

Blending functions for interpolation spline

The points are *blended* together using blending functions

Blending functions for interpolation spline

All blending functions are zero or 1 at the control points!

points (similar to Bézier)

Actual blending functions for interpolated spline of 4 control

0

Cardinal splines Catmull-Rom splines

0

Interpolation spline

Specified *only* by control points

Calculated from 4 control points, define between the middle two!

A tension parameter t can adjust the shape

t = 0 => Catmull-Rom

Catmull-Rom splines, Matrix form

$$\mathbf{P(u)} = \begin{bmatrix} \mathbf{u}^3 \ \mathbf{u}^2 \ \mathbf{u} \ \mathbf{1} \end{bmatrix} \begin{bmatrix} -1/2 \ 3/2 \ -3/2 \ 1/2 \\ 1 \ -5/2 \ 2 \ -1/2 \\ -1/2 \ 0 \ 1/2 \ 0 \\ 0 \ 1 \ 0 \ 0 \end{bmatrix} \begin{bmatrix} \mathbf{p_{k-1}} \\ \mathbf{p_k} \\ \mathbf{p_{k+1}} \\ \mathbf{p_{k+2}} \end{bmatrix}$$

- $P(u) = p_{k-1} (-u^3/2 + u^2 u/2) +$ $p_k (3u^3/2 - 5u^2/2 + 1) +$ p_{k+1} (-3u³/2 + 2u² + u/2) + p_{k+2} (u³/2 - u²/2)
 - $p_{k-1}^{*}CAR_{0}(u) + p_{k}^{*}CAR_{1}(u) +$ $p_{k+1}^{*}CAR_{2}(u) + p_{k+2}^{*}CAR_{3}(u)$

Application of Catmull-Rom splines:

Animation paths!

 Defined by a sequence of points on the curve

• Always G₁/C₁ continuous

Bézier surfaces

A surface is built from a set of Bézier patches

A Bézier patch consists of 16 control points in a 4x4 grid

Bézier surfaces

Blending of the 16 control points as a 2dimensional sum

$$P(u,v) = \sum_{j=0}^{3} \sum_{k=0}^{3} p_{j,k} BEZ_{j,3}(v) BEZ_{k,3}(u)$$

Information Coding / Computer Graphics, ISY, LiTH

Bézier surface example

Fitting together patches

Fit in both u and v direction

Make a 3x3 "joystick" at each corner

Splines and surfaces in OpenGL

Pre-generated shapes on CPU

Generate by multi-pass GPU processing

Old OpenGL: Evauators (glMap)

3.2: Geometry shaders

4: Tesselation shaders

Information Coding / Computer Graphics, ISY, LiTH

Evaluators

Old built-in Bezier evaluator. Easy to use but no longer recommended.

Supported both curves and surfaces

Geometry shaders

OpenGL 3 (extension in GL 2)

Shader between vertex and fragment, converts geometry, can add new vertices

Modest hardware demand: G80 or better (2007+)

Tesselation shaders

OpenGL 4

Shader between vertex and fragment (before geometry shader), focused on subdivision

Higher hardware demand! (Southfork is OK)

Applications:

 Splines/surfaces • Edge extraction, silhouettes Polygon-level effects (shrinking triangles) Adaptive subdivision Visualizing normal vectors etc

More object representation soon...

Fractals and procedural generation

but first

let us continue on with the animation subject!