
Information Coding / Computer Graphics, ISY, LiTH

Detection of visible surfaces!
(revisited)

Backface culling!
Painter’s algorithm!
Z-buffer!
Ray-casting!
Portals

A-buffer!
Scan-line method!
BSP trees!
Area subdivision!
Octrees

30(50)

30(50)



Information Coding / Computer Graphics, ISY, LiTH

More than just getting the right 
pixel in the right place:

Maximize performance by!
!
• discarding polygons that will not be visible due to:!
1) Clipping to viewing frustum!
2) Back-face culling!
3) Other possibilities?!
!
• drawing pixels only once (or as few times as possible)!
!
• don’t make many-to-many checks between polygons!

31(50)31(50)



Information Coding / Computer Graphics, ISY, LiTH

Low-level VSD

Works on pixel level or polygon level.!
!
Always process all polygons in the scene.!
!
Can never be sufficient for very large scenes!

32(50)32(50)



Information Coding / Computer Graphics, ISY, LiTH

covered so far:!
Low-level VSD

(visible surface detection)!
!

Backface culling!
Painter’s algorithm!

Z-buffer!
!

Not covered yet:!
Scan-line method!

BSP trees!
!

All polygons are treated individually!
!

Good for small scenes!
(small total number of polygons).

33(50)33(50)



Information Coding / Computer Graphics, ISY, LiTH

Clipping!
!

Part of the OpenGL pipeline!
!

Hardware supported!
!

Clips away any part of a polygon that is outside the 
viewing frustum!

!
One side at a time!

!
Still individual polygons!

34(50)34(50)



Information Coding / Computer Graphics, ISY, LiTH

High-level VSD!
!

Large scenes, large or very large polygon count.!
!

Only a small part of the scene is visible at a given time!!
!

Process polygons in groups, with some kind of spatial 
information! Remove many polygons with each decision.!

!
BSP trees (revisited)!

Octrees!
Domain-specific culling!

Portals!
PVS

35(50)35(50)



Information Coding / Computer Graphics, ISY, LiTH

Types of “visibility processing” 
algorithms:!

!
• Exact algorithms!

• Approximate algorithms!
• Conservative algorithms

36(50)36(50)



Information Coding / Computer Graphics, ISY, LiTH

Exact:!
!

Finds all visible or partially visible polygons!
!

Drawback: Usually too computationally expensive!
!

Approximative:!
!

Finds most visible polygons, excludes most invisible ones!
!

Fast. Some artifacts.!
!

Conservative:!
!

Finds all visible polygons but includes some invisible ones.!
!

No artifacts. Potentially lower performance than 
“approximative”

37(50)37(50)



Information Coding / Computer Graphics, ISY, LiTH

Step 1. Frustum culling (View volume culling)!
!

What polygons are inside the frustum?!
!!!!!!!!!!

Principle: Make a subdivision of the scene, so tests can be done on 
groups, e.g. separate objects or limited parts of the scene.

Viewing frustum

38(50)38(50)



Information Coding / Computer Graphics, ISY, LiTH

Frustum culling!
!

Create plane equations for each frustum side!
!

Transform to world coordinates!
!

Test against bounding spheres of objects

Viewing frustum
Viewing frustum

39(50)39(50)



Information Coding / Computer Graphics, ISY, LiTH

View volume culling using a group 
hierarchy with bounding boxes

Viewing frustum

1

2 3

4 5

6 1

2

3

65

4

40(50)40(50)



Information Coding / Computer Graphics, ISY, LiTH

...or bounding spheres

Viewing frustum

1

3

4 5

62
1

2

3

65

4

41(50)41(50)



Information Coding / Computer Graphics, ISY, LiTH

BSP trees for high-level VSD

BSP trees simpify frustum culling!!
!
Any node in a BSP tree is a convex volume!!
!
Whenever a volume falls outside the clipping!
frustum, ALL polygons below that node are!
removed!

BSP = Binary Space Partitioning

42(50)42(50)



Information Coding / Computer Graphics, ISY, LiTH

Frustum culling using a BSP tree

Viewing frustum

1

2

3

6

7

4

5
1

2

4

3

75 6

43(50)43(50)



Information Coding / Computer Graphics, ISY, LiTH

Frustum culling using a BSP tree:!
!

Usually axis aligned - ”kd-tree”!
!

Very simple tests

44(50)44(50)



Information Coding / Computer Graphics, ISY, LiTH

Building a kd-tree!
!

Split at median: Half of the geometry in each side 
of the splitting plane. Balanced kd-tree.

Median - split here

Middle - don’t split here

45(50)45(50)



Information Coding / Computer Graphics, ISY, LiTH

Octrees:!
!

Non-uniform hierarcical space subdivision!
!

Split cells in 8 until sufficient simplicity is achieved.

Viewing frustum

46(50)46(50)



Information Coding / Computer Graphics, ISY, LiTH

Uniform space subdivision!
!

Simple common case: Terrain defined by a regular grid

Viewing frustum

47(50)47(50)



Information Coding / Computer Graphics, ISY, LiTH

Map the frustum edges to the grid coordinates!
!

Draw all polygons between edges

Viewing frustum

Cheap quick hack version:!
!

Find the bounding box of the frustum. Gives a simple 2D rectangle with 
grid spaces to draw. Up to 50% unnecessary polygons.

48(50)48(50)



Information Coding / Computer Graphics, ISY, LiTH

Grid, alternative approach: quadtree

Viewing frustum

49(50)49(50)



Information Coding / Computer Graphics, ISY, LiTH

Real-world example: Bugdom series
Fairly sparse environment, frustum culling is sufficient.

50(50)50(50)


