memory

The result is something like 25-30 times faster on my computer! So what did | do? First, |
must use a decent number of threads and blocks, so the computation is reasonably bal-
anced. | use shared memory for temporary storage to reduce global memory access. Note

that all threads read one item, but use many! Finally, | synchronize after any stage where
the threads depend on each other.

Thereis, however, one weaknessin my measure: | compare with single-thread CPU. For a
fair comparison, | should split the CPU version to multiple cores.

7.4 Modified computing model

| suggested a simple computing model in chapter 6. Now we can expand that alittle bit, as
follows.

» Upload datato global GPU memory

» For anumber of parts, do:

e Upload partial datato shared memory

* Process partia data

» Write partial datato global memory

» Download result to host

This gives us a better view on the structure of atypical CUDA/GPU computing solution.

50 Memory access

8. Morelanguage features

In this chapter, | will discuss some features and details, mainly in CUDA.

8.1 Synchronization

As soon as you do something where one part of a computation depends on aresult from
another thread, you must synchronize!

In athread, local to agroup, thisis done with this call:
__synct hreads()

When using shared memory, thiswill typically work like this:
* Read to shared memory

e gyncthreads()

* Process shared memory

e synchthreads()

e Writeresult to global memory

This seems simple, even trivial. Do we need so synchronize when everybody are doing the
same thing anyway? However, since not all threads are running at the same time, we need
to wait sometimes. Synchronization simply means “wait until everybody are done with
this part”.

However, thisislocal to ablock only. We return to global synchronization in the next sec-
tion.

Although we have a SIMD/SIMT machine, note that deadlocks can still occur! CUDA
allowsloops, so if you set up alocking mechanism with semaphores, you can get stuck in
aloop that never unlocks. If you try to set up semaphores to handle dependencies between
different blocks, | can almost guarantee that you get deadlocks. More about that bel ow.

More language features 51

8.1.1 Global synchronization

Thereisabig limitation in synchronization with __synchthreads(): It can only be done
within a block! No synchronization is possible between blocks!

Why isthis anecessary limitation? That is because all blocks are not active at the same
time! We may have more blocks than SMs, so blocks are queued until an SM isfree! So
don’t even think about having one block waiting until another block has finished. If that
other block waits to start executing, you have a solid deadlock on your hands.

But what if my algorithm must synchronize globally? There are many such cases, where a
part of an algorithm depends on the result of totally different parts of the computation.

The answer issimple: You run one iteration in one kernel run, and then you finish that ker-
nel run. Once all blocks have finished, you can launch a new iteration.

And you need to wait until the previous kernel run finishes, otherwise you may have sev-
eral runs overlapping, getting conflicts over accessing the same data.

Thus, there are three synchronization calls, one for the kernel code and two for the host:

__synct hreads()
cudabDevi ceSynchroni ze()
cudaSt r eanBynchroni ze()

__syncthreads() is used inside a kernel, and affects the current block. Stop thread until all
threads in the block reach the location!

cudaDeviceSynchronize() is used from the host. Wait until all current kernelsfinish.

cudaStreamSynchronize() waits until all kernelsin a stream finish. We have not talked
about streams yet, though.

8.2 Error checking

So far, we have basically expected our programsto work flawlessly. Aswe all know, large
programs without bugs is a dream. We must check for errors.

Most CUDA function calls from the host return error codes. However, kernel launches do
not, so we check for errors there with separate calls. The main calls are simple: cudaGet-
LastError(), which gets the latest error and removes it from the list of errors, and cudaP-
eekL astError(), which looks at the latest error without removing it,

But note that many errors do not occur at the time of the function call. These are asynchro-
nous errors. They happen after the call is made. For those, you call cudaDeviceSynchro-
nize() and check its returned error code.

52 More language features

8.3 Query devices

You can't trust all devicesto have the same, or even similar, data. The number of SMsvary
alot, and, more importantly, the amount of shared memory, registers and maximum num-
ber of threadsin a block vary between different GPU generations. You may design for the
current boards and afew generations back (all the way back to G80 if you are ambitious),
but the boards arriving in the future may have totally different data. You can not assume
that everything grows.

What your program can do isto query CUDA for alist of features. Thisis made using cud-
aGetDeviceProperties().

Here follows two examples. Both are a bit small, few SMs, because both are portable
chips. Hereis the query result from my old laptop (9400M):

---- Information for GeForce 9400M - - --
Conpute capability: 1.1

Total global nenory (VRAM: 259712 kB
Total constant Mem 64 kB

Nunber of Streaming Miltiprocessors (SM: 2
Shared memper SM 16 kB

Regi sters per SM 8192

Threads in warp: 32

Max threads per block: 512

Max thread dinensions: (512, 512, 64)
Max grid dinensions: (65535, 65535, 1)

My newer laptop has a more modern GPU, not the absolutely latest but at |east a pretty
capable Kepler (GT 650M). Here isthe query result for that:

---- Information for GeForce GI 650M ----
Conpute capability: 3.0

Total gl obal nenory/ VRAM 523968 kB

Total constant Mem 64 kB

Nunber of Streaming Mil tiprocessors (SM: 2
Shared memper SM 48 kB

Regi sters per SM 65536

Threads in warp: 32

Max threads per block: 1024

Max thread dinensions: (1024, 1024, 64)

Max grid dinensions: (2147483647, 65535, 65535)

That is quite a bit of information. So, what isimportant to us?

They have different compute capability. This basically means what generation of GPU
architecture we have. The question for thisiswhether your program use features from a
later chip, so thistells whether your program has any chance at all to work on this chip.

The amount of shared memory is maybe the most important piece of information. Here
you can see whether your assumptions of available shared memory holds, if your program
will fit in the memory.

More language features 53

Then we have the maximum number of threads and the maximum dimensions. Again, you
can check whether we fit in the hardware.

We have the number of threadsin warp. Thisrarely change but some day it might. You will
often ignore this, unless you use warp-based tricks to avoid synchronizations.

The number of SMs basically gives you the lower bound for the number of blocks you
should use. If you try fewer than this, part of the GPU will idle.

8.4 Compute capability

Let uslook more closely at the compute capability (CC). Thisis essentially a CUDA/
architecture version number. Hereisalist of compute capabilities:

e 1.0: Origina release.

» 1.1: Mapped memory, atomic operations.

» 1.3: Double support.

o 2.0: Fermi.

* 3.0: Kepler.

* 5.0: Maxwell.

* 6.0: Pascal.

For full details see the CUDA C programming guide [3], the compute capability appendix
late in the document. Here, let me cite some details of interest.

Compute capabilities 1.0 to 1.3 are the G80/Tesla architecture. It is now being phased out,
so starting with CUDA 7.0 it is no longer supported.

Atomic functions were enhanced with many new featuresin CC 2.0. See chapter 9.3.
Unified (managed) memory was introduced with CC 3.0. See chapter 9.6.

Half-precision floating-point operations were introduced with CC 5.3. Thisis a somewhat
surprising move, since half-precision floating point has been in the GPUs for along time.

Maximum dimension of blocksin x-dimension was 64k up to CC 2.x, then it was
increased to 23%-1.

S0, should you care about Compute capability? While learning CUDA, | say not so much.
Stick to the basics, it works everywhere. But if you write professional CUDA code, that is
adifferent situation. You need to optimize more, and then you may get dependent on new
features.

54 More language features

8.5 Timing and profiling

Since GPU computing is all about performance, we must be able to measure the effect of
what we do. There are afew ways to do this.

Concerning timing, | could say that there are two ways of timing GPU programs. You can
use a CPU timer, or built in events/timing functionality.

85.1 CPU timers

An easy timing method that | find pretty reliable is to use the built-in timers of the OS.
Although it can not deliver the same precision as calls built into the computation frame-
work, it makes it possible to use the same measurement for multiple platforms. Under
UNIX-like systems | use the function gettimeofday() and calculate the time from that.
Thisis quite easy. Hereisafunction from my timing code “milli.c”:

doubl e Get Seconds()
{

struct tineval tv;

gettimeof day(& v, NUL);
if (l'hasStart)

hasStart = 1;
tineStart = tv;

}
return (double)(tv.tv_usec - timeStart.tv_usec) / 1000000.0 + (dou-
ble)(tv.tv_sec - timeStart.tv_sec);

The important part is the calculation of time, in this case the difference from one time to
another. There isanother call, ResetMilli, which simply stores the current time in the time-
Start variable.

To get correct timing with this call, we must synchronize properly! Synchronizing after
computation is necessary. If you had other computations running before the one you wish
to time, you may also need to synchronize before measuring. Thus, the usage may 1ook
likethis:

cudaThr eadSynchr oni ze() ;

ResetM I 1i ();

ny_ker nel <<<di nxi d, di nBl ock>>>(argunents);

cudabDevi ceSynchroni ze();
t = Get Seconds();

The first synchronization may be skipped if no other computation is running, or if you
synchronized after the last.

8.5.2 CUDA Events

CUDA eventsis maybe not exactly what you expect. They are for two things. Knowing
that atask has completed, and timing computations. The advantage over CPU timing is

More language features 55

quite clear; CUDA events work inside the CUDA framework, closer to the computation,
and istherefore likely to be more exact.

Since CUDA runs asynchronously, you need to synchronize. When using CPU, you
should synchronize both at start and finish, while for CUDA events, you only need that at
the end.

The CUDA Events API contains the following calls:
cudaEventCreate(): initialize an event variable

cudaEventRecord(): place a marker in the queue
cudaEventSynchronize(): wait until all markers have received values
cudaEventElapsedTime(): get the time difference between two events
cudaEventDestroy(): Dispose an event variable.

That is about it. The usage |ooks something like this:

cudaEvent _t start, stop;

cudaEvent Create(&start);

cudaEvent Or eat e(&st op) ;

cudaEvent Record(start);

ny_ker nel <<<di nxi d, di nBl ock>>>(argunents);
cudaEvent Record(stop);

cudaDevi ceSynchroni ze() ;

cudaEvent Synchroni ze(stop);

float mlliseconds = 0O;

cudaEvent El apsedTi me(&m | |iseconds, start, stop);

The API is dlightly more complex than the CPU timing, but if timing CUDA isall you
want to do (that is, not comparing to other platforms), CUDA events are recommended.

8.6 CUDA streamsand overlapping data transfers

CUDA processes commands in streams. Our basic examples only use the default stream,
which makes the stream concept invisible to us. However, we can create additional
streams. An important reason to do thisis to optimize data transfers. This section is based
on material by Harris[26].

Each stream hasits own CUDA Events, so we can use them to determine when a computa-
tion in a specific stream has finished.

We must here introduce a new memory mode, even though we are not in amemory access
chapter: It is called pinned memory or page-locked memory. We shall see how it can be
used to boost performance for memory transfers.

56 More language features

So far we have used malloc() and cudaMalloc(). Pinned memory is alocated with a new
call: cudaHostAlloc(). This allocates a page-locked memory. This meansthat it has afixed
physical location! This sound practical, but page-locked memory is alimited resource.

For non-pinned memory, CUDA copiesit internally to page-locked memory, then DMA to
GPU. Transfer time goes up! By using pinned memory from the start, we can optimize this
abit.

However, the most interesting application is probably for overlapping computations.
Then, itisno longer just adlight speedup of datatransfer, but may provide a significant
boost.

We need a new data copying call: cudaMemCpyAsynch(). This can copy locked memory
asynchronously.

8.6.1 Multiplestreams

CUDA commands are placed in a queue, a stream. These are the same queues as you can
post CUDA events to. We usually only use the default CUDA stream.

Multiple CUDA streams can be used to overlap work - especialy computing and data
transfers!

With single stream computations, the kernel can not run until the datais transferred. See
Figure 17. For this example, 2/3 data transfer, 1/3 computation

Copy data to GPU

Run kernel

Copy result to CPU

Copy data to GPU

Run kernel

Copy result to CPU

FIGURE 17. Single stream computation

With more than one stream active, we can gain flexibility. While one stream runs a kernel,
the other stream performs data copying. See Figure 18. The amount of time free for com-
puting goes up. In the figures, the dual stream example has the kernels running 1/2 of the
timeinstead of 1/3, a most respectable speedup.

More language features 57

Copy data to GPU

Run kernel

Copy data to GPU

Copy result to CPU

Run kernel

Copy data to GPU

Run kernel

Copy result to CPU

Copy data to GPU

Copy result to CPU

Run kernel

FIGURE 18. Dual stream computation

Copy result to CPU

However, not all devices support this. Asynchronous data copying as well as concurrent
execution is not guaranteed. We should make a device query to make sure that it does, and
of not, switch to the ssmpler, less efficient solutions. Try the following queries:

CU_DEVICE_ATTRIBUTE_ASYNCH_ENGINE_COUNT: Can we copy memory

asynch?

CU_DEVICE_ATTRIBUTE_CONCURRENT_KERNELS: Can we run multiple kernels?

58

More language features

9. Memory accesspart 2

Earlier, we have discussed primary memory and shared memory. However, there are afew
more concepts, memory types and memory access types left to cover. | will start with the
most vital concept, coalescing, and continue with faster access of shared memory as well

as texture and constant memory.

9.1 Coalescing

Coalescing is atechnique for optimizing the caching of the GPU when doing global mem-
ory accesses. | would claim that the manual ([3], section G.3.2) is quite confusing and
incomplete on this matter so | will try to sort it out to something that we can somewhat
easier apply on our code.

You are advised always to access global memory in order since nearby accesses will help
caching. This should be made in order of thread numbers. Thus, note that the “accessin
order” does not refer to consecutive accesses by one thread, but simultaneous accesses by
neighbor threads!

“In order” does not mean that it has to be strictly in order, but nearby. More precisely,
memory accesses by threads in the same warp will be organized to fewer memory
accesses. Thisis made in chunks of 128 bytes, the size of a cacheline.

Maybe the best example of coalesced versus non-coalesced access is the access of a2D
array (e.g. image or matrix). When reading arow at atime, your accesses will typically be
coalesced, but if you work column-wise, you will get ajump in memory of awhole row at
atime. Also, note that if you are reading an RGBA image one channel at atime, so each
thread first reads R, then G, then B and finally A, with four separate accesses, this also will
not help coalescing.

As noted by Harrig[15], making jumps in memory, strided memory access, will rapidly
reduce memory bandwidth. Harris reports top performance when accessing itemsthat are
immediately following each other, with performance rapidly dropping until coalescing
effects disappear completely with a stride of around 12 to 16.

Memory access part 2 59

Good! Bad!

FIGURE 19. Coalesced memory access for matrices.

So line up your memory access. Pure memory transfers can be 10x faster by taking advan-
tage of memory coalescing. | end this discussion with a citation from the documentation:

“Perhaps the single most important performance consideration... is coalescing of global
memory accesses.” (CUDA C Best Practices Guide 2018) [16]

9.1.1 Matrix transpose example

A good, and common, example of the importance of coalescing isthe problem of trans-
posing alarge matrix. It isavery simple problem, just flip an array of data over the diago-
nal. There are only memory accesses, no computations at al. A naive implementation
would look like this:

__global __ void transpose_nai ve(float *odata, float* idata, int width,
i nt hei ght)
{

unsi gned i nt xI ndex
unsi gned i nt yl ndex

bl ockD mx * bl ockl dx. x + threadl dx. X;
bl ockDmy * bl ockldx.y + threadl dx.y;

if (xIndex < wi dth & ylndex < height)

{
unsigned int index_in = xlndex + w dth * ylndex;
unsi gned int index_out = ylndex + height * xlndex;
odat a[i ndex_out] = idata[index_in];

}

}

How can this be bad? The problem is the access pattern, it is not coalesced. It isreading
row by row, that is coalesced, but it iswriting column by column, asin Figure 20.

Thetrick to get thisright is, again, to use shared memory. We read coal esced from shared
memory, write to shared memory in any order. (Thisis not strictly true, see chapter 9.2,
but for many cases it will work out fine.) Then we read from shared memory in an order
that is transposed to when we wrote to it, and write coalesced to global memory.

60 Memory access part 2

FIGURE 20. Transposing means swapping rows for columns, causing non-coalesced access

Furthermore, for large matrices we must split the matrix into patches so it fitsin shared
memory. This gives us a three-step solution asin Figure 21.

= - =

FIGURE 21. Faster transpose by temporarily going through shared memory

Better CUDA matrix transpose kernel

__global __ void transpose(float *odata, float *idata, int width, int
hei ght)

_ sShared__ float bl ock[BLOCK D M [BLOCK DI Mr1];

[/ read the natrix tile into shared nenory

unsi gned int xlndex = bl ockldx.x * BLOCK DM + threadl dx. x;
unsi gned int ylndex = bl ockldx.y * BLOCK DI M + threadl dx.y;
if((xIndex < width) & (ylndex < height))

{

unsigned int index_in = ylndex * width + xlndex;
bl ock[t hreadl dx. y][threadl dx.x] = idata[index_in];

}

__synct hreads();

[/ wite the transposed natrix tile to global nenory
xI ndex = bl ockldx.y * BLOOK DI M + threadl dx. x;

yl ndex = bl ockldx.x * BLOCK DI M + threadl dx.y;

i f((xIndex < height) &% (ylndex < width))

unsi gned int index_out = ylndex * height + xIndex;
odat a[i ndex_out] = bl ock[threadl dx. x][threadl dx.y];

}
}

Memory access part 2

61

Coalescing rules of thumb
e The datablock should start on a multiple of 64
* It should be accessed in order (by thread number) or closeto it

» Itisalowed to have threads skipping their item but if you skip alot of data, like every
other item, you lose bandwidth

» Datashould bein blocks of 4, 8 or 16 bytes

9.2 Optimizing shared memory

Shared memory isfast, but even there we can optimize the access. The memory is split
into multiple memory banks, 32 ones for Compute Capability 2 to recent (6).

Shared memory accessis fastest if you access different banks with each thread. This will
often happen effortlessly, but you should be aware of the problem when optimizing.

The memory banks are interleaved in 32 bit chunks. With Kepler (Compute Capability 3)
it was configureable, but this feature did not make avery big difference so it went away
later. Thus, if you are addressing in 32-bit steps, you will get the best performance, but the
most important thing is not to have a stride of 128 bytes (32 bits = 4 bytes, 32 banks),
which would make all accesses go to the same memory bank, linearizing the accesses.

This called a bank conflict. The number of threads that access the same memory bank
simultaneously is called the degree of bank conflict, which is how far the memory
accesses will me linearized.

Some algorithms, like FFT, are very likely to have bank conflicts if they are implemented
in astraight forward manner. Bank conflicts are avoided by introducing an offset, a pad-
ding, that changes the memory access pattern. Thiswill add some arithmetic operationsto
the memory access, but the gain in memory access performance will easily be bigger.

This means that shared memory, like global memory, benefits from accessing datain order
of thread numbers asin Figure 22, but for a different reason.

BankO Bank1l Bank2 Bank3 Bank4 Bank5 Bank6 Bank?7
o

Address
space

FIGURE 22. Memory banksin shared memory

9.3 Atomic functions

Atomic functions, or atomics, are operations that are guaranteed to be racing-free, so any
memory accesses caused by it can not be intercepted by some other operation by another

62 Memory access part 2

thread. Typically they do aread-modify-write as asingle operation. Thisis very useful for
guaranteeing a correct result in some parallel algorithms.

GPUs support atomics. Here follows afairly complete list of available functions:

atomicAdd(), atomicSuby(), atomicExch(), atomicMin(), atomicMax(), atomiclnc(), atom-
icDec(), atomicCAS(), atomicAnd(), atomicOr(), atomicXor()

Already a G80, the very first CUDA capable hardware, had atomics, but some of the func-
tions come on 64-bit versions that are only supported on later architectures (Compute
Capabililty3.5 and up).

Although some algorithms are very easy to rewrite using atomics, they should not be over-
used. For example, the rank sort algorithm (chapter 17.2) is very easy to write using atom-
ics, but since that serializes the operations, makes al operations queue up, waiting for

each other, performance will be poor. Thus, atomics can perform well when the number of
conflicts is expected to be low, but not when all threads are fighting for the same memory.

Let ustake two examples of usage of atomic functions. First one that works well: Histo-
grams. Thisis simple method for gathering statistics about a set of data. Much dataiin, lit-
tle out. It iscommon in image processing. A sequential implementation looks like this.

for all elements i in a[]
h[a[i]] + 1

given an input array a and an output h, the histogram. For example, the histogram of the
Lennatest image is shown in Figure 23.

h N

Gray: 128 White: 255

FIGURE 23. The Lennatest image with histogram

If you try to parallellize this operation, multiple threads will write smultaneously at the
same item, you will get racing. Non-atomic operations will read h[d[i]], add 1, and write
back. See Figure 24.

Memory access part 2 63

Read 4 10 > Read Read <+ 10
Add 1 Add 1 Add 1 10 Read
Write back = ? <« Write back | | Write back [11 Add 1
11 |« Write back

Unknown write order Write unsynchronized values in sequence

FIGURE 24. Memory access conflictsin the histogram example.

Thisis quite conveniently solved with atomics. They can read, modify and write in one
operation which is then guaranteed not to be subject to racing

Thisisapretty good solution for histograms, since any non-trivial data set will have vary-
ing values and therefore not cause conflicts very often. Thus, the atomics are not likely to
linearize accesses very often, and will guarantee a correct result for alow cost.

However, there are also agorithms where atomics will cost more than the gain. Our next
exampleisvery bad for atomics:

for all elements i in a]
maxVal ue = max(maxVal ue, afi])

Itisavery simple agorithm, and it will work with atomics. However, isit fast in its paral-
lel version? No, it will be slower than a sequential implementation! The problem isthat all
threads write to the same memory element. Thus, we should not use atomics for this prob-
lem. Solution: Use reduction instead! (See chapter 15.)

To conclude, atomic operations simplify some operations, but it serializes conflicting
operations, so it can hurt performance! Use them wisely.

9.4 Constant memory

Constant memory isn’t astrivial and boring asit sounds. The big point with it is somewhat
similar to coalescing; it enables broadcasting over several threads. However, while coa-
lescing detects nearby accesses to make fewer global memory reads, constant memory
optimizes the case where many threads read the same data.

Asthe name says, it isread-only, that isfor the kernels. More specifically, it is data that
does not change during a kernel execution. You mark it with the __constant__ modifier.
You use for input data, obviously, so it iswritable from the CPU.

64 Memory access part 2

GPU (Grid)
Block 0,0 Block 0,1
Shared memory Shared memory
A A A A On-chip
Registers Registers Registers Registers memory
) h 4 $) h 4 $
Thread 0,0 | [Thread 0,1 Thread 0,0 | | Thread 0,1
] 3] $
Local Local Local Local
memory memory memory memory
VRAM
Global memory on-board
b memory
Accessible
by CPU (Constant memory)
Texture memory

FIGURE 25. Memory overview

Aswe can see in Figure 25 (variant of Figure 12), constant memory is“global” in the
sense that it doesn’t belong to any block. Its size is limited; we have seen numbers like
64k, plus an 8k cache per SM.

The biggest benefit of constant memory is the performance, the ability to broadcast data
when several threads read the same data. Thisis limited to a half warp, but one access
rather than 16 still matters.

Another advantage, which, however, has |ost some importance over time, is the fact that
no cudaM emcpy needed for constant memory! You just declareit __constant__, write
from the CPU and use it from the kernel. This was a great advantage before managed
memory arrived. With GPUS/CUDA installations that support managed memory, we have
one more path that has this advantage. See chapter 9.6.

S0, we get faster access when all threads are reading the same data at the same time. One
read can be broadcast to all nearby threads, same half-warp, that is 16 threads. But it does
not help if the threads are reading different datal

9.4.1 Ray-caster example

Let uslook at a case where constant memory matters: aray-caster! Ray-casting is basi-
cally thefirst step of aray tracer. (See Volume 1.) It does not support reflections and
refractions, but it castsray from the camerainto the scene. Thisisalessimpressing way to
render an image, but more suited for ademo. This simple ray-caster will inspect all parts
of the scene for every ray. Thisisnot agood way to write raycaster, and even less so aray-
tracer, but it creates a situation where al threads read the same data.

The example below is a simplified raycaster, with an arbitrary number of spheres (I use
100) and one checkered plane as floor.

Memory access part 2 65

This demo was inspired by ademo in “CUDA by example” [7] but is rewritten from
scratch to allow additional features, like the checkered plane and real-time camera move-
ment.

500 CUDA raycast

FIGURE 26. Raycaster demo

| can not justify printing the entire code here, but it is/will be available at computer-graph-
ics.se. | am skipping over the vec3 struct and utility functions like dot products.

In the raycaster, every thread renders one pixel. Every thread loops through all spheres,
and finds the closest with intersection.

The scene is described by an array t of spheres defined as follows:

#def i ne TH NGOOUNT 100
typedef struct Thing // Spheres

float x, y, z, radius;
float r, g, b;
} Thing;

"{I’hi ng t[TH NGCOUNT] =

[l X, y, z, radius, r, g, b
{0.78,-6. 15, -16. 86, 1. 14, 0. 60, 0. 86, 0. 54},
{5.56,-5.24,-13.47,0.95,0. 38, 0. 44, 0. 30},

{-7.29,-7.00,-19. 30, 0. 79, 0. 08, 0. 47, 0. 52},
{6.12,-3.88,-11. 14, 0. 88, 0. 41, 0. 96, 0. 17},
i

For the ray-casting, the function for calculating the intersection with asphereisvital. This
Is straight out of [1].

__device__ float intersectSphere(vec3 p, vec3 v, vec3 c, float radius)

{

66 Memory access part 2

vec3 a = c-p
float av = dot(a, v);
float arg = sqrt(av*av - dot(a, a) + radius * radius);
if (arg > 0)
return av - arg;
el se
return -1,

}

The function render() is a straight-forward raycaster. Since we only have one plane, it is
hard-coded. Note that the array t appears here under the name dev_things.

__device__ vec3 render(Thing *dev_things, int x, int y, float gx, float
ay)

{

const float scale = 0.7;

float jx = scale * (float)(DM2 - x)/(DM?2);
float jy = scale * (float)(DM2 - y)/(DM?2);
vec3 ray = nornalize(vec3(jx, jy, -1));

float m

fl oat bestm

vec3 color = vec3(0,0,0.5);
vec3 p = vec3d (gx, gy ,0);
/1 Intersect spheres
best m = 10000;
for (int i =0; i < TH NGOOUNT; i++)
{

vec3 ¢ = vec3(dev_things[i].x, dev_things[i].y, dev_things[i].z);
m = i nt ersect Sphere(p, ray, ¢, dev_things[i].radius);
if (m>0 & m< bestn)

bestm=m

vec3 intersection = p +ray * m

vec3 n = nornalize(intersection - c¢);

color =vec3(dev_things[i].r, dev_things[i].g, dev_things[i].Db)
* abs(n. z);

}
/1 Checkered pl ane

{
vec3 n = vec3(0,1,0);
float d = -1,
m= - (dot(n, p) + d)/dot(n, ray);
if (m< bestm&& m> 0)
vec3d intersection = p +ray * m
[/ Find pattern
int dx = (int)(intersection.x * 5);
int dz = (int)(intersection.z * 5);
int bw= abs(dx + dz + 1000) % 2;
color = vec3(bw, bw bw;
}
}

return color;

Memory access part 2 67

The kernel entry point, kernel(), just calculates global thread numbers and passes that as
well as dev_thingsto render(). (We also pass gx and gy, which refer to the mouse position
that controls the camera.)

__global __ void kernel (unsigned char *ptr, Thing *dev_things, float gx,
float gy)
{

/1 map frombl ockldx to pixel position

int x = threadldx.x + bl ockldx.x * bl ockD m x;
int y =threadldx.y + blockldx.y * bl ockD my;
int offset = x +y * gridbmx * bl ockD m x;

/1 Use gx, gy for light source?

/1 now cal cul ate the value at that position
vec3 color = render(dev_things, X, y, gx, gy);
ptr[offset*4 + Q] 255 * col or. x;

ptr[offset*4 + 1] 255 * color.y;

ptr[offset*4 + 2] 255 * color. z;

ptr[offset*4 + 3] 255;

}
We skip most of the main program, but note that acudaMalloc() and cudaMemCpy is used
to passthe array t to the GPU.

err = cudaMal | oc((voi d**)&Jev_t hings, TH NGCOUNT*si zeof (Thing));
cudaMercpy(dev_things, t, TH NGOOUNT*si zeof (Thi ng), cudaMentpyHost -
ToDevi ce);

ker nel <<<gri ds, t hreads>>>(dev_bi tmap, dev_things, gX gY);
Therest issimilar to the Julia demo.
On my 650M, thisrunsin around 38 ms for rendering a frame.

This was the straight forward version with the array t in global memory. Note that the
array isread in the same order by all threads. Thisisimportant and is why constant mem-
ory can help. (Shared memory could also help but that is another matter.)

With constant memory, the array t is now declared __constant__

__constant _ Thing t[TH NGOOUNT]

[l x, vy, z, radius, g, b
{0.78, - 615 1686114060086054}
{5.56,-5.24,-13.47,0.95,0. 38, 0. 44, 0. 30},

{6.12,-3.88,-11. 14, 0. 88, 0. 41, 0. 96, 0. 17},
s
In the function render(), we no longer have dev_things but refer directly tot:

/'l Intersect spheres
best m = 10000;
for (int i =0; i < TH NGCOUNT; i++)

vec3 ¢ = vec3(t[i].x, t[i].y, t[i].2);

68 Memory access part 2

m = i ntersect Sphere(p, ray, ¢, t[i].radius);
if (m>0 & m< bestn)
{

bestm=m
vec3 intersection = p +ray * m
vec3 n = nornalize(intersection - c);
color = vec3(t[i].r, t[i].g, t[i].b) * abs(n.z);
}
}

In the main program, t is no longer copies to dev_things.
ker nel <<<gri ds, t hreads>>>(dev_bitmap, gX gVY);

This version produces the same results, but only takes 30 ms on my 650M. Thus, the per-
formance improved, for something that simplified the code!

We conclude that constant memory gives relatively fast memory access, but only for the
case when all threads (or groups of threads) read the same memory simultaneously. It is
not something we use for everything.

9.5 Texture memory/ Texture units

Texture memory isakind of memory/memory access that clearly shows the graphics heri-
tage. It isalso relatively complicated to use. We can see it among the global areasin
Figure 25. The texture memory itself is nothing but VRAM, so what is the point with it?
The answer isthat it provides afew extrafeatures that may help you to optimize your
computations. These features are provided for graphics but by making texture memory
available to GPU computing platforms, we can use it for other purposes.

Texture memory is read-only, although writable using “surface objects’. The memory has
its own cache, which can make it fast if the data access patterns are good.

More importantly, the texture access goes though texture units that provide texture filter-
ing, that is linear interpolation between data items, and automatic edge handling.

You can expect it to be especially good for handling 4 floats at atime (float4), sincethat is
what is used for apixel. Still, CUDA hides this and we can see the texture as an array of
floats.

9.5.1 Texture memory for graphics

In graphics, texture datais, as the name says, mostly for rendering textures, but even in
graphicsit is often used for other purposes like bump mapping, gloss mapping, noise data
and more.

Much of the power of texture memory comes from the features needed by graphics. The
border checks (clamp/repeat) enable repeated textures as well as decals, and the interpola-
tionisvital to limit aliasing effects when scaling and rotating images (asin Figure 27).

Memory access part 2 69

That means that an access in non-integer coordinates will access 4 neighbor pixels (or
more when using mip-mapping, see[1]).

FIGURE 27. Texture accessin graphics
These features give texture memory considerable power compared to the normal memory
access. Let me stress the most remarkabl e features:
» Ability to access on non-integer addresses, with hardware interpolation.
» Automatic border checks with options like clamp and repeat.

These features go far beyond images and it would be bad to ignore them.

9.5.2 Using texturememory in CUDA

The CUDA C Programming Guide describes to APIs for using texture memory, the “ Tex-
ture Object API” and the “ Texture Reference API”.

Here follows an example of using texture memory, using the “ Texture Object API”. It is
based on sample code by NVidia, but stripped down to a minimum. | generate an array of
alternating 1's and 0's, and zoom that data to 4x more, thereby using the interpolation fea-
ture.

Aswe will see, the texture APl in CUDA is not exactly intuitive. | find it easier to use tex-
tures through OpenGL.

First, we must have a texture reference:
texture<float, 2, cudaReadMbdeH enent Type> tex;

Hereisthe kernel. It will scale the input to the output.

__global __ void kernel (fl oat* out put,
int inwidth, int inheight, int width, int height)
{

70 Memory access part 2

unsi gned int x = bl ockldx.x * bl ockD mx + threadl dx. x;
unsigned int y = blockldx.y * blockD my + threadl dx.y;
output[y * width + x] = tex2D(tex, (float)x*inw dth/w dth+0. 5,
(fl oat)y*i nhei ght/hei ght +0. 5) ;
}

Here | define the size of the input and output.

#define inwidth 16
#defi ne i nhei ght 16
#define insize (inw dth*inhei ght*sizeof (float))

#define width 64
#define height 64
#define size (w dth*hei ght*si zeof (fl oat))

float indata[inw dth * inheight];

The host code should also include some error checks but they are removed to increase
readability.

/! Host code
int main()

/1 Input is a sequence of 0 and 1.
for (int i =0; i <inwdth * inheight; i++)
indata[i] = (float)(i & 1);

/1 Alocate CUDA array in device nenory

cudaChannel For mat Desc channel Desc = cudaCr eat eChannel Desc(32, 0, O,
0, cudaChannel For mat Ki ndFl oat) ;

cudaArray *cuArray;

int err = cudaMal | ocArray(&cuArray, &channel Desc, inwi dth, inheight)

/1 Copy to device nenory sone data | ocated at address indata in host
nmenory

cudaMencpyToArray(cuArray, 0, O, indata, insize, cudaMentpyHost ToDe-
vi ce);

Here we set the texture parameters. Important! See below for alternative settings.

[l Set texture paraneters

t ex. addr essMode[0] = cudaAddr essModeW ap;

t ex. addr esshMde[1] = cudaAddr essMbdeW ap;

tex.filterMdde = cudaFi |t er ModeLi near ;

tex.nornalized = fal se; [/ access with unnornalized texture coor
di nat es

// Bind the array to the texture
cudaBi ndText ureToArray(tex, cuArray, channel Desc);

/1 Alocate device nenory for result
fl oat *devi ceout put = NULL;
cudahal I oc((void **) &devi ceout put, size);

/1 Host out put
float *hostoutput = (float *) nall oc(size);

/1 1nvoke kernel

Memory access part 2

71

di n8 di nBl ock(16, 16);
dinB dimxid((width + dinBlock.x - 1) / dinBl ock. x,
(height + dinBlock.y - 1) / dinBlock.y);
ker nel <<<di nx'i d, di nBl ock>>>(devi ceout put, inwidth, inheight,

wi dth, height);

cudaThr eadSynchroni ze();

// Get the ouput data.
err = cudaMercpy((void *)hostout put, (void *)deviceoutput, size

cudaMerncpyDevi ceToHost) ;

}

if (err 1=0)
printf("Copy back failed\n");

for (int i =0; i < 16; i++)
printf("%\n", hostoutput[i]);

[/ Free device nenory
cudaFr eeArray(cuArray);
cudaFr ee(devi ceout put) ;
free(host out put);

return O;

This program produces an output like this, which is a small sample of the actual resuilt:

| COOr 000000 OrOO0O!

-- texobjdeno starts ---
. 000000

. 250000

500000

750000

000000

750000

500000

250000

000000

250000

500000

750000

000000

. 750000

. 500000

. 250000

-- texobjdeno finished ---

Thus, it makes linear interpolation between each pair of 1 and 0.

We see that the example uses cudaMallocArray() and cudaMemcpyToArray to create the
texture. For the output, | use the standard buffers.

The texture is set up with the parameters for interpolation and clamp/repeat. We bind to
texture unit using cudaBindTextureToArray()

We read from data using tex2D(), with the additional freedom to skip border checks and
address between integer positions.

72

Memory access part 2

Being used to OpenGL, | am not very happy about the API. The accessis simple, just like
in OpenGL, but | find the setup to be more complicated.

9.5.3 Clamp and repeat

Texture access needs no boundary checks, and thisis supported by the hardware so you
get the checks for free! No access violations, you are always inside your buffer! The only
guestion is whether you want the access to clamp to edge or repeat.

Actually, CUDA gives as much as four edge behaviors, clamp, border, wrap and mirror.
cudaAddressM odeBorder

cudaA ddressM odeClamp

cudaAddressModeWrap

cudaAddressModeMirror

These constants are written into the texture description record, in the dressmaker field.
Note that the field stores three values, one for each coordinate axis.

ERROR|ERROR|ERROR|[ERROR 4 3 4 3 1 1 2 2
error| 1 | 2 |errOR 21112 |1 1{1] 2|2
ErRROR| 3 | 4 [erRROR 41343 313]| 4] 4
ERROR[ERROR|ERROR|ERROR 211121 3|13 |44

FIGURE 28. Texture memory access protectsyou from illegal access with repeat (middle) and
clamp (right).

9.5.4 Interpolation

Another interesting feature of texture access is interpolation. You are allowed to access
textures not only on integer coordinates, but on non-integer coordinates, between the data
entries! What happens then is that the data is interpolated with linear interpolation, as
much as trilinear interpolation, and this, too, is done in hardware!

This can be useful as computation trick when optimizing. One example when it can be
useful iswhen implementing filters, although only ones with positive weights like the low-
pass filters in chapter 18. Other applications include simulation of liquids.

Memory access part 2 73

Aa=|a-x| Ab=|b-x|
D>

‘ ‘ ‘ BAa + AAb

FIGURE 29. Automatic linear inter polation by accessing between pixels

However, you need to check how good interpolation your GPU performs. It is meant for
interpolating between texels, avisual effect, and the presence of small errorsis not a prob-
lem then! Thus, you may find that some GPUs have precision. | have seen one that only
interpolated in 10 steps. That reduced its usefulness significantly.

9.6 Managed/unified memory

Managed/unified memory was briefly introduced before, in chapter 5. Let me describe in
more details how it works. It does not take much detail though. From the programmer’s
side, it ispurely asimplification.

What managed memory gives usis a shared memory space, where CPU and GPU can
work in the same memory without any explicit memory transfers. No more cudaM emcpy
cals!

In order to enable this, instead of allocating memory with cudaMalloc() (on the GPU) or
malloc() (on the CPU) you use cudaMallocManaged(). You should also declare your
pointers __managed__.

For small examples, like Hello World!, this simplifies the trivial into something close to
ridiculous. However, for larger, moreinteresting problems, the difference quickly becomes
less important. So, let usrevisit Hello World!

#i ncl ude <stdi o. h>

const int N = 16;
const int bl ocksize = 16;

__global __
void hello(char *a, int *b)

a[threadl dx. x] += b[threadl dx. x];
__managed___ char a[N] = "Hello \O\O\0\0\ 0\ O";
__managed__ int b[N = {15, 10, 6, O, -11, 1, 0,0,0,0,0,0,0,0,O0, 0};
int main()

printf("9%", a);
di n8 di nBl ock(bl ocksize, 1);

74 Memory access part 2

dnB dimxid(1, 1);
hel | o<<<di nxi d, dinBl ock>>>(a, b);
cudabDevi ceSynchroni ze();
printf("%\n", a);
return EXI T_SUCCESS,

}

The small and simple was reduced to just a handful of lines! So, why don’'t we use this all
the time? Well, we are getting there but at the time of writing this, there are till active
platforms where it can not be used.

This simplification is not isolated to CUDA. OpenCL, for example, has arelated concept:
Zero Copy Memory. Memory is allocated with the modified
CL_MEM_ALLOC HOST PTR.

So, how about performance? Does it cost to use managed memory? The general answer
seems to be avague “maybe”, because hardware capabilities and implementations may
vary. However, it is notable that Intel claims that managed memory will always be faster!
[25] It seems your mileage can vary but the general message is not to shy way fromit.

Memory access part 2 75

76

Memory access part 2

10. OpenCL

Besides CUDA, the most famous GPU computing platform is probably OpenCL. OpenCL
stands for “ open compute language”. Like OpenGL, it is an open standard, and open spec-
ification, which means that anyone can make their own implementation. Also, like
OpenGL, it is managed by the Khronos Group.

OpenCL was released 2009. The motivation for it was clearly the lack of open alternatives
for GPU computing. CUDA and Direct Compute are both commercial systems limited to
the platforms that the vendors choose to support. A driving force behind OpenCL was
Apple Computer, but there are many providers, and many supported architectures.

From an idealistic perspective, we could say that the dream isan API for all architectures.
We can immediately realize that thisis a dream, one system can not be optimal for every-
body. Still, the list of supported architecturesis considerable. In includes, but is not lim-
ited to: GPUs (NVidia, AMD, Intel), Intel compatible CPUs (Intel, AMD), ARM, FPGA,
CELL, Intel Xeon Phi...

Who decides? Any company making its own OpenCL implementation! It is an open spec-
ification, so if you are missing a platform, feel free to support it. But that also means that
there is not one OpenCL library but several. This also means that some implementations
may be lagging behind, not getting updated with new features. Ironically, one such imple-
mentation isApple's, which is odd since they were a driving force behind the creation of
OpenCL!

There is no such thing as afree lunch, the model does not fit all architectures. It isaone
sizefits all solution, which makes platform dependent optimizations hard to do. But for

GPU computing, it fitsright in and you can easily see that the GPU platform isits main

focus.

10.1 OpenCL for GPU Computing

OpenCL is strikingly similar to CUDA both in architecture and performance. The big dif-
ference is the setup, which is alot more complicated, but once you have aworking setup,
itisnot really abig problem. Computing kernels are quite similar to CUDA. To some

OpenCL 77

extent, performance is similar, but it is easier for NVidiato be first with new features. For
OpenCL, many parties must agree on additions, and then everybody must add support for
the new features. This often makes OpenCL lag behind.

10.2 OpenCL vs. CUDA terminology

Unfortunately, the terminology differs substantially between different platforms, and
CUDA, being first, is the one that is the most different.

OpenCL CUDA

compute unit multiprocessor (SM)
work item thread

work group block

local memory shared memory
private memory registers

Most notable, OpenCL local memory = CUDA shared memory, while CUDA local mem-
ory is avague concept which causes confusion. However, NVidia's manual isfairly clear
on the subject:

“Local memory space resides in device memory, so local memory accesses have the same
high latency and low bandwidth as global memory accesses and are subject to the same
requirements for memory coalescing...” [3]

Which means that CUDA local memory is aslow memory, used when thread local vari-
ables canot be placed in registers, while OpenCL local memory isfast, the same as CUDA
shared memory.

Dueto this confusion, | will primarily use the term shared memory sinceit is unique.

» CUDA local memory = global memory accessible only by one thread (like registers but
slower)

* CUDA shared memory = OpenCL local memory = memory local inside the SM, shared
within block work group

OpenCL local memory isdeclared _ local:
__local float a[SOMESI ZE];

See chapter 17.2 for an OpenCL example using local memory.

10.3 OpenCL memory and thread model

On the subject of computing with OpenCL, let us not waste space and time repeating what
| said in chapter 6. Most of it maps straight over, work groups (blocks) map onto SMs,
each work group consists of work items (threads). The same rules apply.

78 OpenCL

One notable difference is the thread and block identification. While CUDA gives you
block number and thread number within the block, OpenCL is somewhat more convenient.
The built-in calls get_global_id() and get_local_id() returnsidentification indices on a
local or global scale, which meansthat a part of the thread 1D cal culation has been done
for you. Both callstake an integer as parameter which specifies the dimension that you
wish theid for. Thereisalso get_ work_dim() for getting the total size, and
get_local_size() for block/workgroup size.

10.4 Heterogeneous

Apart from the superficial syntax differences, the more significant differencesfrom CUDA
comes from OpenCL being designed for heterogeneous systems, not only heterogeneous
asinaGPU controlled from a CPU, but beyond that, for any kind of mix, where the same
task can be assigned totally different hardware. Several devices may be active at once and
contribute to the same computation.

Thiswill mainly affect the setup, where you can specify which device to launch atask to,
and select different OpenCl implementations. This gives us some overhead compared to
CUDA, but the reward isflexibility.

10.5 Language

The OpenCL kernel language is based on C99, but there are some differences.
* No function pointers

* No pointersto pointersin function calls

e (=>no multi-dimensional arrays)

* Norecursion

* No arrays with dynamical length

* No bitfields

Some features are optional:

» Pointers with length <32 bit

« Writing support for 3D images

* Double and half types

» Atomic functions

So far, | have mainly listed limitations, but there are also some strong points worth men-
tioning:

 Integrated functions for reading / writing 2D images and

e reading 3D images

» Converting functionsincl. explicit rounding and saturation

OpenCL 79

» math.h, al functions with different precisions
» Vector support (2-, 3- and 4-dimensional)

Available primitive datatypes: Bool, char, int, long, float, size t, void, plus their unsigned
versions.

Mix of OpenCL and OpenGL possible, so OpenCL can share data structures and variables
(without copying). More about that in chapter 15.2.

When talking about features, there is one more thing | would like to mention: In early ver-
sions, there was no possibility to call akernel from another kernel, but that feature arrived
in OpenCL 2.0.

10.6 Walk through the Hello CL example code

We can identify two major parts of the code, the setup and the computing. For a small
example, the setup is pretty big. It follows these steps:

e 1) Getalist of platforms

* 2) Choose aplatform

» 3) Get alist of devices

e 4) Choose adevice

* 5) Create a context

* 6) Load and compile kernel code

Then we can start working. Here are the computing steps:
» 7) Allocate memory

» 8) Copy datato device

* 9) Run kernel

» 10) Wait for kernel to complete

* 11) Read data from device

* 12) Freeresources

1-5: Where to run

cl _platformid platform
unsigned int no_plat;
err = clGtPl atform Ds(1, &l atformé&no _plat);

Il Where to run
err = cl GetDevicelDs(platform C._DEM CE TYPE GPU, 1, &device_id, NULL);
if (err '= CL_SUCCESS) return -1;

context = cl GeateContext(0, 1, &dJevice id, NULL, NULL, &err);
if (!context) return -1,

80 OpenCL

commands = cl O eat eCommandQueue(context, device_id, 0, &err);
if (!commands) return -1,

6: Kernel; What to run

program = cl O eat eProgramiN't hSource(context, 1, (const char **) & Ker-
nel Source, NULL, &err);
if (!progran) return -1,

err = clBuildProgranm{program 0O, NULL, NUL, NULL, NULL);
if (err '= CL_SUCCESS) return -1,
kernel = cl OreateKernel (program “hello”, &err);

if (!'kernel || err !'= CQL_SUCCESS) return -1,
const char *Kernel Source = “\n” \

“ kernel void hello(\n" \
! __global char* a, \n” \

“ __global char* b, \n” \

“ __global char* c, \n” \

“ const unsigned int count) \n" \

“{ \n” \

! int i =get global id(0); \n” \

! if(i < count) \n” \

“ c[i] =a[i] + b[i]; \n” \

“ \n” \
“\n";

Most programs load kernels from files. The Hello World example does not, it stores the
kernel as an inline string. | would not do that for bigger kernels.

7-8: Get the datain there

[/l Create space for data and copy a and b to device (note that we
coul d al so use cl EnqueueWiteBuffer to upl oad)

input = cl OeateBuffer(context, CL_MEM READ O\LY |
CL_MEM USE HOST_PTR, si zeof (char) * DATA SIZE, a, NULL);

input2 = cl eateBuffer(context, C._MEM READ O\LY |
CL_MEM USE HOST PTR, si zeof (char) * DATA SIZE, b, NULL);

output = cl GeateBuffer(context, CL MEMWR TE O\LY, sizeof(char) *
DATA SI ZE, NULL, NULL);

if (input || 'output) return -1,

/1 Send data
err = cl Set Ker nel Arg(kernel,
err | = cl Set Ker nel Arg(kernel,

0, sizeof(cl_mem, & nput);

1
err | = cl SetKernel Arg(kernel, 2

3

, Sizeof(cl _nenm), & nput?2);

, Sizeof (cl _nenm), &output);
err | = cl SetKernel Arg(kernel, 3, sizeof(unsigned int), &count);
if (err '= CL_SUCCESS) return -1,

9-10: Run kernel, wait for completion

/1 Run Kkernel!

err = cl EnqueueNDRangeKer nel (commands, kernel, 1, NJUL, &gl obal, & ocal,
0, NULL, NULL);

if (err '= CL_SUCCESS) return -1,

cl Fi ni sh(comrands) ;

11-12: Read back data, release

OpenCL

/1 Read result

err = cl EnqueueReadBuf fer(commands, output, CL TRUE, O, sizeof(char) *
count, ¢, 0, NULL, NULL);

if (err '= CL_SUCCESS) return -1,

/!l Print result
printf(“9%\n", ¢);

/1 dean up

cl Rel easeMenhj ect (i nput) ;

cl Rel easeMenthj ect (out put) ;

cl Rel easePr ogr an{ programn ;

cl Rel easekKer nel (kernel);

cl Rel easeComrandQueue(comrands) ;
cl Rel easeCont ext (cont ext) ;

10.7 The Julia examplein OpenCL

Asone moreintroductory example, let uslook at the Julia example again. The code will be
highly similar to the CUDA version.

From the CPU part, | will only include the part closest to the kernel call, setting up param-
eters, transferring data. Note that thisis a simplified version that doesn’t use any OpenGL
bindings.

fl oat theReal, thelnag;
cl _kernel k;

int conputeFractal (unsigned int *data, unsigned int |ength)

cl _int ci BrrNum = CL_SUCCESS,
size t |ocal VorkSi ze, gl obal VorkSi ze;
cl_memin_data, out data;

in_data = cl O eateBuf fer (cx@UCont ext, CL_MEM READ O\LY |
CL_MEM CCPY_HOST_PTR, length * sizeof (unsigned int), data, &ciErrNunj;
out _data = cl OeateBuf fer(cx@Ulontext, CL_MEM READ WRITE, length *
si zeof (unsigned int), NULL, &ciErrNum;

| ocal Wr kSi ze
gl obal VorkSi ze

512;
| engt h;

/1l set the args val ues
int width = datawdt h;
ci ErrNum = cl Set Ker nel Arg(k
ci ErrNum | = cl Set Ker nel Ar g(
ci ErrNum | = cl Set Ker nel Arg(
ci ErrNum | = cl Set Ker nel Ar
ci ErrNum | = cl Set Ker nel Ar

, 0, sizeof(cl_nenm, (void *) &out data);
k, 1, sizeof(cl _uint), (void *) & ength);
k, 2, sizeof(cl_uint), (void *) &width);
(k, 3, sizeof(cl _float),(void *) & heReal);
(k, 4, sizeof(cl _float), (void *) & hel mag);

QQ

cl _event event;
ci ErrNum = cl EnqueueNDRangeKer nel (commandQueue, k, 1, NULL, &gl obal -
Wr kS ze, & ocal WrkSize, 0, NUL, &event);

cl Wi t For Events(1, &event); // Synch
print CLError(ci ErrNunj;

82 OpenCL

ci ErrNum = cl EnqueueReadBuf f er (commandQueue, out _data, CL_TRUE, O,
length * sizeof (unsigned int), data, 0, NULL, NULL);
printCLError(ci ErrNunj;

cl Rel easeMenthj ect (i n_dat a) ;
cl Rel easeMent(hj ect (out _dat a) ;
return ci ErrNum

}

Some error checks are omitted. Apart from this, there is code for setting up OpenCL as
well as providing visual output and user interaction. Note that the local WorkSize may
need to be tuned for optimal performance.

As expected, the kernel isrelatively smple:
int julia(int x, int y, float r, float im int DM;

int julia(int x, inty, float r, float im int DN

const float scale = 1.5;
float jx = scale * (float)(DM2 - x)/(DM2),
float jy = scale * (float)(DM2 - y)/(DM2);
int i =0;
for (i=0; i<50; i++)

float jx2 =jx * jx - jy * jy +71;

jy =2%jy * jx +im
] X = X2

it (jx*jx +jy*jy > 1000)

return i;
}
return i;
}
__kernel void juliaKernel (__global unsigned int *outdata,
const unsigned int |ength,
const unsigned int w dth,
const float r,
const float in
{

unsi gned int pos = 0;
unsigned int i;
unsi gned int val;

pos = get gl obal id(0);

val julia(pos %w dth, pos / width, r, im wdth);

outdata[pos]=val * 20 + (val * 10 << 8) + (val * 5 << 16);
}

At the time of writing this, there are major OpenCL implementations are still at OpenCL
1.2 sothat iswhat | use here. Unlike the CUDA case, | don’t use C++ extensions. These

OpenCL 83

are availablein OpenCL since version 2.1. Even though that version was announced in
2015, as of 2018 it still has not propagated to all major platforms so 1.2 is still of interest.

| chose to make the thread numbering one-dimensiona which iskind of questionable
when you are working with 2-dimensional output. That iswhy | do % and / calculations
for the position sent to the juliafunction. | also use different scaling factors on each com-
ponent in order to get simple colorizing, and | didn’t bother with overflows that may affect
the next channel. You may fix that as a ssmple exercise.

We will see more OpenCL exampleslater, e.g. the rank sorting in chapter 17.

10.8 Some more notes on OpenCL

L et me say afew words about the concepts platform and device. A platformisan OpenCL
implementation, i.e. alibrary. Not OpenCL itself, but one specific implementation. Several
can co-exist, supporting different devices. A devicein OpenCL istherefore achip which a
platform supports. (Otherwise, | usually use the word platform for a specific AP, like
CUDA/OpenCL/Compute shaders.)

Then we have the question of language freedom. OpenCL is both good and bad in this
case. From the CPU side, OpenCL isvery easy to call from any language! Anything that
can call into a C API can call OpenCL. | have used it from other languages. The kernel
code, however, isonly C-style. It istheoretically possible for a specific implementation
may choose to support more, but the code you write for it will lose portability.

Finally, we have the question of performance. Investigations report remarkably small dif-
ferences, but the differences vary alot. We have conducted several investigations our-
selves, and the difference can be that one platform is 2x faster than the other. In most
cases, CUDA isfaster, but not all the time. We have seen OpenCL winning, we have seen
them going side by side with no significant differences.

It isvery hard to compare, due to multiple OpenCL implementations, and we can only
compare NVidiaimplementations if we want to compare to CUDA.

10.9 Synchronization in OpenCL

As expected, synchronization in OpenCL islargely the same asin CUDA. In OpenCL,
synchronization is made with barriers. Most importantly, kernels can synchronize within
awork group like this:

barrier (CLK LOCAL_MEM FENCE)

Like we said above, there is no synchronization between work groups, so these must be
made with multiple kernel runs.

See chapter 17.2 for an example that uses OpenCL barriers.

84 OpenCL

In OpenCL, the barriers are focused on synchronizing memory access. You choose which
kind of memory access to synchronize (global, local).

The host (CPU) can synchronize on global level. Thisis available for:

* tasks(e.g. clEnqueueNDRangeKernel)

* Memory(e.g.clEnqueueReadBuffer)

* events(e.g. clWaitforEvents)

10.10 Queriesin OpenCL

OpenCL can provide information with clDevicelnfo(); Among the options are:

CL_DEVI CE_LCOCAL_MEM S| ZE
CL_DEVI CE_LOCAL_MEM TYPE
CL_DEVI CE_MAX_COVPUTE_UNI TS
CL_DEVI CE_WIRK_GROUP_SI ZE
CL_DEVI CE_MAX_WORK_| TEM Sl ZES

10.11 OpenCL events
OpenCL has events similar to CUDA events. The options and functions include:

CL_PROFILING_COMMMAND_SUBMIT

cl _event

cl Vi t For Event s

cl Fini sh

cl Get Event Profi |l i ngl nfo

10.12 Conclusionson OpenCL

Don’'t fear the complex setup phase! The rest issimilar to CUDA.
Performance tend to be on par with CUDA or ailmost.

The speciality of OpenCL is heterogeneous systems.

One big problem burdens the platform: Apple and NVidialagging behind. OpenCL 2.0
has major enhancements, but Apple and NVidia seem not to be interested! But we are hop-
ing for a change.

OpenCL 85

86

OpenCL

11. Fragment shaders

This section is partially based on a chapter in Volume 2.

General -purpose computing with fragment shadersis the “classic GPGPU”, the original
GPU computing approach. Here, we use graphics shaders, so the graphics heritage is
highly visible. We adapt data and computing to fit the graphics pipeline.

This technique was hot until CUDA arrived. Since then, it is overshadowed by the other
platforms, CUDA and OpenCL in particular. However, | do not want to ignore this path,
for afew reasonsthat | will discuss. There are afew arguments:

» Highly suited to al problems dealing with images, computer vision, image coding etc.

» Pardléllization, “comes natural”, you can’'t avoid it and good speedups are likely. |
would argue that there are fewer pitfalls.

» Highly optimized (for graphics performance).
» Compatibility is vastly superior!
* Very much easier to install!

This sounds good, but certainly there are some important weaknesses.
* You must map data to image data
» Computing controlled by pixelsin output image

* No shared memory access

Out of these, the lack of shared memory accessis probably the biggest weakness. How-
ever, OpenGL 4 adds much flexibility, moves closer to CUDA and (especially) OpenCL.
We now have new features like writabl e textures, atomics and synchronization. With this
added flexibility, fragment shaders have taken some important steps ahead to make them
viable for GPU computing again.

We saw the OpenGL pipelinein Figure 3 on page 20. It consists of multiple stages. Out of
these, three are programmabl e, but only one creates easily accessible output data, the frag-
ment processing stage.

Fragment shaders 87

Thetypical OpenGL situation works with complex geometry, many transformations, per-
spective projection, lighting and material calculations for the surfaces, and many texture
accesses for interpolation and supersampling.

Typical GPU Computing with fragment shaders is vastly different. However, it is not all
that alien, sinceit isalso used in filtering in graphics. For this case, we render to asingle
rectangle covering the entire image buffer, we use FBOs for effective feedback, floating-
point buffers, and ping-ponging, many pass with different shaders

Thus, the GPGPU model can be summarized as follows:
* We have an array of input data. Thisis put in atexture (or several).
» We produce an array of output data. This arrivesin the frame buffer.

« Thisisproduced by acomputing kernel, which is afragment shader. It isinvoked by
drawing graphics.

» The computation is done by one or several rendering passes.

* When we need several passes, the output is rerouted/copied to the input data of the next
pass, usually using FBOs, framebuffer objects.

I will now continue with an example, that makes atrivial computation in many iterations
using FBOs and ping-ponging.

11.1 Input and output
You load your input data from CPU/RAM to GPU/VRAM, usually using gl Texlmage2D.

If our input data is a one-dimensional array of floating-point values, they will end up dis-
tributed over the four channels of the textureif you use gl Texlmage2D the standard way. It
is, however, possible to upload into a monochrome texture.

A textureisalocated like this:

gl GenTextures (1, & exl);
gl Bi ndText ure(G._TEXTURE 2D, tex1);

/] set texture paraneters
gl TexParaneteri (A_TEXTURE 2D, G__TEXTURE_M N FI LTER, G._NEAREST);
gl TexParaneteri (A_TEXTURE 2D, G__TEXTURE_NMAG FI LTER, G._NEAREST);
[/ define texture with floating point format

We use two textures so we can switch between them. We assign one of the two textures
initial data, in our case just zeroes.

float* data = (float*)nal |l oc(4*t exS ze*t exSi ze*si zeof (fl oat));
float* result = (float*)nall oc(4*texS ze*t exS ze*si zeof (float));
for (int i=0; i<texS ze*texS ze*4; i++)

data[i] = 0.0;

gl Bi ndText ure(G._TEXTURE 2D, texl);
gl Texl mage2D(G._TEXTURE 2D, 0, G- RGBA32F,
texSi ze, texSi ze, 0, &._REBA A_FLQAT, data);

88 Fragment shaders

Note that the texture size is texSize* texSize, but since we have four color channels, the
total data sizeistexSize*texSize* 4.

Getting the data out afterwardsis not harder. It is copied to CPU/RAM from GPU/VRAM
using glReadPixels();

gl ReadBuf f er (AL_OOLCOR_ATTACHVENTO) ;
gl ReadPi xel s(0, 0, texSi ze, texS ze, G _R®BA G__FLOAT, result);

[/ print out results
printf("Data before conputation:\n");
printf("9%\n", data[texSi ze*texSi ze*4-1]);
printf("Data after conputation:\n");
printf("9%\n",result[texS ze*texS ze*4-1]);

11.2 The computation kernel = the shader

The shaders are read and compiled to one or several program objects. A GPGPU applica-
tion may have several shadersloaded. We only have one in our example.

Activate the desired shader as needed using glUseProgram(); Our shaders are very sim-
ple. The fragment shader adds a small number to all elements of the data:

#ver si on 150

uni form sanpl er 2D texUni t;
out vec4 out Col or;

in vec2 texCoord;

voi d mai n(voi d)

vecd texVal = texture(texUnit, texCoord);
out Col or = texVal + vec4(0.001, 0.001, 0.001, 0.001);

}

Modern OpenGL requires a vertex shader too. All we need isatrivial pass-through shader:

#ver si on 150

in vec3 inPosition;
in vec?2 i nTexCoor d;
out vec?2 texCoord;
voi d mai n(voi d)

texCoord = i nTexCoord;
gl _Position = vecd(inPosition, 1.0);
}

The geometry is, again, asingle polygon. | set it up so it matches the viewport (-1to 1in
all directions) and with texture coordinates that will match every pixel.

QAfloat vertices[] = {-1.0f,-1.0f,0.0f,
-1.0f, 1. Of , 0. Of ,
1. 0f, 1. Of, 0. Of ,
1.0f,-1.0f,0.0f};
G float texcoord[] = {0.0f, 1.0f,
0.0f, 0.0f,

1. glUseProgramObjectARB for older SDKs

Fragment shaders 89

1.0f, O0.0f,
1.0f, 1.0f};
QGui nt indices[] —{O 1,3, 3,1,2};

This allows the vertex shader to be a pure pass-through, which is what we want. We |oad
the geometry to the GPU using vertex buffers. In our demo, we hide that in aModel struc-
ture provided by our lab code loadobj.c.

/1 Wl oad geonetry to the GPU
m = LoadDat aToModel (vertices, NUL, texcoord, NUL, indices, 4, 6);

For more details on vertex buffers and vertex arrays, see Volume 1.

11.3 Feedback

InVolume 2, | described how shaders can work in several passes, by using the output from
oneiteration asinput to the next. This kind of feedback is ever-present in GPGPU applica-
tions. The bandwidth over the busto the CPU islimited, so the more that can be done
before passing back the data to the CPU, the more efficient will the processing be.

Thisis most efficiently done by rendering to textures, which is done using framebuffer
objects. We create multiple textures, use one or more asinput and others as output for each
stage, and they can switch roles as needed. Thistechniqueis called “ ping-ponging”. We
discussed this for graphicsin Volume 2. Let usdo it for ageneral computing perspective.

First of al, we need two FBOs, created like this:

gl GenFranebuffers(1l, &bol); // frame buffer id

gl Bi ndFr amebuf f er (@._FRAMEBUFFER, fbol);

gl Frarebuf f er Text ur e2D(. FRAMEBUFFER, . COLCR_ATTACHVENTO,
GQ_TEXTURE 2D, texl, 0);

Now we can run multiple iterations like this:
for (int loop = 0; loop < | oopCount; | oop++)

[Pi ng- pong bet ween fbol and fbo2
if ((loop & 1) == 0)

~—— s~

gl Bi ndFr amebuf f er (@._FRAMEBUFFER, f bo2);
gl Bi ndText ure(Q._TEXTURE 2D, texl);

}

el se

gl Bi ndFr arebuf f er (G._FRAMEBUFFER, f bol);
gl Bi ndText ure(@Q__TEXTURE 2D, tex2);

}
DrawMbdel (m shader, "inPosition", NUL, "inTexCoord");
gl Flush();

}

If al iswell, we will get a number out that matches the number of iterations.

90 Fragment shaders

11.4 Imagefilter in fragment shader

The shader can, for example, look as follows. This particular shader comes from a demo
that | believe was an introductory example at GPGPU.org. ThisisaLaplacian filter for
detecting high frequencies, shown in Figure 30. Edges will give a high response, but even
more so will local maxima and noise.

11| -1
-118 | -1
11| -1

FIGURE 30. A simple 3x3 Laplacian filter for detecting high frequencies

If thisfilter had been properly normalized, it should divide the result by 8, but that would
make the resulting signal too low to view.

uni form sanpl er 2D texUhi t;
voi d nai n(voi d)

const float offset = 1.0/ 512.0;"

vec2 texQoord = gl _TexQoord[Q] . xy; "

vecd ¢ =texture(texthit, texCoord);"

vecd bl =texture(texthit, tex(ord + vec2(-of fset, -offset));"

vecd | =texture(texthit, tex@ord + vec2(-offset, 0.0));"

vecd t| =texture(texthit, texGoord + vec2(-of fset, offset));"

vecd t =texture(texthit, tex(ord + vec2(0.0, offset));"

vecd ur = texture(texthit, tex@ord + vec2(offset, offset));"

vecd r =texture(texthit, texGord + vec2(offset, 0.0));"

vecd br =texture(texthit, tex(ord + vec2(offset, offset));"

vecd b = texture(texthit, tex@ord + vec2(0.0, -offset));"

out@lor =-8.0* (¢ +-0.125* (bl +1 +tl +t +ur +r +br +b));
}

See Figure 31 below for an example of the effect of thisfilter.

Shader

Texture Frame buffer

FIGURE 31. High-passimage filter performed in fragment shader.

Fragment shaders 91

11.5 Reduction in fragment shaders

Reduction, discussed in chapter 15, is dightly different when using fragment shaders, but
only slightly. We can work pretty much the same way. However, afew things are different.

With 4-channel data we should take that into account. GLSL has a max() function that
works on a vec4, producing the maximum of each channel. This suggests that we should
handle each channel separately until the datais sufficiently small.

The focus on images makes it very tempting to work with 2D images. 3D is also possible
for very large data, but harder to handle. It is pretty natural to reduce the data equally
along every axis. That makes Figure 36 illustrate atypical reduction for this case. Each
kernel run is now one rendering pass, and the number of threads is controlled by the size
of the drawn geometry (quad).

92 Fragment shaders

12. OpenGL Compute
shaders and Vulkan

Itisimpossible to cover all possible frameworks for GPU computing, but | will hereintro-
duce the ones that | judge as the most important ones beside CUDA and OpenCL. The one
| consider most important is OpenGL compute shaders, so that isthe one that will get most
space here, but we should not forget Direct Compute and Vulkan.

12.1 OpenGL Compute shaders

The compute shader concept originally appeared in Microsoft’s Direct Compute

(chapter 12.8), but the same concept was later added to OpenGL, since OpenGL 4.3. This
is not the latest version, but still abit of “bleeding edge” since 4.3 is not fully universal.
We are waiting for some major playersto get up to date.

So, why should we consider compute shaders instead of CUDA or OpenCL? | have afew
arguments:

 Better integration with OpenGL

* No extrainstallation!

« Easier to configure than OpenCL

* Not NVidia specific like CUDA

* If you know GLSL, Compute Shaders are (fairly) easy!

Thisis pretty good! So what istalking against it? Not very much, actually.

* Higher hardware demands than OpenCL and CUDA: needs a “Kepler generation”
board or better and OpenGL 4.3. Thisis not much of a problem today.

« Some new concepts. Not much of a problem either since al important things are there.

* No support for 8-bit integers.

OpenGL Compute shaders and Vulkan 93

» Not part of the main graphics pipeline like fragment shaders. But still much closer than
CUDA or OpenCL!

» Some vendors (Apple) are lagging behind. This may be the biggest problem. | can not
run compute shaders on my MacBook Pro, despite modern hardware!

Compute shaders run alone, not compiled together with others, but being part of OpenGL,
it has direct access to much of the OpenGL features. See Figure 32.

}phi cs shaders

Attributes Uniforms Textures Frame buffer SSBO
Compute shader

FIGURE 32. Data access for compute shaders and other shaders

In thefigure, | have lumped together all the graphics shaders (vertex, fragment, geometry,
tessellation) into one. For our purposes we mostly consider fragment shaders, but in this
case | rather consider most kinds of shader input, including attributes to vertex shaders.

Since we have no geometry, there can be no attributes per vertex, Uniforms, however,
work nicely, and so do textures despite not being able to write them to the frame buffer. So
what you see in the upper part of the figure is a data view of the OpenGL pipeline, while
the lower shows the more general purpose paths with arbitrary accessto and from SSBOs.

So how do | useit? If you know OpenGL, it isn't very hard to get it running. Compilation
isjust like other shaders, you just don’t compile it together with others the way you do
with vertex, fragment etc. All you need to do isatrivial change from the usual shader
loader/compilation code that you are bound to have aready. You just need to compile as
GL_COMPUTE_SHADER.

Many things are just like you are used to. You can send uniforms to the shader, just like in
other shaders, and you access textures the same way. That makes OpenGL integration far
superior than any other solution.

But of course there are afew differences to attend to. We no longer have one thread per
fragment, since there are no fragments (output pixels), and thereby no pre-determined out-
put either. The thread number is set to what you want. Input and output data is even more
special.

9 OpenGL Compute shaders and Vulkan

12.2 Shader Storage Buffer Objects

Of course, input data can be textures, but then we are back to the sometimes a bit awkward
situation of having to fit datainto textures. As a complement, we now have “ Shader Stor-
age Buffer Objects’. Thisisageneral buffer type for arbitrary data. We can declareit asan
array of structures, which gives us great freedom in what data we want to use. These buff-
ers are read and written freely by Compute Shaders.

Upload input datato SSBO works like this:

gl GenBuffers(1, &sshbo);

gl Bi ndBuf f er (G._SHADER STCRACE BUFFER, ssbo);

gl Buf f er Dat a(G__SHADER _STCRAGE_ BUFFER, size, ptr, G._STATI C DRAW;
We also need to tell the shader about it. We do that with this call on the CPU:

gl Bi ndBuf f er Base(G._SHADER STCRAGE BUFFER, id, ssbo);

which matches this line in the compute shader;
| ayout (std430, binding = id, buffer x {type y[];};
The number of blocks (work groups) is controlled from the host. The number of threads

per block can be set either from inside the shade or from the host. In the shader, thisis
made by another layout call:

| ayout (1 ocal _size x = width, |ocal _size y = height)
In the shader, the thread number is similar to OpenCL, but in this case given as prede-
clared “in” variables: gl_Globallnvocation and gl_L ocall nvocation, together with the

equally intuitive gl_ NumWorkGroups, gl_WorkGrouplD and gl_WorkGroupSize. Note
that these output vec3's, that is a 3-component vector.

Thereisalso gl_L ocallnvocationlndex, which in an integer giving a unique number of
each work item in one work group.

Thus, in the simplest cases we can access data using gl_Global Invocation and each thread
will get auniqueitem.

You execute the kerndl like this:

gl UsePr ogran{ program ;
gl D spat chConput e(si zex, sizey, sizez);

There is aso shared memory. In compute shaders, shared memory is declared shared:
shared float a] SOVES| ZF] ;

The arguments to gl DispatchProgram set the number of blocks/ workgroups. The number
of threads (work items) per block can be set by the shader as above,

In order to access the output data, you use the following calls:
gl Bi ndBuf f er (GQ._SHADER STCRACE, ssbo);

OpenGL Compute shaders and Vulkan 95

ptr = (int *) gl MapBuffer (G _SHADER STCRAGE, (__READ O\LY);

Then read from ptr[i]. When you are done, release the data like this:
gl UnmapBuf f er (G._SHADER STCRACE) ;

12.3 Example code
Here follows the complete main program:
int main(int argc, char **argv)

glutlnit (&rgc, argv);
gl ut O eat eW ndow(“ TEST1") ;

/1 Load and conpil e the conpute shader
Q.uint p =l oadShader (“cs. csh”);

GLui nt ssbo; //Shader Storage Buffer (bject

/] Some data

int buf{16] = {1, 2, -3, 4, 5 -6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16};

int *ptr;

/[l Oreate buffer, upload data
gl GenBuffers(1, &sshbo);
gl Bi ndBuf f er (G._SHADER_STCRAGE_BUFFER ssbo);
gl Buf f er Dat a(G._SHADER _STCRAGE_BUFFER
16 * sizeof (int), &buf, G _STATI C DRAW;
[/ Tell it where the input goes!
/1“5 matches “layuot” in the shader.

gl Bi ndBuf f er Base(G._SHADER STCORAGE_BUFFER,
5, ssbo);

[/ Get rolling!
gl D spat chConput e(16, 1, 1);

/'l Get data back!
gl Bi ndBuf f er (@._SHADER STCRAGE_ BUFFER, ssbo) ;
ptr = (int *)gl MapBuf fer (
G._SHADER STCRACGE BUFFER
G._READ O\LY);
for (int i=0; i < 16; i++)

printf(“%\n", ptr[i]);
}

Here follows a simple Compute Shader:

#versi on 430

#define width 16

#defi ne height 16

/1 Conpute shader invocations in each work group

| ayout (std430, binding = 5) buffer bbs {int bs[];};

96 OpenGL Compute shaders and Vulkan

| ayout (1 ocal _size x=wi dth, |ocal size y=height) in;

/[Kernel Program
voi d mai n()

int i =int(gl_LocallnvocationlD x * 2);
bs[gl Local I nvocationl D.x] = -bs[gl _Local I nvocationl D x];

Note: In this example there are too many threads for data (16* 16* 16)

12.4 Synchronization in OpenGL compute shaders

Compute shaders has a similar synchronization mechanism. Much of it is shared with the
rest of OpenGL. These include:

barrier(); synchronizes the execution. Other barrier calls relate to the memory access:
groupMemoryBarrier(); synchronizes within awork group.

See also: memoryBarrier(); memoryBarrierShared(); memoryBarrierlmage(); memoryBa-
rrierBuffer();

There are also synchronization commands from the CPU, e.g. glMemoryBarrier().

12.5 Compute shader timing with query objects

With compute shaders, timing is made with query objects. Start timing with
gl Begi nQuery(Q@__TI ME ELAPSED, nyQuery);

and end with
gl EndQuery(@ _TI ME_ELAPSED) ;

Check if it has finished with
gl Get Query(hj ectiv(nyQuery, G._QUERY RESULT AVA LABLE, &gquery_done);

Finally, get the time with
gl Get Query(hj ecti 64v(nyQuery, G _QUERY RESULT, &el apsed_ tine);

12.6 Queriesin compute shaders

In OpenGL, thereby available both to compute shader and fragment shader solutions, you
can use gl Getlntegerv/gl GetBool eanv/gl GetFloatv and gl Getl nteger64v with various
parameters. Perhaps the most vital ones are:

MAX COMPUTE_SHARED MEMCRY_SI ZE

MAX_OCOMPUTE_WORK_GROUP_CCUNT
MAX_OOMPUTE_WORK_GROUP_S| ZE

OpenGL Compute shaders and Vulkan 97

12.7 Conclusionson Compute Shaders

OpenGL Compute Shaders are not only available for stationary computers. They were
originally, but since 2014 they are also supported in GLES 3.1 (OpenGL for embedded
systems). That was also the time when MESA (the open source OpenGL implementation,
e.g. for Linux) became available for Intel GPUs (Haswell). So the support improved over
time. Alas, as of 2018 they are still not supported by Apple.

So, do Compute Shaders provide an important alternative? They provide good portability
between different GPUs and OSes. They are supported on most GPUs that are of interest
today, graphicsintegration can’t be easier, it hasthe vital features to be competitive. Thus,
| only see advantages with them.

12.8 Vulkan

At the time of writing this, Vulkan is still the new player on the field. It wasreleased in
2016. It has been called the new OpenGL, but it is aso anew open parallel computing
platform.

Will it step in and take over? Well, | would not say that it has so far, but it has made con-
siderable successin the gaming arena. It is cross-platform, it is built for both graphics and
general-purpose computations. Thisistrue for OpenGL as well, but Vulkan solves prob-
lems that has surfaced in OpenGL over time.

To be precise, the speciality of Vulkan isthat it is designed for multi-threaded host appli-
cations. OpenGL is single-threaded on the host. In many cases | would consider thisa
minor problem, since many of the big problems run best on the GPU anyway, but there are
still many problems of more sequential nature that are best computed on the CPU.

The big challenge in Vulkan isto set up the CPU environment. The compute shadersin
Vulkan are identical to the onesin OpenGL. Thus, Vulkan as GPU computing platform is
little more than one more vote for the importance for OpenGL Compute Shaders.

98 OpenGL Compute shaders and Vulkan

13. Direct Compute

| don’t think it would be serious of me to ignore Microsoft’s Direct Compute in avolume
likethis. Direct Computeis part of Microsoft’s Direct X, and first appeared in Direct X 11,
but also supports Direct X 10. It first appeared in 20009.

Direct Compute is based on its own kind of compute shaders, and predates the OpenGL
compute shaders, which have been in core OpenGL since 2012. In Direct Compute, the
shaders are written in HLSL, MicroSoft’s shader language. However, the differences are
not major between HLSL and GLSL.

In most ways, Direct Compute is similar to OpenGL compute shaders or OpenCL. You
compile with the built-in HLSL compiler, you load data to buffers, you execute the kernel,
you download the result.

An unusual concept in Direct Compute isthe resource views. Thisisa“view into buffers’,
access paths into buffers, that allow hardware acceleration of format conversions as well
as (less surprising) hardware accelerated filtering when sampling data

Otherwise, much is as usual, and again we need to translate some concepts. A thread
group is the same as what we know as awork group or block. A thread vector is awarp.
But let’s not dig deeper into that.

Here follows a simple demo. It is based on MicroSoft’s “BasicComputell” demo but sim-
plified further. Reusable calls (which are very convenient to keep the complexity down)
are not listed.

All the code is now doing isto load an array of floating--point numbers, and computing
the square root of each element. The problem is embarrassingly parallel, no dependencies.
Here follows the shader:

[/ Floating point nunbers in a raw

Byt eAddressBuf fer BufferQ : register(t0);
RWByt eAddr essBuf fer Buf ferQut : register(u0);

[nunt hreads(1, 1, 1)]

Direct Compute 99

void CSMain(uint3 DTid : SV_D spatchThreadl D)

float fO = asfloat(Buffer0O.Load(DTid.x*4));
Buf ferQut. Store(DTid.x*4, asuint(sqgrt(f0)));

}

Note that the number of threads is specified from within the shader, just likeitisin
OpenGL Compute Shaders.

The access to the input and output buffersis a bit different than before, but otherwise the
differences are not major.

Here follows the CPU program (main program only, reusable code, error checks and dec-
larations excluded):

int _ cdecl main()

O eat eConput eDevi ce(&g pDevice, &g pContext, false);
O eat eConput eShader (L"Si npl eDCa. hl sl ", "CSMai n", g _pDevice, &g pCS

printf("OQeating buffer and fill it with initial data...");
for (int i =0; i < NUMELEMENTS; ++i)
g_vBufO[i] = (float)i;

O eat eRawBuf fer (g_pDevi ce, NUM ELEMENTS * si zeof (fl oat),
&g vBuf0[0], &g_pBufO);

O eat eRawBuf fer (g_pDevi ce, NUM ELEMENTS * si zeof (float), nullptr,
&g _pBuf Result);

printf("Oeating buffer views...");
O eat eBuf fer SR/ g _pDevice, g pBufO &g_pBuf OSRV) ;
O eat eBuf fer UAV(g _pDevi ce, g pBuf Result, &g pBuf Resul t UAV);

printf("Runni ng Conpute Shader.

| D3D11Shader Resour ceVi ew* aRMVi evvs[1] = { _pBuf OSRV };

RunConput eShader (g_pContext, g pCsS, 1, aR’\/ fews, nullptr, nullptr, O,
g_pBuf Resul t UAV, NUM ELEMENTS, 1, 1);

printf("done\n");

/1 Read back the result from GPU

| D3D11Buf f er* debugbuf = O eat eAndCopyToDebugBuf (g_pDevi ce,
g_pContext, g_pBufRResult);

D3D11_NMAPPED SUBRESCURCE MappedResour ce;

float *p;

g_pCont ext - >Map(debugbuf, 0, D3D11_NAP_READ, 0, &\VappedResource);

p = (fl oat*) MappedResour ce. pDat a;

/1 Verlfy that if Conpute Shader has done ri ght

printf("Printing sone output...");

for (int i =0; i <mn(|\U\/IELE|\/ENTS 10); ++i)
printf("% %\n", g vBufO[i], p[i]);

g_pGont ext - >Unmap(debugbuf, 0);

debugbuf - >Rel ease();

printf("Aeaning up...\n");
g_pBuf OSRV- >Rel ease();

100 Direct Compute

g_pBuf Resul t UAV- >Rel ease() ;
g_pBuf 0- >Rel ease();

g_pBuf Resul t - >Rel ease();
g_pCS- >Rel ease();

g_pCont ext - >Rel ease();
g_pDevi ce- >Rel ease();

printf("Press key to finish.\n");
getch();

return O;

}

Isit mostly similar to OpenGL Compute Shaders or OpenCL?You can be the judge off
that, but | conclude that it reminds mostly of those two, with a considerable setup, and
support for all important GPU computing needs.

| am not an expert on Direct Compute, so there may be superfluous code, simplifications
that | don’'t see. Corrections are welcome.

13.1 Shared memory

In Direct Compute, shared memory iscalled... shared memory! Or more precisely, Thread
Group Shared Memory (TGSM), but wefeel rather at home with it anyway, don’'t we? Just
like shared memory in CUDA, it islocal to one block/thread group. It is declared like this
(in the shader, obvioudly):

groupshared float2 nyArray[N ;

The usual rules apply, using it as temporary storage, and avoiding bank conflicts.

13.2 Synchronization

The second vital detail to add is that of synchronization. Within a group, in shader code,
synchronization is made with

QG oupMenoryBarri er Wt hG oupSync();

Synchronization on CPU level isimplicit in the Dispatch() call, which launches the com-
pute shader (according to the more advanced demos from Microsoft)

Thereis always more to say and more code to show, but for our needs | believe that thisis
a sufficient introduction to Direct Compute.

Direct Compute 101

102 Direct Compute

14. Comparisonsof the
platforms

Performance is important, so we should ask ourselves if these different frameworks per-
form equally well. | have been involved in several such investigations. There are, of
course, also many elsewhere, but | will here refer to the ones we have made locally.

One early project, shown in Figure 33, was made by Marco Fratarcangeli, building large
mass-spring systems, comparing CPU, CUDA, GLSL and OpenCL. Thiswas originally
made asaproject in my PhD coursein GPU computing, but has since then been published.

[18]

ol OpenCLE T) CUDA

FIGURE 33. Cloth simulation perfor mance comparison

In hisinvestigation, the CPU quickly fell behind. OpenCL was noticeably behind GL SL
and CUDA but still alot faster than the CPU. CUDA and GL SL were almost side-by-side,
with a slight advantage to CUDA. On the largest sizes, however, OpenCL either failed
completely or had very poor performance.

Comparisons of the platforms 103

In 2016, Torbjorn Sérman made the “FFT everywhere” project as his diplomathesis[19].
The Fast Fourier Transform was implemented, in comparable and reasonably optimized
implementations. These were then measured for different data sizes, and the result for one
of thetest casesis shown in Figure 34.

CUDA, DirectCompute, OpenGL Compute
Shader, OpenCL, cuFFT ...

10000000 CUDA

= DirectCo...
OpenGL
Compute
Shader
= OpenCL
— CuFFT
— FFTW
—— OpenMP
C_C++

1000000

100000

10000

1000

results, 1D FFT

100

Torbjorn Sérman's preliminary

10 1000 100000 10000000
100 10000 1000000

FIGURE 34. Exampleresultsfrom “FFT Everywhere”

Apart from Sérman’s implementation, NVidia's cuFFT and the FFTW implementations
were also used. It is clear from the graph that cuFFT is extremely well optimized, and out-
performed everything else by an order of magnitude.

However, the main focus of the investigation was to see how a comparabl e implementation
would perform. For that, we can see that CUDA, Direct Compute and OpenCL were the
winners. There was also atest on AMD, where Direct Compute, OpenCL and OpenGL
Compute Shaders ran side-by-side.

There are many if’sand but’s in a comparison like this, but there were two clear conclu-
sions:

» Hard optimization (cuFFT and FFTW) pays, and not just by alittle.

* OpenCL and Compute Shaders tend to be very close.

An even more recent study (2018) by Adam Soderstrom reports a different picture. In his
study, OpenCL and Direct Compute clearly beat CUDA.

These studies are scarily inconclusive, pointing in different directions, but | believe they
tell usonething: No platform stands out as clear winner every time. There are often aclear
winner for your application, and it can pay to try one more platform than whatever you
find the most obvious one.

104 Comparisons of the platforms

15. Reduction

An interesting class of problems for GPU computing is reduction problems, where a small
amount of datais extracted from alarger set. Thisis a problem of limited parallel nature
which still lendsitself to parallel implementation.

Examples of reduction algorithms include finding maximum or minimum, calculating
median or average, and histograms. These are all common problems.

They are often sequentially trivial, you just loop through the data and find the answer. You
add, takes min or max, you accumulate results, you may compute an intermediate histo-
gram to find the answer. But these solutions fit badly in massive parallelism!

A typical solution isto use atree-based approach, asillustrated in Figure 35, where the
maximum of a dataset is calculated. The figure only shows atrivia sized problem, for
which a GPU implementation isirrelevant. It isjust an illustration of a problem whichis
rather applied on millions of items.

etc

2 43)

1

FIGURE 35. Multi-level reduction

With atree, each comparison is independent of the others, making every level atrivially
parallel problem which is split to alather number of threads. It doesn’t have to be 2-to-1.
Rather, it is often beneficial to have each thread calculating the max or 4 or 8 items. With a
2D arrangement, we can reduce 4 to 1 as shown in Figure 36.

Reduction 105

The parallelismisreduced for each level, asthe dataset shrinksto smaller and smaller size.
Thus, the computing need to be reorganized to a smaller number of threads. Thisis done
by launching multiple kernel runs with gradually fewer threads.

98 69 25 17 36 36 7 14 32 33 50 40 52 58 83 40

59 069 3044 5 2 3238 61 41 63 34 75 19 54

4590 8573 489% 8 60 @0 7 3 8653560 1

25 83 32 51 87 42 27 66 32 30 3 3621 364 1

78 48 35 49 80 44 94 8 49 18 65 98 35 85 54 51 98 69 44 32 61 63 75 83

66 36 26 55 79 82 14 55 42 18 92 93 10 38 20 92 90 85 96 86 32 36 65 64

30 81 36 63 68 22 19 59 70 25 12 43 82 6 88 75 78 55 82 94 49 98 85 92 98 96 63 83

86 15 67 77 22 92 9 94 58 72 95 42 37 20 40 80 86 77 92 94 72 95 82 88 86 94 98 92 98 98
86 59 22 28 64 5 57 84 79 29 53 54 78 49 22 23 86 36 83 95 79 54 78 90 94 95 99 95 95 99
37 64 36 23 28 83 95 21 6 20 22 16 77 51 41 90 94 57 87 3599 75 95 88 89 95 94 98

67 253222 166 9 3538597220 27 71 88 88 81 52 91 79 70 94 69 80

26 94 57 11 87 77 12 18 99 69 75 64 29 95 54 61 72 89 95 83 40 78 98 77

69 47 28 43 91 14 863 70 2 38 94 31 69 53 19

52 81 452 44 57 79 68 49 4 18 44 47 60 27 80

22 72 16 46 95 40 45 39 27 18 20 19 98 63 3 33

23 68 65 89 95 94 8 83 40 39 78 4 82 18 77 45

FIGURE 36. 2D reduction finding max

Essentially, we do this:

For n = k downto O do
Launch 2n kernel s

There is a certain overhead in launching a kernel, which is why we should explore how
much work to do in one run. We can merge multiple levels into one, but thereisalimit
where we lose too much parallelism. There is a balance between enabling parallelism and
avoiding overhead.

This also means that we should not run the entire algorithm on the GPU. Under a certain
problem size, there will be no gain in launching a GPU kernel and the rest of the problem
should be computed on the CPU.

See Figure 37. Several levels of a 2-to-1 reduction pyramid is performed in each level
(kernel run). The final layer, in the bottom, should be performed on the CPU.

FIGURE 37. Reduction with multiple levels per kernel

Like so often before, we must remember that we can not synchronize between blocks. The
multi-level approach helps usto handle this.

106 Reduction

15.1 Optimization of reduction

Asreported by Harris[17], reduction is a great example of how far optimization can go.
These optimizations include:

« Avoid“if” statements, divergent branches

» Coalesced memory access

» Avoid bank conflicts in shared memory

* Optimizing the number of data items handles per thread

» Loop unrolling to avoid loop overhead (classic old-style optimization!)

Harris reports huge speed differences. He reports 30x speedup from naive implementation
to optimized. We must expect the number to change with different hardware, but it still
illustrates the importance of optimization. The “standard” question of coalescing is only
part of the optimization.

We can also note that shared memory has no relevance for the problem. If every itemis
only read once, we have nothing to gain of temporary storages.

15.2 Parallel prefix sum on GPU

A particularly important technique for much parallel computing, and not least GPU com-
puting, isthe parallel prefix sum or scan. This operation is essential for many algorithms
where aparalel version may seem undoable. It isakey operationsin many algorithms, for
example for implementing QuickSort on GPU (chapter 17).

Parallel prefix sums are not only useful for GPUs. It isjust as relevant for e.g. parallel
algorithms on CPU. Here, | will describe the principle and some specific details relevant
for GPU. The text is based on texts by Harris [23] and Blelloch [24].

Parallel prefix sum is quite related to reduction agorithm, although the output is not
reduced to asingle dataitem or small set, but a cumulative sum of the whole data set. For
example, thelist (1, 2, 3, 4, 5) would be converted to (1, 3, 6, 10, 15). Thisis, like reduc-
tion, an operation that istrivial to perform sequentially, but requires some tricks to com-
putein parallel.

Sequentially, it istrivially performed like this:
a: array[0..nax] of Integer;

for i :=1to max do
afi] :=a[i] + a[i-1]

Thisiscalled an inclusive scan, where the number produced is the sum of all elementsto
the left, including the element itself. For an exclusive scan, the result isthe sum of al ele-
ments to the left, excluding the element itself. Thus, our example above, (1, 2, 3, 4, 5)
resultsin (0, 1, 3, 6, 10). The result is simply shifted one step to the right.

Reduction 107

In order to compute this efficiently in parallel, we use the parallel method by Blelloch
[24]. It issimilar to reduction, but computed in two passes, one called the up-sweep and
then the down-sweep. The up-sweep is a straight-forward reduction sum, except for saving
all intermediate sums at the rightmost element of each subset. This datais then used by the
down-sweep, for creating the final cumulative sums.

The following illustrations are based on figures by Harris [23]. These are stated as based
on Blelloch [24], but Harris pictures are in my opinion clearer and easier to follow. Each
figure shows the structure left and an example to the right. The algorithm as illustrated
performs an exclusive scan.

#1 #1+2 #3 #1..4 #5 #5+6 #7 #1..8 3 9 8 18 4 5 2 30

__— 1 __—— 1
#1 #1+2 #3 #1..4 #5 #5+6 #7 #5..8 3 9 8 18 4 5 2 12
#1 #1+2 #3 #3+4 #5 #5+6 #7 #7+8 3 9 8 9 4 5 2 7
#1 #2 #3 #4 #5 #6 #7 #8 3 6 8 1 4 1 2 5

FIGURE 38. Up-sweep

The up-sweep (Figure 38) performs a straight-forward reduction sum. The last stageis
actually not needed. Then follows the down-sweep (Figure 39) which islessintuitive, but
if you study the structure, you will seethat it will eventually store a cumulative sum in
each element.

#1 #1+2 #3 #1.4 #5 #5+6 #7 #1..8

#1 #142 #3 #1.4 #5 #5+6 #7 0

#1

L >]

‘ 0 | #1 ‘ #1+2 | #1.3 ‘ #1.4 | #1..5 ‘ #1..6 ‘ #1..7

FIGURE 39. Down-sweep

On the GPU, we must perform this as a number of kernel runs, just like the reduction
methods above. Most of the optimizations described by Harris[17] (chapter 15.1) apply.

108 Reduction

16. OpenGL
| nteroper ability

We have already seen an example that visualize its results with OpenGL, namely the Julia
fractal example. There, we did it the simplest, but not fastest way possible: Download out-
put from the GPU computing to the CPU, then upload it to an OpenGL texture. This
works, but moving the whole result over the bus just to upload it again is wasteful.

Figure 40 suggests three different scenarios: No visualization, visualization by download-
ing and uploading again, and finally OpenGL interoperability, where the data stays on the
GPU and goes directly from GPU Computing (e.g. CUDA) to OpenGL.

No visuali- Simple Visualization with
zation visualization ~ OpenGL
interoperability
GPU GPU GPU
CUDA CUDA ||(SpenGL CUDA ||(Opentl
kernel kernel ||\ yaticn kernel it Yoion
CPU CPU CPU

FIGURE 40. CUDA and visualization

16.1 CUDA-OpenGL Interoperability

Let us start looking at how thisworksin CUDA. This requires a setup that is a bit more
complex. We must decide beforehand what data should be shared with OpenGL, and allo-

OpenGL Interoperability 109

cate that from the OpenGL side. Then wetell CUDA about it, we register with CUDA, and
map a buffer to give CUDA apointer to the data. Then we can compute, and have OpenGL
visualizing the result. Here follows code snippets from our demo of this process:

* Allocate with OpenGL
* Register with CUDA

* Allocate VBO (vertex buffer)

gl GenBuffers(1, &positionsVBO;

gl Bi ndBuf f er (Q._ARRAY BUFFER, positionsVBO ;

unsigned int size = NUMVERTS * 4 * sjzeof (float);

gl Buf f er Dat a(&._ARRAY_BUFFER size, NULL, G._DYNAM C DRAW;
gl Bi ndBuf f er (GL_ARRAY_BUFFER 0);

cuda@ aphi csA@_Regi st er Buf f er (&posi ti onsVBO CUDA, posi ti onsVBQ
cudaG aphi csMapFl agsWiteD scard);

» Map buffer to get CUDA pointer
* Pass pointer to CUDA kernel

* Release pointer

cudaG aphi csMapResour ces(1, &positionsVBO QDA 0);

si ze_t num byt es;

cudaG aphi csResour ceCet MappedPoi nt er ((voi d**) &osi tions, &ium byt es,
posi ti onsVBO CUDA) ; print Error (NULL, err);

/| Execute kernel

di n8 di nBl ock(16, 1, 1);

di n8 di m&i d(NUM VERTS / di nBl ock.x, 1, 1);

createVertices<<<di mxid, dinBl ock>>>(positions, anim NJM VERTS);

/1 Unmap buffer object
cudaG aphi csUnmapResour ces(1, &positionsVBO CDA 0);

Simple CUDA kernel for producing vertices for graphics

/1 CUDA vertex kernel
__global __ void createVertices(float4* positions, float tine, unsigned
int nun

unsi gned int x = bl ockl dx. x*bl ockD m x + threadl dx. x;

positions[x].w = 1.0;
positions[x].z = 0.0;
positions[x].x = 0.5*sin(kVarv * (time

X *2* 314/
positions[x].y = 0.5*cos(kVarv * (time + x * 2 * 3.14 /

+
+

}

The result of this exampleis shown in Figure 41. Our example is based on NVidia's exam-
ple“SimpleGL", but simplified to significantly briefer code.

110 OpenGL Interoperability

9.0 0 Cuda simple GL Interop (VEQ)

L A g w o s

FIGURE 41. Interoper ability example

This example only produces a set of vertices, but we are not limited to that. You can draw
surfaces, compute textures etc.

However, we should still ask ourselves if we should use CUDA with OpenGL. It is great
for visualizing, and faster than going over CPU, but do we really have a problem that ben-
efitsfrom CUDA or would it be better to doit all in OpenGL?Also, consider that OpenGL
has CUDA-like functionality built-in, namely Compute Shaders.

We conclude that CUDA can be coupled closer to OpenGL than the simple way we have
done before. Moving data back and forth is wasteful, there is performance to gain.

16.2 OpenCL and OpenGL

Interoperability between OpenCL and OpenGL is more complicated, sinceit requires a
changes in the setup phase, the context creation, where you need to add additional proper-
ties, and these properties are platform dependent.

With a modified context, the question is what information to share between OpenGL and
OpenCL. There are several options. Texture sharing, pixel buffer objects, map bufferswith
glMapBuffer, and vertex buffer sharing. According to Shevtsov [22], texture sharing isthe
most efficient choice so it should be preferred.

For doing this, you set up atexture as you always do with OpenGL, except that it should
beusing GL_NEAREST as filter parameter. Then we can create areferenceto it for
OpenCL with clCreateFromGLTexture().

It is notable that before you start working on the texture with OpenCL, you should call
glFinish() so OpenGL is no longer doing anything with it. Likewise, after OpenCL is
done, call clFinish() to be sure, to synchronize.

The calls glEnqueueA quireGL Objects() and glEnqueueRel easeGL Objects() are used to
give OpenCL control over a buffer.

OpenGL Interoperability 111

Thus, the computation is bracketed with calls like this:

gl Finish();

gl EnqueueAqui re@_hj ect s()

--- do your QpenCL work here ---
cl Fini sh()

gl EnqueueRel ease@.(hj ect s()

16.3 OpenGL, Compute Shadersand fragment shaders

Finally, let us have alook at the platforms where OpenGL interoperability isby far easiest:
Compute shaders and fragment shaders. Since we are working in the OpenGL context all
the time, interoperability is not an issue at all. The only real question is how to write to
data, like textures, but that isaminor issue. For writing to atexture that you also read
from, you use the ImageStore() call. When using fragment shaders, you typically use
FBOs so you are writing to textures all the time. You can also consider transform feedback
for modifying vertex buffers.

These are all standard operationsin OpenGL. Therefore, | choose not to go further on the
subject, asbeing relatively trivial. Just let me stress once more: OpenGL interoperability is
by far easiest for these platforms!

112 OpenGL Interoperability

17. Sorting on GPUs

Sorting is an important problem that is a challenge to do efficiently on GPUs. | will here
present simple but not efficient approaches, the popular bitonic sort and the challenging
but efficient QuickSort.

An important aspect when considering a sorting algorithm for parallel implementation is
whether the algorithm has data driven execution or data independent execution.

In data driven execution, the computing pattern depends on the data. This makes it harder
to parallellize. One such algorithm is QuickSort.

With dataindependent execution, the computing pattern is dataindependent and therefore
always the same. One such algorithm is Bitonic sort.

17.1 Bubble sort

Can the classic Bubble sort be made in parallel? We loop through data and compare neigh-
bors. It is extremely sequential in its usual form, and known to be inefficient.

However, aparalel variant of it isvery easy to make. For that, we may use a two-phase
method called “odd-even sort”. We use an “odd phase’ and an “even phase’” where we
compare even indexed items to either the higher or lower neighbor. Thisisfully sorted
after n phases.

AN EEE Even phase

HEEEEEEEEEEEEEEN Odd phase
O(n?)

FIGURE 42. Two-phase Bubble sort variant, odd-even sort

Thisisn’'t asbad asit first sounded. It is dataindependent and has excellent data locality. If
we have all data available in one chunk, thiswill work perfectly. However, on a GPU that

Sorting on GPUs 113

impliesthat it must fit in one single block. To overcome this, we would need to run multi-
ple kernel runs. And that iswhere it fails.

17.2 Rank sort

Rank sort isasimple and in its sequential form inefficient sorting algorithm. It requires a
set of itemsto sort where all values are different, or an extension to expand multiple values
to multiple locations.

The algorithm works like this: For each item, count the number of items that are smaller.
Then you know the position of that item in the sorted data.

Thisisvery easy to parallellize. You need one thread per item. Each thread loops through
the entire data set. When the thread is done, it storesits value in a destination array, using
the count of smaller items as index.

Being an O(n2) algorithm, doesn’t it perform badly? It is not atop performer, but it is not
asbad asit seems at first look. It is data independent, which makes it highly suitable for
paralel implementation. It also has excellent locality, with multiple threads accessing the
same item simultaneously. This makes it especially good for broadcasting (e.g. constant
memory), but also suitable for acceleration using shared memory.

Let uslook at how this can be implemented. For this example, | choose to use OpenCL.

The CPU part looks essentially the same as for all OpenCL programs (computing part
only):
int gpu_Sort(unsigned int *data, unsigned int |ength)
{
cl _int ciErrNum= C._SUCCESS,

size t |ocal WrkSi ze, gl obal WrkSi ze;
cl_memin_data, out_data;

in_data = cl OeateBuf fer(cx@Ulontext, C._MEM READ ONLY |
CL_MEM CCPY_HCOST PTR, length * sizeof (unsigned int), data, &ciErrNunj;
out data = cl GeateBuffer(cx@Ulontext, CL MEM READ WRTE, length *
si zeof (unsigned int), NULL, &ciErrNum;

if (ci ErrNum!= CL_SUCCESS)
printf("Error: Failed to allocate nenory on the device\n");

return ci BrrNum

| ocal VorkSi ze
gl obal Wr kSi ze

128; // Can be adjusted for best bal ance
| engt h;

[/ set the args val ues

ci ErrNum = cl Set Kernel Arg(gpgpuSort, 0, sizeof(cl_mem, (void *)
& n_data);

ci ErrNum = cl Set Kernel Arg(gpgpuSort, 1, sizeof(cl_mem, (void *)
&out _dat a);

114 Sorting on GPUs

ci ErrNum | = cl Set Ker nel Arg(gpgpuSort, 2, sizeof(cl_uint), (void *)
&l engt h);

if (ciErrNum!=CL_SUCCESS)

printf("Error: cl SetKernel Arg failed");
return -1,

}
gettimeof day(& s _gpu, NULL);

cl _event event;
ci BErr Num = cl EnqueueNDRangeKer nel (commandQueue, gpgpuSort, 1, NULL,
&gl obal Vor kSi ze, &l ocal VorkSi ze, 0, NULL, &event);

cl Wit ForEvents(1, &event); // Synch
gettimeof day(& e gpu, NULL);
print CLError(ci ErrNunj;

ci ErrNum = cl EnqueueReadBuf f er (commandQueue, out data, CL_TRUE, O,
length * sizeof (unsigned int), data, 0, NULL, NULL);
print CLError(ci ErrNunj;

cl Rel easeMent(hj ect (i n_dat a) ;
¢l Rel easeMenthj ect (out _dat a) ;
return ci ErrNum

}

Most of the CPU codeis similar to any OpenCL code. One detail deserves mentioning:
ThelocalWorkSize is set to 128 here. With 1024 or more threads per block (work group) a
larger number can make better use of the hardware.

Hereis simple kernel for the problem. All threads are independent and perform their task.

__kernel void sort(__global unsigned int *data, _ gl obal unsigned int
*outdata, const unsigned int |ength)
{

unsi gned int pos = 0;

unsigned int i;

unsi gned int val;

//find out how nany val ues are snaller
for (i =0; i < get_global _size(0); i++)
if (data[get _global id(0)] > data[i])
pos++;

val = data[get_global _id(0)];
out dat a[pos] =val ;

}

As mentioned above, this can be optimized using constant or shared memory. Hereisa
kernel that uses shared memory:

__kernel void sort(__global unsigned int *data, _ gl obal unsigned int
*outdata, const unsigned int |ength)
{

unsi gned int pos = 0;

unsigned int i, b;

Sorting on GPUs 115

unsi gned int val;
unsigned int this;

unsigned int _ local buf[128];
/1l 1oop until all data is covered
this = data[get_global _id(0)];
for (b =0; b <length; b += 128)
{ /1 Cet data
buf[get _local _id(0)] = data[get _|local _id(0) + b];

/1 Synch
barrier (CLK_LOCAL_MEM FENCE | CLK _G.CBAL_MEM FENCE) ;
//find out how nany val ues are snaller
for (i =0; i < 128; i+4)
if (this > buf[i]) // data[b +i])
pos++;

/1 Synch
barrier (CLK_LOCAL_MEM FENCE | CLK_G.CBAL_MEM FENCE) ;

outdata] pos] = this;

Note how the shared memory (__local) isused to read blocks of data, just asingle item per
thread, which isthen read by all threads. Also, synchronization (barrier) is now essential.

What is interesting here is really the performance of such a ssimple algorithm, and the
impact of the optimization. With 16384 items, | measured the following times (single-
threaded on CPU);

* CPU: 1303 ms
* Not optimized: 71 ms
e Optimized: 61 ms

Thiswas computed on aMacBook Pro with a2.3 GHz Intel Corei7 CPU and an NVIDIA
GeForce GT650M with 512 MB.

However, 16k itemsisarather small problem for a GPU. With 65536 items (64k) we seea
considerable difference:

e CPU: 28857 ms

* Not optimized: 535 ms

e Optimized: 272 ms

As the startup cost of the GPU computing gets less and less significant, the acceleration

compared to the CPU gets bigger, 21 times at 16k, 106 times at 64k. At the same time, the
impact of the optimization gets more and more significant.

116 Sorting on GPUs

17.3 Bitonic sort

Bitonic sort, also known as Bitonic Merge Sort, or Batcher’s Bitonic Sort, isa sorting
method based on the properties of bitonic sets. A bitonic set is defined as arange of num-
bers consisting of two monotonic sub-parts, varying in different direction, one increasing
and the other decreasing. See Figure 43.

Ken Batcher, who invented the algorithm [21], states (not exact quote):

“Let a be a bitonic set with a maximum at k, consisting of two monotonic parts, one
increasing, a- (fromitem 1 to k) and one decreasing, a+ (k+1ton)

Then two new sets can be constructed as

a' = min(ay, a+1), MiN(az, 8 2). ..

a’ = max(ay, ag. 1), Mmax(ap, 8). -

These two sets are also bitonic and max(a’) < min(a”).”

The algorithm is based on this property. It lets us split the data set in exact halves. See
Figure 44. Since these halves are also bitonic, they can also be split in half and eventually
the entire data set is sorted.

FIGURE 43. A bitonic data set issimply a“pyramid”, two sorted halves, sorted in different
direction

—
a at A

FIGURE 44. By comparing each side with the other, two new bitonic sets are created.

In order to do this, we just have to get to the first bitonic set. But this can, too, be made by
bitonic sort! Start by sorting very small parts (pairs) to make small bitonic sets. These are
sorted alternating increasing or decreasing, so each pair of subsequences form abitonic set

Thefull algorithmisillustrated in Figure 45. Note the grouping. Each part sortsthe datato
acertain size, and then the following stages can use that data for sorting to parts of double
size of the previous level. Figure 46 shows the algorithm with example data.

Sorting on GPUs 117

EIRAEIRIEIRIEIED

EIEIRIRIEIEIRIERD

EAEIEIEIRIRIRIRD
EdRAEIRIEIREIRIED

FIGURE 45. Bitonic sort. Phases marked, each producing sorted data for a part of the data.

I B s Tl B s e e
s Sl b e e i
s e e e e PR e
ci e —hiehe it e Bl
S e e
S A A R 1 Tl e
1 s te e [t PH s bl
T e L e e M 0

FIGURE 46. Bitonic sort with example data.

| found the code below on-line. If | understand the comments right, it was written by
Nikos Pitsianis. [20] Since thisimplementation relies on nested for loops, it is very suit-
able for converting to GPU code. Most other examplesthat | find are written as recursive
code, which is not only likely to be less efficient on the CPU but also much harder to par-
alelize.

static void exchange(unsigned int *i, unsigned int *j)

{
int k;
k = *i;
*i :*j;
*] =k,
}

void bitonic _cpu(unsigned int *data, int N

118 Sorting on GPUs

unsigned int i,j,k;
printf("CPU sorting.\n");
for (k=2;k<=N k=2*k) // Quter |oop, double size for each step
for (j=k>>1;j>0;j=>>1) // Inner loop, half size for each step
for (i=0;i<Ni++) // Loop over data

int ixj=i"j; // Calculate indexing!
if ((ixj)>i)
{
if ((i&)==0 & data[i]>data[ixj])
exchange(&data[i], &ata[ixj]);
if ((1&)!=0 &R data[i]<datalixj])
exchange(&data[i], &ata[ixj]);

}
}
}
}

From the same source, | could also find a recursive implementation. That code is bigger,
most likely slower due to too many function calls, and irrelevant for us since it is much
harder to rewrite to GPU code.

The code above is rather so compact that it is hard to understand. The “magic” isto get
those steps right, which is made with afew simple calculations to figure out whether we
are in the upper or lower part of apair that should be compared, and what direction it
should go. Thisis calculated from the stage number and stage length.

Bitonic sort is data independent. There is no worst case, it aways runs in the same time

for acertain size. It is pretty fast, O(nlog?n) (Why?) However, thisis higher complexity
than the fastest algorithms, which run in O(nlogn).

A critical question isthat of locality. It has good locality in some parts, namely the parts
where the subpart being sorted fits in a single block. However, if thisis not the case, we
need to make multiple kernel runs. This can be elaborated on quite a bit. We can handle
several comparisonsin asingle thread in order to handle more datain asingle block. That
way we can run rather large parts of the algorithm in each block, but we should avoid to
not leave SMsidlejust to avoid multiple kernel runs. We need to find the best balance to
optimize the problem.

17.4 QuickSort

QuickSort is avery popular algorithm for sorting. It is very efficient for sequential imple-
mentations. It can be summarized as follows (see Figure 47):

* Choose apivot item

» Compare to pivot, form two subsets.

Sorting on GPUs 119

» For each subset, sort subset with QuickSort.

Choose
pivot
~/ 1/ [N
\
Compare to pivot, form two
subsets, repeat
v| v S ™

FIGURE 47. QuickSort; Choose pivot and split

The agorithm is data driven; it makes a data dependent reorganization. The execution and
data sizes are non-uniform, the recursion goes to different depth in different parts.

QuickSort is fast: O(n-logn) in typical cases, but it is O(n?) in the worst case.

It has afancy name - nobody expect QuickSort to be nothing but optimal. It isindeed
good, but not perfect. The data dependent execution makesit less suited for parallel imple-
mentation. QuickSort on GPU was initially ignored as impractical, but CUDA implemen-
tations exist. This can be motivated by GPUs becoming increasingly flexible, but the GPU
implementations are actually perfectly suited even for early CUDA capable GPUs.

The description below isloosely inspired by Cederman & Tsigas[11].

To make a parallel QuickSort, we should consider each stage:
* Pivot selection.

* Partitioning

» Concatenate result

17.4.1 Pivot selection

Usually just grab one. Thereislittle parallelism in this stage, more than that it needsto be
performed for each current subsection.

17.4.2 Comparisons

These can easily be run in parallel. On thread for a single comparison works well on a
GPU. What is more important iswhere to put the result. Use an intermediate array of bool-
eans. After each comparison, store the result in the array. Note that we can not immedi-
ately put the data items densely packed in two arrays because that would cause racing
problems. If we try doing it with atomics, we would serialize the access and performance
would suffer.

120 Sorting on GPUs

17.4.3 Partitioning

Thisisthe critical stage, the onethat is hardest to run in parallel. For doing that, we can
use aparallel prefix sum (see chapter 15.2).

Once we have filled the array of booleans above, we can do the partitioning using the
array. In order to do that, we need to perform a parallel prefix sum, making a cumulative
sum of the number of zeroes (false) and one for the number of 1's (true) in the array of
booleans. This means that the prefix sum gets sums that tell exactly how many zeros och
ones that exist to the left of an item. This number tells athread exactly where to store an
item.

Thus, the problem turnsinto a binary parallel prefix sum. Figure 48 shows an example
based on the more general parallel prefix sum in chapter 15.2.

o
w
o
o
EN
o
w
o
o
EN

T
1 A

FIGURE 48. Binary parallel prefix sum for calculating partitioning

For every item corresponding to a 1 in the left figure, the prefix sum in the right can be
used as local index in the data array.

Like with reduction algorithms, the parallel algorithm above should be replaced with
sequential versions when the amount of datain each part is small enough.

17.4.4 Concatenateresult

Concatenation is a matter of storing the size of each section in partitioning. With proper
bookkeeping of data sizes, each subpart can store its data in proper places.

We conclude that QuickSort is not impossible, but more complex than before.

17.5 Recursion, Concurrent kernels, Dynamic Parallelism

QuickSort iswritten as arecursive process, but GPUs can't do recursion efficiently, or can
they? An option for GPU algorithms that may suit sorting well is recursion though concur-
rent kernels. These are available since Kepler, that is compute capability 3, which is cur-

Sorting on GPUs 121

rently (2018) the bottom line for GPUs actively supported by NVidia. This alows kernels
to spawn new kernels, so kernels are no longer only launched from CPU!

This means that we can perform recursion by spawning new kernels! This can mean less
work for the CPU to manage the computation.

122 Sorting on GPUs

18. Imagefilters

Since GPUs are designed for synthesizing images, other image technologies are obvious
applications for GPU computing, and the task of filtering images is perhaps the most fun-
damental problem of this kind.

I will focus on linear filters, that isfilters that can be applied as convolution. | assume that
you know the definition of convolution, which isavery common concept in signal pro-
cessing.

Convolution filters include low-pass (blur) filters (Figure 49), gradient filters and Lapla-
cian. The simplest low-pass filter is the box filter, while what you most likely want isa
gaussian filter.

FIGURE 49. Example of low-passfilter on the dandelion image.

In Figure 50, we see a 5x5 box filter (left), a 5x5 approximation of agaussian (middle), a
gradient filter (a.k.a. Sobel filter, top right) and a Laplacian (bottom right).

Imagefilters 123

Note the normalization at the corner! For the low-pass filters, we should normalizein
order to create aresult with the same average level asthe original. How the high-pass fil-
ters should be normalized is not as obvious.

_ Gaussian And others
Box filter approximation
1101
T 1111 114|641 210]2
1111111 4116|2416 | 4 1101
11111 6 (2436|246 -
T 1111 4116|2416 | 4 0 110
1 1 1 1 1 /25 114|641 /256 1 4 1
o|-110

FIGURE 50. Linear image filters, convolution filters.

These convolution kernels can be applied as is and produce the expected results. However,
the number of computations and memory accesses can get pretty large as kernels get big-
ger. Let us continue with possible ways to optimize them.

Now, how does this map to the GPU?We can trivially apply thefiltersjust by accessing all
pixelsin the neighborhood, multiplying with the weight and get a result.

Making a more optimized version can be made using shared memory. The solution is
slightly more complicated than the matrix multiplication. Just like for that, we read
patches to shared memory and have multiple threads use that data. However, each patch
now needs to access an input that is larger than the output patch. The requires some con-
Sideration.

Each block should be responsible for the output to a specific output patch. Each thread
should be responsible to reading a part of the input. | would balance this work as well as
possible, having each thread reading as equal amounts of memory as possible. However,
what is likely to be more important is that the reads are coalesced. These two demands are
in no conflict with each other. Rather, they fit well aslong as you are not tempted to make
strided accesses. If you have 2x the output, have all threads read one item each in succes-
sion, and then the next sequence.

Also, don’t read image data one byte at atime. One 4-byte pixel at atimeisagood chunk.

Remember that athread does not have to read the same pixel into shared memory that it
will output! Giving each thread an equal amount of data (or less) to read to shared memory
is both easy and efficient. The amount of work for each thread should be as balanced as
possible.

Don't forget to plan for the border of the patch, the overlap between patches. With an NxN
filter, you will get a (N-1)/2 overlap on each side.

124 Image filters

18.1 Separablefilters

Two convolution kernels applied after each other on the same signal (image) will produce
the same result as the convolution of the two kernels applied on the image. A common
way to accelerate filters, not least LP filterslike this, is to design separable filters, two or
more filters that in combination will produce the desired filter, and since these filters are
smaller, they may provide good optimizations. Thisis particularly trueif we can split a2D
filter into two 1D filters.

We can trivially split an NxN box filter in two, one in each direction, 1xN and Nx1.
Applying these in succession will produce the same box filter. See Figure 51.

1 111111
1 11111
1 Ol 12|12l 21] =1]2|1l212]|1]1
1 /5 1111111
1| e AN O I R T

FIGURE 51. Separ able box filter.

The same principle holds for some more complicated filters. The gaussian approximation
shown in Figure 50 is such afilter.

1 114l6|al1
4 4| 16| 24| 16| 4
6| 0| 1|4|6|a|1|=1_6l|24]36|24|68
4 16 4| 16| 24| 16/ 4
e 11416141 55

FIGURE 52. Separ able gaussian filter.

However, we can take this to extremes! The gaussian in Figure 50 can be separated all the
way down to small 1x2 filters. See Figure 53.

Thisisnot only an elegant trick. This can be mathematically proven, using the Central
limit theorem.

Image filters 125

o | d
I
N
@
N
I
@
@
®

/4 /4

/16

FIGURE 53. Multiple box filter s approximating a gaussian.

More intuitively, you can compare this to the statistical outcome when rolling dice. If you
roll asince 6-sided die, you have 6 outcomes, all with the same probability. If you roll two,
the sum has a probability distribution with the shape of a pyramid. With three dice, you get
adistribution that starts to look gaussian, just like the 1x5 filter in Figure 53

18.2 Non-linear filters

Non-linear filters are all filters that can not be expressed as a convolution. One such filter
Is the median filter. The median filter outputs the median of a neighborhood. In the 1D
case, that means that the median of the set [1,1,2,7,9] is 2 while the average is 4. In image
processing, an application of median filters is noise suppression. The method suppresses
noise while preserving edges better than alow-pass filter does.

We need some way to find the median. A naive way that works well for small neighbor-
hoods is sorting. For larger amounts of data, a histogram based solution is more efficient.

It should be noted that a 2D median filter is not separable! You can, however, make a sepa-
rable approximation, making a 1D median in one dimension, and then the median of the
result. That is, however, only as approximation.

18.3 Edge checks, clamping

When applying afilter kernel to an image, you will unavoidably reach outside the image.
This has to be handled somehow.

If you use texture memory (chapter 9.5), you can take advantage of the hardware edge
tests, which will give agood result automatically, and avoid wasting code and cycles on
edge tests. For this, you can use clamp or repeat. | would recommend clamp. That will
mean that we create an estimation of the first pixels outside the image. Repeating the same
pixels as the edge is a pretty decent estimate.

One alternative, which | don’t like, isto skip edges atogether, leaving them without filter-
ing or not producing any output. That will shrink your image or produce visible artifacts. |
can’'t recommend that.

126 Image filters

But you can do clamping in software too! In my code for the current (2018) lab 5in the
TDDD56 course, thisis solved for you, like this (un-optimized code):

if (x < imagesizex & y < inagesizey)

[/ Filter kernel (sinple box filter)
sunx=0; suny=0; sunz=0;
f or (dy=-ker nel si zey; dy<=ker nel si zey; dy++)
f or (dx=- ker nel si zex; dx<=ker nel si zex; dx++)
{
/1 Use max and nmin to avoid branchi ng!
int yy = mn(max(y+dy, 0), imagesizey-1);
int xx = mn(max(x+dx, 0), inagesizex-1);

sunx += i mage[((yy) *i magesi zex+(xx)) *3+0] ;
suny += i nage[((yy)*i magesi zex+(xx)) *3+1] ;
sunz += i nage[((yy)*i magesi zex+(xx))*3+2] ;

out [(y*i magesi zex+x) *3+0] = sunx/ di vby
out [(y*i magesi zex+x) *3+1] = suny/ di vby
out [(y*i magesi zex+x) *3+2] = sune/ di vby;

The clamping is made with the min() and max() functionsin the middle. Note that | use
min() and max() rather than if statements. Why? It avoids branching! Branching may
calse extra processing, but amax or min operation can be made without branching.

18.4 Color images

In the text above, | discussimages asif they were monochromatic. Most images are, of
course, color images. They are usually represented in RGB format. There are other repre-
sentations, like HSV, which can be advantageous for analysis, but | will assume RGB. The
three channels are usually processed independently.

Theimage dataisusually stored in interleaved format, “chunky pixels’. A common format
isto use one byte per color plus optimally one for alpha (transparency) which requires 24
or 32 hits, that is 3 or 4 bytes.

However, this may not be so practical when processing. GPUs are not made to process
bytes, but are best at 32-bit numbers. Perhaps most importantly, if you only load 3 chan-
nels, and load one at atime (which | deliberately do in the code example above) you can
end up with a strange memory access pattern, with no coalescing. It would be preferable to
load an entire pixel at atime, plusinclude the alpha even if you are not using it.

18.5 Scatter vs. gather

When writing filters, we have one important choice: To make a“scatter” or “gather” filter.
The “scatter” filter takes the center pixel, produces the product with each weight and adds
the result to aneighbor, while a“gather” filter takes each pixel in the neighborhood, multi-
pliesit with aweight, and stores the result as the center pixel of the output.

Image filters 127

In fragment shaders, the shader produces the output for one pixel. Although it is possible
for a shader to write into other pixels, the setup is really made for gather solutions.

How about when using CUDA, OpenCL or compute shaders?You should still prefer
gather. It requires less synchronization, which comes for a cost. A scatter solution will eas-
ily get racing problems.

128 Image filters

19. Questions

This chapter is dedicated to exercises, various questions and tasks that you can use for
checking that you picked up what | think you should know. It is a collection of past exam
guestions, and of course | may reuse them in the future. For the 2018 edition, | will not
have timeto find all duplicates or disturbingly similar questions. | am sorry about that, but
| think you would be more sorry about not getting this material.

19.1 Lecturequestions

This collection of questions go all the way back to my PhD course in GPU Computing. |
still think they are anice and still use them as “teasers’ for my lectures. Thereis currently
an overlap between these and the questions bel ow.

19.1.1 Lecturel
1. How can a GPU be much faster than a CPU?
2. Why isthe G80 so much faster than the previous GPUs (e.g. 7000 series)?

3. A texturing unit provides access to texture memory. What more isit than just another
memory?

4. What current trend is driven by the GPU evolution?

19.1.2 Lecture?

1. What concept in CUDA corresponds to a SM (streaming multiprocessor) in the archi-
tecture?

2. How does matrix multiplication benefit from using shared memory?

3. When do you typically need to synchronize threads?

Questions 129

19.1.3 Lecture3

1. Why can using constant memory improve performance?

2. What is CUDA Events used for?

3. What does coalescing mean and what should we do to get a speedup from coalescing?

4. How can you efficiently calculate the maximum of a dataset in parallel?

19.1.4 Lecture4

1) What kind of devices will OpenCL run on?

2) What does an OpenCL work group correspond to in CUDA?

3) What geometry istypically used for shader-based GPU computing?

4) Are scatter or gather operations preferable? Why?

19.15 Lecture5

1) How can you efficiently compute the average of a dataset with CUDA?

2) In what way does bitonic sort fit the GPU better than many other sorting algorithms?
3) What is the reason to use pinned memory?

4) What problem does atomics solve?

19.2 GPU Algorithms and Coding (GPU Algorithms)

These questions tend to ask for more algorithmic answers. Therefore, they tend to be the
hardest. In older exams, | had asingle 5 point question for this section. Later, | tend to split
it in two, which makes life easier for me as well as for students.

The following CUDA kernel performs arank sort (asin lab 6). However, the code is inef-
ficient. Rewrite it for better performance. For full score, the code should be able to accept
any length. Make comments to clarify what you do and why.

You may make any assumptions you like about block size, document as necessary.

Minor bugs, syntax errors, as well as mistakes in names of built-in symbols are generally
ignored, no point deductions for things that you would easily look up in documentation
(like, how many underscores you should use for that particular modifier or exact nameson
function calls) or that istrivial to fix on the first compilation (within reason). Your effort

130 Questions

should be on describing your algorithm properly, including important concepts. Relevant
pseudo-code qualifies for score (partial or even full depending on detail and relevance).

__global __ void gpu_Sort (unsigned int *data,
unsigned int *outdata, int length)
{

unsi gned int pos = O;
unsigned int i, ix;
i X = blockldx.x * blockD mx + threadl dx. X;
//find out how nany val ues are snaller
for (i =0; i <length; i++)

if (data[ix] > data[i])

pos++;

outdata[pos] = data[ix];

Matrix transposing is an operation with no computations, but its efficiency depends
heavily on a certain GPU computing feature. Which feature, why isit important? With
code or pseudo code, describe an efficient way to implement matrix transposing. (5p)

(Hint: The operand matrix is given in global device memory of the GPU. The matrix trans-
pose needs not be done in-place.)

A histogram is an array h that records for each possible (integer) value the number of its
occurrences in alarge integer-valued data structure, e.g., an array a. It can be computed
likethis:

for all elements i in a] do
h[a[i]] += 1

(8) With what feature can this algorithm be made to run in parallel in CUDA? (1p)

(b) Suggest a different approach that should give good (better) performance and does not
rely on this feature (written in "plain” CUDA, OpenCL or shaders). (2p)

(c) Write this algorithm in CUDA or OpenCL code. (Minor syntax errors are ignored.)
(2p)

Describe, in code or sufficient detail, how matrix multiplication of large matrices can be
implemented on the GPU. (GPU kernel code only.) Emphasize the most vital consider-
ations for good performance. (5p)

Write code/pseudo-code for computing a 2-dimensional color imagefilter of size5x 5
pixelsin areasonably optimized way. Clearly describe what optimizations you do and
why. The filter weights should be specified (i.e. a5 x 5 matrix), and should be normalized

Questions 131

properly. Full score requires a close-to-real-code solution taking more than one optimiza-
tion technique into account. You may use CUDA-style syntax or OpenCL - style syntax as
you please.

(8) A Mandelbrot algorithm is given as sequential code as follows:
for (int x = 0; x < SIZE Xx++)

for (int y =0; vy < SIZE y++)
data[x, y] = conputeFractal (x, Y);

that is, the fractal computing code is already available. How can you port thisto an effi-
cient GPU implementation? Outline vital parts of the code. (2p)

(b) Describe, in pseudo code and figures, how an optimized matrix multiplication can be
performed on the GPU. Your answer should focus on structure and vital features rather
than detailed code. (3p)

(@) A large matrix is given, stored in global GPU memory. Describe, using code or pseudo
code, an efficient way to transpose it on the GPU. The transposing does not have to be
donein-place. Vital features of the algorithm should be clearly stated. (3p)

(b) The following algorithm (given as OpenCL code) performs rank sort on the GPU, a
simple but not very efficient sorting algorithm for data with unique keys. However, it hasa
bug, plus, it can be significantly accelerated.

__kernel void sort(__global unsigned int *data,
const unsigned int length)
{

unsigned int pos = 0;

unsigned int i;

unsi gned int val;

[/find out how nany val ues are snaller

for (i =0; i < get_global_size(0); i++)
if (data[get global id(0)] > data[i])

pos++;
val = data[get_global id(0)];
dat a[pos] =val ;

}
What is the bug? (1p)

(c) Describe away to accelerate the code. (2p)

(a) Describe, using code or pseudo code, how to transpose large matrices efficiently on the
GPU. You may be assume sgquare shaped matrices. (2p)

132 Questions

(b) Describe, with code or pseudo code, how reduction can be used to cal cul ate the maxi-
mum value of alarge array of scalar values on a GPU. (3p)

(a) Write code or detailed pseudo code for calculating the maximum value of a dataset
using reduction on a GPU. Both GPU code and the relevant CPU code should be included.
The approach should be reasonably optimized. Point out the most important optimization
considerations and mark where in the code this occurs. (3p)

(b) A Mandelbrot algorithm is given as sequentia code as follows:
for (int x = 0; x < SIZE Xx++)

for (int y =0; vy < SIZE y++)
data[x, y] = conputeFractal (x, Y);

that is, the fractal computing code is already available (you do not have to write it). How
can you port this to an efficient GPU implementation? Outline vital parts of the code, both
CPU and GPU sides. (2p)

19.3 GPU Conceptual Questions (AKA GPU Architecture concepts or
GPU Computing)

Thisisthe section with questions that are (generally) not supposed to be answered with
code or code-like descriptions.

(8) A GPU computation calculates 2048 elements. Each element can be computed in its
own thread. The algorithm is not sensitive to any particular block size. It may run on many
different GPUs. What number of threads and blocks would you use in such a case? Moti-
vate your answer. (2p)

(b) Describe how computing is mapped onto graphics in shader-based computing (ex-
pressed as kernel, input data, output data and iterations over the same data). What limita-
tions are imposed on your kernels compared to CUDA or OpenCL? (3p)

(@) List three different kinds of GPU memory and describe for each their characteristicsin
terms of performance, usage and accessibility. CUDA terminology is assumed, please note
if you use OpenCL terminology. (3p)

(b) If you have amodern GPU with 512 cores, how much speedup can you expect to get?
Yes, it depends on the algorithms, but in what way? Make a reasonabl e assessment and
back that with hardware and agorithm based arguments. (2p)

Questions 133

(a) Describe the mgjor architectural differences between a multi-core CPU and a GPU
(apart from the GPU being tightly coupled with image output). Focus on the differences
that are important for parallel computing. (3p)

(a) Describe three sorting agorithmsin terms of their suitability for GPU implementation.
Computational complexity should be considered. (3p)

(b) The GPU design in centered around a number of features vital for its primary use,
graphics. List three such features, as significant as possible, which are aso important for
GPU computing and assess their importance. (2p)

(@) In many algorithms, one thread can produce values that affect other threads. Suggest
two different ways to make sure that the results are produced without conflicts. The two
approaches do not have to be relevant for the same situations. What is the performance
impact of each approach? (Only dependencies within the same block are taken into
account here.) (3p)

(b) You are given the task of implementing an algorithm that you decide needs to be imple-
mented in anumber of blocks, but there are dependencies between the blocks. How can
you handle dependencies between different blocks? (2p)

(a) Describe how Bitonic Merge Sort can be implemented on a GPU. A figure to clarify
the algorithm is expected. Your solution must be able to handle large data sets (i.e. 1700000
items or more). (3p)

(b) Why can coal escing improve performance? How can you take advantage of coalescing
for an agorithm with a non-coalesced memory access pattern? (2p)

(a) Motivate why GPUs can give significantly better computing performance than ordinary
CPUs. Isthere any reason to believe that this advantage will be reduced over time? (2p)

(b) Compare shared memory, global memory, constant memory and register memory in
terms of performance, usage and accessibility. CUDA terminology is assumed, please note
if you use OpenCL terminology. (3p)

(a) Describe the major architectural differences between a multi-core CPU and a GPU
(apart from the GPU being tightly coupled with image output). Focus on the differences
that are important for parallel computing. (3p)

134 Questions

(b) Compare shared memory, global memory and register memory in terms of perfor-
mance, usage and accessibility. CUDA terminology is assumed, please note if you use
OpenCL terminology. (2p)

(b) Describe how reduction can be used to cal cul ate the maximum value of alarge array of
scalar values on a GPU.

Also give at least two examples of other problems that are solved by reduction. (2p)

(b) List three different kinds of GPU memory and describe for each their characteristicsin
terms of performance, usage and accessibility. CUDA terminology is assumed, please note
if you use OpenCL terminology. Constant memory should not be included since that isa
Separate question below. (2p)

(@) Outline how reduction isimplemented in an efficient way, using text and figures. You
may assume that the reduction problem in question deals with finding the maximum of a
large dataset. Assume that the dataset can be of highly varying size, including very large.

(2p)

(b) Three important kinds of GPU memory include shared (local), global and texture
memory. Describe these in terms of performance, usage and accessibility. CUDA termi-
nology is assumed, please note if you use OpenCL terminology. (2p)

(b) Why can coalescing improve performance? How can you rewrite an algorithm with
non-coalesced memory access patterns to take advantage of coalescing? (2p)

(a) Shared memory is fast temporary storage, but its access times still depends on some-
thing. What do you need to do to get the fastest possible shared memory access? (2p)

(b) Explain why isit not possible to synchronize between blocks/work groups. What can
you do about it? Give a demonstration of the problem and its solution based on bitonic
merge sort. (3p)

(b) Some image filters are separable. A typical caseisto split afilter into one horizontal
and one vertical filter, often of the same size. This has potential to improve performance.
However, the two parts may each run with significantly different performance, one much
faster than the other. Suggest alikely reason why this could happen. (2p)

Questions 135

19.4 GPU Quickies

Thisis my section for “fast points’, both for me and for the students. One point each, and
the answer istypically just asingleline.

memory
(@) Inwhat way(s) is atexturing unit more than just another memory? (1p)

(c) Texture memory providesinterpolation in hardware. Why isthis a questionable feature
torely on? (1p)

(c) How can pinned (page-locked) CPU memory improve performance? (1p)

(c) How can anon-coalesced memory access be converted to a coalesced memory access?
(1p)

(e) When can constant memory give a performance advantage? (1p)

(b) Why can using constant memory improve performance?

(c) What kind of algorithms benefit from using constant memory? (1p)

(b) In what way(s) is atexturing unit more than just another memory? (1p)

() What do you have to do for achieving better performance by coalescing? (1p)
(b) Constant memory is fast under a certain condition. Which condition is that? (1p)

(c) Texture access provides two unique features that we otherwise do not have. Name one,
and describe with a brief sentence. (1p)

thread management

(a) Imagine a CUDA programmer who uses the practice to always use as big block size as
possible. Why will this not always result in the highest possible performance? (1p)

(e) Can you rely on any threads/work groupsin a GPU computation to be literally exe-
cuted in parallel? If so, which ones? (1p)

(e) When do you typically need to synchronize threads? (1p)

(e) Why isload balancing often not a (big) problem in GPU computing, e.g. when comput-
ing fractals? (1p)

history and development

136 Questions

(b) List and briefly explain (short comments of afew words) the importance of two major
features of the Fermi architecture that were not available in earlier GPUs. (1p)

(e) Explain why the G80 architecture had significantly higher performance than earlier
GPUs. (1p)

() Why isthe G80 so much faster than the previous GPUs (e.g. 7000 series)

(d) Suggest one important feature in GPUs that was added for performing some specific
graphics effect. Name the effect too. (1p)

(a) GPUs have evolved around the needs of graphics applications. Give an example fea-
ture, apart from multiple threads, that was added for the needs of graphics which is valu-
able for GPU computing. (1p)

shaders

(e) For what kind of problems are shader-based GPU computing most suitable? Give one
specific example. (1p)

(c) What kind of shadersis most interesting for GPU computing? (What part of the pipe-
line?)

(@) In graphics, datais alwaysinput as geometrical shapes. What geometry isusually used
for fragment shader based GPU computing?

(d) In GPU Computing using the graphics pipeline, in what stage are the computations
usually carried out? (1p)

(c) If you want to process alarge array in fragment shader based computing, how will that
data typically be represented (stored in memory)? (1p)

platforms

(b) Trandlate the following CUDA concepts to corresponding concepts in OpenCL:(1p)
I. shared memory

ii. block

iii. thread

(d) Give one argument each in favor of using

i. CUDA

ii. OpenCL

lii. GLSL

Questions 137

for agenera computing task (which can benefit from a parallel implementation).

(e) List three different kinds of hardware that OpenCL runs on. (Similar systems by differ-
ent vendors count as one.)

(b) What does a Streaming Multiprocessor correspond to in CUDA and OpenCL, respec-
tively? (1p)

(c) With shader-based GPGPU computing, suggest one limitation that preventsit from
performing as well as CUDA and OpenCL. (Thismay apply to certain GPU generations,
not necessarily the latest.) (1p)

(b) What concept in CUDA corresponds to a streaming multiprocessor (SM) in the GPU
architecture? (1p)

(d) List three different kinds of hardware that OpenCL runson. (Similar systems by differ-
ent vendors count as one.) (1p)

(e) Compare OpenCL and Compute Shaders in terms of portability. You should know at
least one strong point of each. (1p)

(e) State one advantage with CUDA/OpenCL over fragment shader based GPU comput-
ing. (1p)

misc
(8) Describe how multiple CUDA streams can be used to accel erate a computation. (1p)

(a) Where does GPU computing fit in Flynn's taxonomy? What name(s) does the architec-
ture type have according to Flynn’s taxonomy? (1p)

(d) Some operations can be implemented either as scatter or gather operations. Which is
most suitable for parallel implementation (on GPUs in particular)? Why? (1p)

(b) What particular algorithm feature makes bitonic merge sort particularly suitable for
parallel implementation? (1p)

(d) Some operations, like image filters, can be implemented using scatter or gather algo-
rithms. If you use scatter, what specific operation must be used to make it work correctly?

(1p)

(@) In CUDA, you can use the modifiers__global _and __device . What isthe differ-
ence between them? (1p)

(& In CUDA, you can use the modifier __host__. What does this signify? (1p)

(@) In CUDA, you can use the modifier __globa . What does this signify? (1p)
(@) In CUDA, you can use the modifier __device . What does this signify? (1p)

138 Questions

20. Final words

For along time, | thought | would never write this book. Other books appeared, the univer-
sity disencourages book authoring and considersit not qualifying and impliesthat it is
done to rip off money off the students.

That is not the purpose with any of my books. My books are written with the only purpose
to improve the courses with fitting course material, at low or even no cost. | provide my
books as low-cost paperbacks as well as on-line digital versions, the latter for free.

Oneimportant help in making this book, and keeping the cost low, isthe new on-line book
production facilities, like CreateSpace and Publit. | can now produce a good-looking book
much easier than before, for alower cost, and perfect control over its appearance. With
those tools, authoring felt easy and fun, and | got new inspiration to write this. | hope you
enjoy it!

| went up one morning,
sat on the porch in the dawn sun
and pondered about some idea.
| took up my notebook and scribbled down my thoughts.
Then | read what | had written
and | saw, that there was a thought in it
and only then | knew for sure

that | exist.

Final words 139

140

Final words

21. References

[1] 1. Ragnemam, “Polygonsfeel no pain”, 2008/2017.

[2] Erik Pettersson, “Signal- och bildbehandling pd moderna grafikprocessorer”, LiTH-
| SY-EX--05/3761--SE, 2005.

[3] NVidiaGPU Programming Guide, http://devel oper.download.nvidia.com/
GPU_Programming_Guide/GPU_Programming_Guide.pdf

[4] A. Blackert, “Evauation of Multi-Threading in VVulkan”, thesis performed 2016.
[5] colfaresearch.com/xeon-2017 (retrieved 2018-02-26)
[6] www.nvidia.com/sv-se/titan-v/#specs (retrieved 2018-02-26)

[7] Kenneth E. Hoff 111, Tim Culver, John Keyser, Ming Lin and Dinesh Manocha, “ Fast
Computation of Generalized Voronoi Diagrams Using Graphics Hardware”, in Computer
Graphics, SIGGRAPH Annua Conference Proceedings, ACM, 1999.

[8] E. Scott Larsen, David McAllister, “Fast Matrix Multiplies using Graphics Hard-
ware’, in Proceeedings, Supercomputing 2001.

[9] David M. W. Powers, “Parallelized QuickSort with Optimal Speedup”, Proceedings
of International Conference on Parallel Computing Technologies, Novosibirsk, 1991.

[10] NagaK. Govindaraju, Nikunj Raghuvanshi, Michael Henson, David Tuft, Dinesh
Manocha, “A Cache-Efficient Sorting Algorithm for Database and Data Mining Computa-
tions using Graphics Processors’, technical report, University of North Carolina, Chapel
Hill, 2005.

[11] Daniel Cederman, Philippas Tsigas, “ GPU-Quicksort: A Practical Quicksort Algo-
rithm for Graphics Processors’,

[12] Erik Sintorn, UIf Assarsson, “Fast parallel GPU-sorting using a hybrid algorithm”,
Journal, of Parallel Distributed Computing 68, pp 1381-1388, October 2008

References 141

[13] Jorgen Ahlberg, “Model-based Coding”, PhD thesis, Linkdping University, 2002.

[14] Introduction to Data-Oriented Design, DICE, www.dice.se/wp-content/upl oads/
2014/12/Introduction_to_Data-Oriented_Design.pdf (retrieved 2018-03-02)

[15] Mark Harris, “How To Access Global Memory Efficiently in CUDA C/C++ Ker-
nels’, NVIDIA Developer Blog, devblogs.nvidia.com/how-access-global -memory-effi-
ciently-cuda-c-kernels (retrieved 2018-03-05)

[16] CUDA C Best Practices Guide 2018, docs.nvidia.com/cudal/cuda-c-best-practices-
guide/index.html (retrieved 2018-03-05)

[17] Mark Harris, “Optimizing paralel reduction in CUDA”, devel oper.down-
load.nvidia.com/assets/cudalfiles/reduction.pdf (retrieved 2018-03-26)

[18] Marco Fratarcangeli, “ Cloth ssimulation using GLSL, OpenCL and CUDA”, Game
engine gems 2, 2011.

[19] Torbj6rn Sérman, “Comparison of Technologies for General Purpose Computing on
Graphics Processing Units”, LiTH-ISY-EX--16/4923--SE, 2016.

[20] Bitonic sort implementation by Nikos Pitsianis, www2.cs.duke.edu/courses/fall 08/
cps196.1/Pthreads/bitonic.c (retrieved 2018-05-27)

[21] Ken Batcher, “ Sorting networks and their applications’, Spring Joint Computer Con-
ference, 1968, pp 307-314.

[22] Maxim Shevtsov, “OpenCL and OpenGL Interoperability Tutorial”, soft-
ware.intel.com/en-us/articles/opencl-and-opengl-interoperability-tutorial (ret 2018-05-03)

[23] Mark Harris, “Paralel Prefix Sum (Scan) with CUDA”, NVidia, 2007 (retrieved
spring 2018)

[24] Guy E. Bldloch, “Prefix Sums and Their Applications’, in J.H.Reif (ed), Synthesis
of Parallel Algorithms, Morgan Kaufmann, 1990.

[25] Adam Lake, “Getting the most from OpenCL 1.2: How to increase performance by
minimizing buffer copies on Intel Processor Graphics’, Intel, 2014 (retrieved 2018)

[26] Mark Harris, “How To Overlap Data Transfersin CUDA C/C++”, NVIDIA Devel-
oper Blog, devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc (retrieved 2018)

[27] Sanders, J., Kandrot, E, “CUDA by example’, Addison-Wesley, 2010

142 References

22. Index

Numerics

SAFX VOOUOOLooooe s 10
A

ATOMIC FUNCLIONS ... 62
BEOIMICS........oooeeeee e 54, 62
B

DENK CONTIICT..........coooo s 62
DBITIEY ... e 116
BLOCK ... 36, 40, 41
BIOCKDIMN.....oooooc s 38,41
BIOCKITXooooooeeeeessse e 38,41
OX THEE ..o 123
C

Gl 12
CLOCK AOUBIING ... 9
COBIBSTING ... 46
COMPUEE CBPAIITLYooooooeeeeeeee s 54
COMPULE SNATEYoooore e 32
COMPUEE SNAHENS........coooomreeeeeceeeessss s 93
CONCUITENE KEINELS.......oooo e 121
CONSEANE MIBIMONY ... 64
CONMVOIULTONcooo et 123
CIYPLO CUITENCY MINING.........cooovvooooooeeeeeeeieeeeeeeseoosssssess s sssssssss s 17
CUDA ...t 10, 25, 35
CUABIFTER. ... 37
CUABIMBITOC ..o 37
CUJAM @ATOCMBNAGEA ... 37
CUAAIMEIMCPYoooooooooo s 37
CUdaM eMCPYDEVICETOHOSLcoooeeieceeeeesseseee s 37
CUAAM EMCPYHOSITODEVICE............oooeeeeeeeeeeeeeeeesesee s 37

Index 143

D

At AriVEN EXECULION..............o.ooooooooeeeec s 113
A TNAEPENUEN ... 113,119
Data Oriented ProgramiMing................cccoooeeeeevveooiissssseeeeeessessssssssssssssseessessssse 20
EED TEAIMING.......oooeeeee s 17
degree Of DANK CONFIICE..................coissee s 62
DITECE COMPULE......coooeeeeeeeeemmmsmsssssssssssssssssssssss st 99
F

11 L= OO OOOO00000000000000000000 00000000000 SSSSOSOOOOY 91
FIYN S TAXONOMYcooooooooooeessse s 19
FFACEAL ... 42
G

GT0 s 21
GO ... 10, 21
QAUSSIAIN ..o 123
GIFLIOPS TBEE.......oooeveeete et 10
QOB MBIMOTY ...ooooe s 46
GPGPU ..o 14,29
D0 40, 41
OFTADIIM ... 38
H

HEIHO WOITQ........oooooooeeeeeieeiiiiiiiis s 25, 74
I

TMBYE PIOCESSINQooooovvvvsssseeeeeeeeesessssss s ssessssssss s 17
TTEEGTEEEH SOUNCE.........ooovoueviesmtasesssss s 35
TITEEIPONEE Ooooovvvevveeeesissassssss st 73
J

JUITL s 42
K

KEITIEL ...t Zi]
L

LLBPIBCTAINoooooeeeeeeeeeeeeeeeseessssssssssssssssssssssssssssss 123
LLBIAIEEoooooceeeeeeeeeeeeeeeeeeeeeesssssssssssssss s 12
FQYOULooooooe s 95
LINEAE FHTEIS ...t 123
1080 DAIGNCING ...t 22
TOCEAl TTIEITIONYoooeeeeeitii 78,116
M

MANAGEA MEIMIONYooooooeereeeeeeeseceoes s 27,54, 65

144 Index

[007=0 (= 0 TN {1 OO OO 126

0107070 [10O 36
N

FIVCC e e e e e e eeeeeeeeeseeee e e e e e s e e s e e s eeseeee s ee e ee e e e e s ee s ee e e ee e e e ee s ee s e s ee e ees et eee e eer e eeseeenaennes 338
@)

OPBINCLoooo st 10, 27, 114
OpenGL iNtErOPEraility ... 109
P

PAAIE] PrEFIX SUML.........ooooe e 107,121
R

[T G 0] OO 114
FECUISION.......oeoeeeeeeeeeee oo e e e s e ee e s ee e e eeeseee s esesessesseseseseseeeseessseeseseseseseeeseeeseseseeeseeeseeeseesssessassseeessesseeesenesenees 121
S

S0 10 SO OO 107
SEPAIADIC FITEIS.......ocooeee s 125
shader storage bUfer ODJECES ... 95
LS 120 [89
SNAE MEMIOTYoooooeeereeeeveeeisssee s 23, 45, 46, 78, 95, 101, 114, 116
SIEIMID ettt ettt et et s ettt e ettt ee ettt et et ettt e sttt 13, 19, 20
Sl T ettt e et ettt e et ettt e e ettt ettt ettt ettt e st 14, 19, 20
Y/ OO OO 22
1570 01<. I {1 1= OO 123
O et et ee oA e et e eeee e eee e e e e e e e e e e e ee e e ee e s e e re e eeeeeee e ee e eeeereenens 22
R = (0 oSO 95
SEFEAM PrOCESSONS ... 22
Streaming MUITIPIOCESSOIS..........eeeeevevceeeesseees e 22
SYNCAIONIZBLIONooooeee s 101, 116
T

EEXEUPE MEIMIOTYooooovoceeveesesvsss s sss s 69
L1 [== o TSN 36, 40, 41
LTS0S 38, 41
EFANSFOIMN FEEADACK ...ttt e e e e s e s ee s ee e e e eeseseeseseseees 112
U

QTR TT= 0 = e TR o (| = 10, 21
UNETTEO TTIEITIONY ...ttt 27,37,65
UNITIOA SNAAEIS ...t e e e s e s e s ee s e s e e s eseses e seseseeesaseseeeseeeseeesenesenesesesensses 21
V

VWOOUOOL ... e e e e e e ees e ee s e e e e s eeee e s ee s ee s ee s e s e e s ees e ees e eeseeeseseeeeeeeseees 10
R4 11 98

Index 145

L7 1O O00000000000000000000000000 00O 20, 40
X

D=0 | 1 e OO OO 12
146 Index

