
Splines, or:
Connecting the Dots

Jens Ogniewski
Information Coding Group



I Note that not all is covered in the book, especially
I Change of Interpolation
I Centripetal Catmull-Rom and other advanced parameterization

schemes
I Own creation of interpolation methods
I More advanced Color interpolation

I These parts will not be part of the exam, but are given merely
for your own information

1 / 20



Interpolation Splines

I The points are blended together using blending functions

I All blending functions are zero or 1 at the control points!

2 / 20



Catmull-Rom Splines

I Also called cardinal splines

I Calculated from 4 control points, defined between the middle
two

I Specified only by the control points, and a tension parameter
to adjust the shape

3 / 20



Catmull-Rom Splines

0

1

FCR(u) = (−αu3 + 2αu2 − αu)P−1
+ ((2− α)u3 + (α− 3)u2 + 1)P0

+ ((α− 2)u3 + (3− 2α)u2 + αu)P+1

+ (αu3 − αu2)P+2

I The equations found in the book can be reached by using the
“standard” parameterization of α = 0.5

I Red: polynomial for P−1
I Green: polynomial for P0

I Blue: polynomial for P+1

I Cyan: polynomial for P+2

4 / 20



Catmull-Rom Splines

I Rewrite:
FCR(u) = αu(u− 1)2(P+1 −P−1)

+ αu2(u− 1)(P+2 −P0)
+ u2(3− 2u)(P+1 −P0)
+ P0

I The first two rows set the tangents in the endpoints u = 0 and
u = 1 respectively, while being 0 at both endpoints

I The rest interpolates between P0 and P+1, while having a zero
tangent in both endpoints

I If you know what derivatives you want to have in the endpoints,
you can set them accordingly (rather than using Catmull-Rom)

5 / 20



Catmull-Rom Splines

0

1

0

1

FCR(u) = αu(u− 1)2(P+1 −P−1)

+ αu2(u− 1)(P+2 −P0)
+ u2(3− 2u)(P+1 −P0)
+ P0

I The polynomials (left) and their derivatives (right)

I Red: blending polynomial
for the tangent in point
u = 0

I Blue: blending polynomial
for the tangent in point
u = 1

I Green: blending polynomial
for the points between
which we interpolate

6 / 20



Example: Change of Ongoing Interpolation

1 2

3

4

I Planned motion through 4 points (1 to 4), e.g.
animationpath, robot movement, using Catmull-Rom

7 / 20



Example: Change of Ongoing Interpolation

P

1 2

3

4

I In point P we discover an previously
unknown obstacle

8 / 20



Example: Change of Ongoing Interpolation

P P+1,new

1 2

3

4

I We find a point P+1,new to circumvent it,
start a new interpolation in P and set the
tangent in this point to P′ to maintain C1

continuity; after this segment we
interpolate as normal.

9 / 20



Example: Change of Ongoing Interpolation

P P+1,new

1 2

3

4

I Thus we are able to get a new, fully C1

continuous curve that circumvents the obstacle.

10 / 20



Parameterization

I Red: “Standard” Catmull-Rom, Blue: Centripetal Catmull-Rom

11 / 20



Parameterization

I High differences in segment lengths can lead to unwanted
artifacts like e.g. loops

I Can be solved by normalizing the tangent vectors
I But needs a similar scaling of the interpolation vector (the vector

between the two endpoints of the current vector) as well
I Correct solution is unfortunately complicated

I Best solution centripetal Catmull-Rom
I Implementations are available
I For more information:

Chem Yuksel et al.: “Parameterization and Applications of
Catmull-Rom Curves”

12 / 20



Selecting Your Own Spline

I Often:

I Surfaces, curves: approximating, G1 or G2

I Object animation: interpolating, C1

I Camera movement: interpolating, G2

I Color: trigonometric or interpolating, C1

13 / 20



Selecting/Creating Your Own Spline

I The good: standard implementations available for most
algorithms

I Also: Interpolation is not that complicated
=> with a little effort you can create your own scheme or
adapt an existing one

I The bad: knowing your requirements might be tricky

I Often made mistake: overconstraining it, leading to “artifical”
look

14 / 20



Example: Artifact-Free Color-Interpolation

I In the following we successively refine our requirements

15 / 20



Example: Artifact-Free Color-Interpolation

I Linear interpolation: continuation artifacts
=> needs to be (at least) C1 continuous

16 / 20



Example: Artifact-Free Color-Interpolation

I Cubic interpolation: clipping, discoloring artifacts
=> not allowed to leave bounds (0..255)

17 / 20



Example: Artifact-Free Color-Interpolation

I Trigonometric interpolation: ringing artifacts
=> needs to be bounded by the surrounding colors

18 / 20



Example: Artifact-Free Color-Interpolation

I Solution: enforce zero derivatives in the endpoints

19 / 20



Example: Artifact-Free Color-Interpolation

I But can lead to “wrong” gradients (see image to the right;
input shown to the left)

I Solution (middle) a little more involved, for more information
see also:
Jens Ogniewski “Artifact-free color interpolation”

20 / 20



Thank you for your feedback!
jenso@isy.liu.se


