Splines, or:
Connecting the Dots

Jens Ogniewski
Information Coding Group

I1.U LINKOPING UNIVERSITY

Note that not all is covered in the book, especially

Change of Interpolation

Centripetal Catmull-Rom and other advanced parameterization
schemes

Own creation of interpolation methods

More advanced Color interpolation

These parts will not be part of the exam, but are given merely
for your own information

.U LINKOPING UNIVERSITY 1/20

Interpolation Splines S

The points are blended together using blending functions

All blending functions are zero or 1 at the control points!

.U LINKOPING UNIVERSITY 2 /20

Catmull-Rom Splines S

Also called cardinal splines

Calculated from 4 control points, defined between the middle
two

Specified only by the control points, and a tension parameter
to adjust the shape

0

mf’ﬂ

OP_1 P20

.U LINKOPING UNIVERSITY 3/20

Catmull-Rom Splines S

(—au? + 20u? — au)P_y

(2 —a)u® + (a —3)u? +1)Pg

(a0 —2)u? + (3 — 2a)u? + au)P 1
+ (ou® — au?)P o

Fcrw) =
+
|

The equations found in the book can be reached by using the
“standard” parameterization of a = 0.5

1
Red: polynomial for P_4
Green: polynomial for Pg
Blue: polynomial for P4
Cyan: polynomial for P4
0

.U LINKOPING UNIVERSITY 4 /20

Catmull-Rom Splines S

Rewrite:
Fcr) = au(u —1)2%(Py1 —P_y)
+ av*(u—1)(Py2 — Po)
+ (3 —2u)(P41 — Po)
+ Po

The first two rows set the tangents in the endpoints ©v = 0 and
u = 1 respectively, while being 0 at both endpoints

The rest interpolates between Py and P4, while having a zero
tangent in both endpoints

If you know what derivatives you want to have in the endpoints,
you can set them accordingly (rather than using Catmull-Rom)

.U LINKOPING UNIVERSITY 5 /20

Catmull-Rom Splines

Fcr) = au(u - 1)3(Py1 —P_4)
+ au(u—1)(Pi2 — Po)
+ (3 — 2u)(P4y — Po)
+ Po

The polynomials (left) and their derivatives (right)

Red: blending polynomial
for the tangent in point
u=20 \
Blue: blending polynomial
for the tangent in point
u=1

Green: blending polynomial
for the points between

which we interpolate

.U LINKOPING UNIVERSITY 6 /20

Example: Change of Ongoing Interpolation S

Planned motion through 4 points (1 to 4), e.g. .
animationpath, robot movement, using Catmull-Rom i

.U LINKOPING UNIVERSITY 7 /20

Example: Change of Ongoing Interpolation S

» In point P we discover an previously .
unknown obstacle %

.U LINKOPING UNIVERSITY 8/20

Example: Change of Ongoing Interpolation S

» We find a point P 1 new to circumvent it, -
start a new interpolation in P and set the Y
tangent in this point to P’ to maintain C*
continuity; after this segment we
interpolate as normal.

.U LINKOPING UNIVERSITY 9/20

Example: Change of Ongoing Interpolation S

» Thus we are able to get a new, fully C*
continuous curve that circumvents the obstacle.

.U LINKOPING UNIVERSITY 10 /20

Parameterization

Red: “Standard” Catmull-Rom, Blue: Centripetal Catmull-Rom

.Y LINKOPING UNIVERSITY 11/ 20

Parameterization

High differences in segment lengths can lead to unwanted
artifacts like e.g. loops
Can be solved by normalizing the tangent vectors
But needs a similar scaling of the interpolation vector (the vector
between the two endpoints of the current vector) as well
Correct solution is unfortunately complicated

Best solution centripetal Catmull-Rom
Implementations are available
For more information:
Chem Yuksel et al.: “Parameterization and Applications of
Catmull-Rom Curves”

.Y LINKOPING UNIVERSITY 12 / 20

Selecting Your Own Spline

Often:

Surfaces, curves: approximating, G' or G2
Object animation: interpolating, C!
Camera movement: interpolating, G°

Color: trigonometric or interpolating, C'

.Y LINKOPING UNIVERSITY 13 / 20

Selecting/Creating Your Own Spline S

The good: standard implementations available for most
algorithms

Also: Interpolation is not that complicated
=> with a little effort you can create your own scheme or
adapt an existing one

The bad: knowing your requirements might be tricky

Often made mistake: overconstraining it, leading to “artifical”
look

.U LINKOPING UNIVERSITY 14 / 20

Example: Artifact-Free Color-Interpolation S

In the following we successively refine our requirements

.Y LINKOPING UNIVERSITY 15 /20

Example: Artifact-Free Color-Interpolation S

» Linear interpolation: continuation artifacts
=> needs to be (at least) C'! continuous

.U LINKOPING UNIVERSITY 16 / 20

Example: Artifact-Free Color-Interpolation S

» Cubic interpolation: clipping, discoloring artifacts
=> not allowed to leave bounds (0..255)

.Y LINKOPING UNIVERSITY 17 /20

Example: Artifact-Free Color-Interpolation S

» Trigonometric interpolation: ringing artifacts
=> needs to be bounded by the surrounding colors

.Y LINKOPING UNIVERSITY 18 /20

Example: Artifact-Free Color-Interpolation S

» Solution: enforce zero derivatives in the endpoints

.Y LINKOPING UNIVERSITY 19 /20

Example: Artifact-Free Color-Interpolation S

But can lead to “wrong” gradients (see image to the right;
input shown to the left)

Solution (middle) a little more involved, for more information

see also:
Jens Ogniewski “Artifact-free color interpolation”

.Y LINKOPING UNIVERSITY 20 /20

Thank you for your feedback!

jensoQ@isy.liu.se

I1.U LINKOPING UNIVERSITY

