Information Coding / Computer Graphics, ISY, LiTH

GPGPU

When GPUs turned to non-graphics
problems

Information Coding / Computer Graphics, ISY, LiTH

GPGPU
General purpose

Interesting trend: Try to use the computing power of the
GPU for other purposes than graphics.

gpgpu.org

Argument in favor: GPU performance grows much faster
than CPU’s. CPUs are stuck in the "power wall” and
’memory wall”.

(Note that GPU performance advancements have also
slowed down a bit lately.)

: g *: Information Coding / Computer Graphics, ISY, LiTH
Lﬂj

4,
4
o

GPGPU

Application examples:

- Image processing
- Image analysis

- Equation systems
 Wavelet transform
« Fourier transform
« Cosine transform
- Level sets

* Video codning

Really just about anything that is computationally
heavy and of parallel nature!

Information Coding / Computer Graphics, ISY, LiTH

Problem:

GPGPU

- Algorithms must be parallellized. No intermediate
results from neighbors can be used.

- The CPU interface is a bottleneck. In early days
(AGP), it was a serious bottleneck. The processing
time can be less than the time needed to read the

reault.

Does it pay to use GPGPU?

; Jj *: Information Coding / Computer Graphics, ISY, LiTH
v

A,
%
Vi

Typical GPGPU processing
(also used in filtering in graphics):

- Render to a single rectangle covering the entire
image buffer.

- Use FBOs for effective feedback

* Floating-point buffers

- Ping-ponging, many pass with different shaders

Information Coding / Computer Graphics, ISY, LiTH

The GPGPU model

* Array of input data = texture

- Array of output data = resulting frame buffer
- Computation kernel = shader

- Computation = rendering

- Feedback = switch between FBO’s or copy
frame buffer to texture

. MG
4

Information Coding / Computer Graphics, ISY, LiTH

Typical OpenGL situation

« Complex geometry
- Many transformations
- Perspective projection
- Lighting and material calculations
for the surfaces
- Many texture accesses for interpolation and

supersampling
Device Projected View World Model
coordinates coordinates coordinates coordinates coordinates
i —— +“— < R l—
SaTq @ P R/Ty @ TP @
L World-to-view Model-to-world
Device Projection transformation transformation
transformation transformation E-
T T - -‘f-?f‘- . o i -
Eritan B i R Kooy
Nl Vrihm et aB

BB
I‘:F:ﬁbﬁ{“

:_ *-:d : Information Coding / Computer Graphics, ISY, LiTH
.4

Computation = rendering

Typical situation:

- Texture and frame buffer same size
- Render the polygon over the entire frame buffer

Texture Frame buffer

Information Coding / Computer Graphics, ISY, LiTH

Kernel = shader

Shaders are read and compiled to one or more program objects. A GPGPU
application can use several shaders in conjunction!

Activate desired shader as needed using glUseProgramObjectARB();

The fragment shader performs the computation:

uniform sampler2D texUnit;
void main(void)

{

vecd texVal texture2D(texUnit, gl TexCoord[0].xy);"

gl FragColor = sqgrt(texvVal);

Information Coding / Computer Graphics, ISY, LiTH

Render a single polygon

- Texture and frame buffer same size
- Render polygon over entire frame buffer

glBegin(GL QUADS);
glTexCoord2f (0, 0);
glVertex2i(0, 0);
glTexCoord2f (0, 1);
glVertex2i (0, m);
glTexCoord2f(1, 1);
glVertex2i(n ,m);
glTexCoord2f (1, 0);
glVertex2i(n, 0);

glEnd();

Information Coding / Computer Graphics, ISY, LiTH

Feedback

We must be able to pass output from one operation
as input of the next!

Stable but not the fastest: glCopyTexSubimage2D
Copies frame buffer to texture!

glCopyTexSubImage2D(GL TEXTURE 2D, O, O, O, O, O, n, m);

Faster solutions are newer members of the standard.
Best: Framebuffer Objects.

Information Coding / Computer Graphics, ISY, LiTH

“Ping-pong”’-ing

The kernel reads from one or
more texture, writes into the
frame buffer

——

Input data is a number of

Using “framebuffer objects” the textures. Limited by the

output image can be a texture number of texturing units
available.

/

\/

: g *: Information Coding / Computer Graphics, ISY, LiTH
s

Ping-ponging in practice

Set source:
glBindTexture(GL _TEXTURE 2D, tx1);

Set destination:
ngindFramebufferEXT (GL FRAMEBUFFER EXT, fb) ;
glFramebufferTextureZDEXT (GL_FRAMEBUFFER_EXT ’

GL_COLOR ATTACHMENTO EXT, GL_ TEXTURE 2D, tx2, 0);

Set shader:
glUseProgramObjectARB (shaderProgramObject);

Render! Repeat!

‘*d 4: Information Coding / Computer Graphics, ISY, LiTH

Ping-ponging in working code

void runfilter(GLhandleARB shader, GLuint texin,
GLuint texin2, GLuint fboout)
{
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT,
fboout);
glActiveTexture(GL_TEXTUREL);
glBindTexture(GL_TEXTURE_2D, texin2);
glActiveTexture(GL_TEXTURE®);
glBindTexture(GL_TEXTURE_2D, texin);

glViewport(@, @, width, height);
if (fboout == @)
glViewport(@, @, lastw, lasth);

// Clean matrices!
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();

glUseProgramObjectARB(shader);

// Polygon over framebuffer
glBegin(GL_POLYGON);
glTexCoord2f (0, 0);
glVertex2f(-1, -1);
glTexCoord2f(1, 0);
glVertex2f(1, -1);
glTexCoord2f(1, 1);
glVertex2f(1, 1);
glTexCoord2f (0, 1);
glVertex2f(-1, 1);
glEnd();

// Restore
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();

:: ‘jg: Information Coding / Computer Graphics, ISY, LiTH
':-%t

...gets pretty nice in the end

// Run treshold shader from tex 1 to tex/fbo 2
runfilter(tresholdShader, texl, @, fb2);

// Filter several times
for (1 = 0; 1 < loops; 1++)
{
runfilter(lpVShader, tex2, @, fb3);
runfilter(lpHShader, tex3, 0, fb2);

}

// Output result
runfilter(@, tex2, 0, 0);

:F Jj *: Information Coding / Computer Graphics, ISY, LiTH
e

k|
¥
o

Filtering, convolution

Common problem, highly suited for shaders.
All kinds of linear filters:

- Low-pass filtering (smoothing)
- Gradient, embossing

Must be done by gather operations, not
scatter!

:? wd 4: Information Coding / Computer Graphics, ISY, LiTH
.

3x1 filter

uniform sampler2D texUnit;
uniform float texSize;

h : . 1 2
void main(void)

{
float offset = 1.0 / 256.0;
vec2 texCoord = gl_TexCoord[0].xy;
vecd ¢ = texture2D(texUnit, texCoord);
texCoord.x = texCoord.x + offset;
vecd | = texture2D(texUnit, texCoord);
texCoord.x = texCoord.x - 2.0*offset;
vecd r = texture2D(texUnit, texCoord);
texCoord.x = texCoord.x - offset;
gl_FragColor=(c+c+1+7r) *0.25;

:r' g 4: Information Coding / Computer Graphics, ISY, LiTH
.

Separable filters

6 | 2436|246 |= 1 1
4 l16]24] 161 4 2 | ® |2
1|4 |6 |4 |1 1 1

Implemented as ping-ponging passes.
Optimization possibilities!

:" g *: Information Coding / Computer Graphics, ISY, LiTH
Lﬂj

A,
%
Vi

Scatter vs gather

o 0— —O
| LN |
Scatter Gather

Shaders give output for one pixel -> gather only!

:\' =ry 4: Information Coding / Computer Graphics, ISY, LiTH
o

Uy,
i

Sorting

QuickSort hard to implement in shaders

Bitonic Merge Sort fits shaders well

Hili&i ilivi
el ey
ZHTZH'V ilivi
2 4 4 4 4 4 V|7 7| 7
4$2W2¢2 V8l 8V 8

:V ﬂ‘d 4: Information Coding / Computer Graphics, ISY, LiTH

Reduction

Reduction algorithms are implemented by a ping-ponging pyramid
Maximum, minimum, global average...
Output smaller than input
.4?'- 2 - 3 -5?- 5 -IZ_H.
:ID:ZD: 6 :13:14:15“

1911 21 22 23 68|25 26 47 57 15“
38|29 64 31 32 33|35 34 — 38 64 68 35

37 28 39 49 53 42 41 52 46 49 61|52
46 1 48 40 61 51 44 43 71 67 69 70

55 71 4 58 69 62 50 60
30 65 66 67 24 59 70 56
| S S | 1 1 | | 1

(Images by Dominik Géddeke)

s\
: ‘% Information Coding / Computer Graphics, ISY, LiTH

Reduction

1) Texture pyramid, typically 2x2

2) Constant texture size, use smaller
and smaller parts of the texture!

Same performance! The geometry
coverage is what counts!

: -d 4: Information Coding / Computer Graphics, ISY, LiTH
-

Special considerations
- vec4 or scalar?
- Texture size limitations

- Interpolation

: ‘ij *: Information Coding / Computer Graphics, ISY, LiTH
. ,_,..of

vec4d or scalar?

GPUs are/were designed to process 4-component
vectors! (NVidia less so today.)

Packing data in groups of four values (RGBA) can
be needed for maximizing performance -
especially on AIT boards.

This will complicate algorithms. The neighbor of
data[100].a is data[101].r!

:L' g *: Information Coding / Computer Graphics, ISY, LiTH
Lﬂj

A,
%
Vi

Texture size limitations

Maximum 4096 elements! That means 16384 floating-
point values!

Larger arrays must be packed in 2D or 3D!

Again, edges get complicated. The neighbor of
data[0,255] is data[1,0] (for a 256 item wide texture)!

. g “: Information Coding / Computer Graphics, ISY, LiTH
24

Interpolation

Computation tricks when optimizing

Texture access provides hardware accelerated
linear interpolation!

Access texture data on non-integer coordinates
and the texture hardware will do linear
iInterpolation automatically!

Can be used for many calculations, e.g. filters.

:‘. *ry 4: Information Coding / Computer Graphics, ISY, LiTH
o

Interpolation
b/(a+b) a/(a+b)

a b a+b

Texture accesses and calculations hardware
accelerated!

Information Coding / Computer Graphics, ISY, LiTH

Conclusions:

- Shader-based GPGPU is not dead, it is just not hyped
Superior compatibility and ease of installation makes it highly
interesting for the forseeable future. Especially suitable for all image-
related problems.

- GLSL
The OpenGL shading language was introduced.

 How to do GPGPU with shaders

FBOs, Ping-ponging, algorithms, special considerations.

