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Introduction and Background
The preRunners project

One small preRunner maps ground traversability and sends this data back
to a larger less agile master vehicle. The map can be used for obstacle
avoidance.
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Introduction and Background
Obstacle Avoidance

I Obstacle-avoidance using traversability maps

I Short sensor range leads to sudden obstacles, no time for advanced
path planning

I Obstacle-avoidance by detour from the desired path

I Primary detour candidates are lines parallel to the desired path
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Simulation and Evaluation
Simulation

I A time discrete motion model including
limitations on the steer wheel rate of change is
used to simulate the robot

I Movement along the lines is controlled by a
line following algorithm

I Candidates have different offset and may be
given different speeds and controller
parameters
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Simulation and Evaluation
Evaluation

I Safety evaluation by sampling robot safety zone around poses along
the simulated trajectories

I The best candidate is decided by a score function

I Score is based on how far we got without a collision, how close we
were to collision and how close to the desired path we end up
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Simulation and Evaluation
Limitations of the CPU Implementation

The primary limitation of the CPU implementation is the slow memory
access for pose evaluation

I So slow that we can not wait for all candidates to be evaluated

I Only one new candidates are evaluated each time. It is unlikely that
we will find the optimum solution

I Candidate selection is limited to different offsets, only one speed is
tested

I All candidate evaluations, currently 48, (24 unique), takes between
1.4 and 3.4 seconds, (Core2 Duo E6750)
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Simulation and Evaluation
Why GPU

I The OA-algorithm requires a lot of CPU-time that could be used
for other things (like map management).

I The slow evaluation speed could lead to a collision if the robot
speed is to high.

The algorithm has relatively little computations but much memory
access. Not really suitable for GPU
However:

I The GPU likely has faster memory access

I We can simulate many different candidates at the same time,
including different speeds and controller parameters

I If the GPU does all the heavy work, the CPU can do other things
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Simulation and Evaluation
My Task

Determine:

I If this can be done on a GPU

I If it is any faster

I How to run CUDA kernel code together with other C++ code,
(OpenCV and my own program)

Using CUDA Toolkit 3.0 which have better C++ support
(among other things)
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Sneak Peak
Detour when Avoiding Obstacle
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Sneak Peak
Multiple Combinations of Candidate-Offsets, Speeds and Controller Parameters
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The GPU Implementation
CPU to GPU Changes

I Simulation related code is basically copied and pasted.

I For pose evaluation in the map, the GPU texture-memory is really
suitable. It offers Uncomplicated (x,y) pixel based memory access
and local 2D cache

I All candidates are simulated the same number of steps, fast
candidates always go further then slow ones. As a result the scoring
function gets more complicated
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The GPU Implementation
Functions and Classes

It is convenient to be able to write functions and classes in CUDA just
like in C++

Listing 1: Function
d e v i c e

f l o a t myNormrad ( f l o a t ang )
{

r e t u r n a t a n 2 f ( s i n f ( ang ) , c o s f ( ang ) ) ;
}

Listing 2: Class
c l a s s MyCudaPose2D
{
pub l i c :

f l o a t x , y , yaw ;
d e v i c e

MyCudaPose2D ( ) : x ( 0 . 0 ) , y ( 0 . 0 ) , yaw ( 0 . 0 ) {};
};
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The GPU Implementation
Compiling and Linking

CUDA kernels can not be called directly from normal C++ code.
CUDA kernels are compiled with nvcc together with a C++ wrapper.

Listing 3: My Makefile
CFLAGS=‘pkg−c o n f i g −−c f l a g s opencv ‘ −I / u s r / l o c a l / cuda / i n c l u d e −g
LDFLAGS=−L/ u s r / l o c a l / cuda / l i b 6 4 / −l c u d a r t ‘ pkg−c o n f i g −−l i b s opencv ‘
CUDACFLAGS=−g −G−−c o m p i l e r−b i n d i r =/u s r / b i n /g++−4.3−l c u d a r t
DEFINES=−DSEKVENTIAL

a l l : cudaOAmain

cudaOA : cudaOA . cu
nvcc $ (CUDACFLAGS) $ ( DEFINES ) −c cudaOA . cu −o cudaOA . o

cudaOAmain : cudaOAmain . cc cudaOA
g++ $ (CFLAGS) $ ( DEFINES ) −c cudaOAmain . cc −o cudaOAmain . o
g++ $ (LDFLAGS) cudaOAmain . o cudaOA . o −o cudaOAmain

c l e a n :
rm cudaOAmain
rm ∗. o
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The GPU Implementation
Initialization

I Convert OpenCV image to “raw byte array”

I Allocate Host and Device memory

I Calculate the necessary amount of threads

I Transfer:
I Candidate offsets
I Controller parameter sets
I Speed alternatives
I Current robot states
I Simulation results

I From score, select best candidate
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The GPU Implementation
CUDA Code

All candidate combinations are run in parallel

Sequential texture memory access

1. Determine candidate
combination

2. Simulate movement along each
candidate

2.1 Run control algorithm
2.2 Update pose
2.3 Determine if collision
2.4 Store pose
2.5 Exit loop if collision

3. Calculate safety score

Using one kernel

Parallel texture memory access

1. Determine candidate
combination

2. Simulate movement along each
candidate

2.1 Run control algorithm
2.2 Update pose
2.3 Store pose

3. Check all stored poses for
collision in parallel

4. Calculate safety score

Using three kernels
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Results
Sequential vs Parallel
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Results
Performance Comparison

Unique candidate offsets: 32
Speed alternatives: 8

Controler parameter sets: 2
Simulation steps: 500

Colission check skipfactor: 10
Timestep: 0.1

Total candidate combinations: 32 ∗ 8 ∗ 2 = 512

Quadro FX 1700 GeForce GTX 260
Sequential 0.58, (0.53) 0.43, (0.38)

Parallel 0.53, (0.48) 0.16, (0.10)
Sequential Short 0.28, (0.23) 0.22, (0.16)

Parallel Short 0.53, (0.49) 0.16, (0.10)

CPU: 48 simulations in 1.4 seconds
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Conclusion

I With the Quadro FX 1700 (comute capability 1.1) both methods
have aproximately the same performance

I With the GeForce GTX 260, (compute capability 1.3) the parallel
texture access is faster then the sequential even though all poses are
evaluated in both cases

I If all candidates lead to an early collision, the sekvential one may
be faster on the slower card
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Possible Improvements

I The simulation code and some functions contain short branches, e.g.
to avoid division with zero, Finding alternative mathematical models
could eliminate branches.

I Currently not using shared memory, potentialy great performance
improvements. However it is difficult to figure out how to efficiently
program this. Texture access is unevenly distributed.
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