
Information Coding / Computer Graphics, ISY, LiTH

More visible surface detection!
!

sometimes applicable to entirely different
problems!

30(55)

30(55)

Information Coding / Computer Graphics, ISY, LiTH

Backface culling

Object space method!
!
Removes all polygons that are "looking away" from the
camera.

Removes ≈50% of all polygons that would otherwise be in
view!

31(55)31(55)

Information Coding / Computer Graphics, ISY, LiTH

Z-buffer!
Depth-buffer method

Only draw if a pixel is closer than the closest drawn before. Z
value saved in the depth buffer, the "Z buffer"

Viewer

Denied to be drawn if the closer!
surface has left a closer Z value

Z buffer

32(55)32(55)

Information Coding / Computer Graphics, ISY, LiTH

Painter’s algorithm!
Depth-sorting method

Both image and object space method
Render from back to front

33(55)33(55)

Information Coding / Computer Graphics, ISY, LiTH

Painter’s algorithm

Sorting on polygon level.!
!
But some scenes can not be sorted at all!!
!
Solution: Figure out a way to split polygons to!
resolve the sort. But how?

34(55)34(55)

Information Coding / Computer Graphics, ISY, LiTH

Painter’s algorithm

• Slow – may paint many pixels more than once!
!
• Slow and complicated in its full form - can be!
solved with BSP trees!
!
• Practically useful at object level, sorting!
transparent objects only!
!
• Approximative sorting is often sufficient

35(55)35(55)

Information Coding / Computer Graphics, ISY, LiTH

Drawing with transparency

 A (alpha) in RGBA can be used!
 for transparency!
!
 Alpha values exist in textures!
 as well as color etc

36(55)36(55)

Information Coding / Computer Graphics, ISY, LiTH

glEnable(GL_BLEND);!
glBlendFunc(GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA);!

(glBlendEquation for even more control)!
!

dest = source*α + dest*(1-α)!
!

Note that alpha does not have to be taken
from the source!!

!
Problem: Drawing order causes problems

with Z-buffer!

37(55)37(55)

Information Coding / Computer Graphics, ISY, LiTH

The Z-buffer problem with transparency

Viewer
Semi-transparent!

surface S
Polyhedra object

If S is drawn first, the other scenery will not be drawn!!
!

For a single object, its inside will be obscured by its front.

Front Back

38(55)38(55)

Information Coding / Computer Graphics, ISY, LiTH

The Z-buffer problem, solutions

Viewer
Semi-transparent!

surface S
Polyhedra object

Solution for entire scene: Draw the scene back-to-front.
”Painter’s algorithm”!

!
For a single object, draw its inside first, front later. Can be done

with culling.

Drawing order

39(55)39(55)

Information Coding / Computer Graphics, ISY, LiTH

Follow rays from each pixel through the scene
Ray-casting

prp

vp

40(55)40(55)

Information Coding / Computer Graphics, ISY, LiTH

Full 3D raycasting
for every pixel (x,y) in the image!
!
calculate a ray from the pixel through the camera
(prp) and through the scene!
!
calculate intersections with all objects in the
scene!
!
the pixel value is calculated from the closest
intersection found

41(55)41(55)

Information Coding / Computer Graphics, ISY, LiTH

Line equation: prp + µ(sx,sy,-f)

The ray

prp

vp

f
sx,sy

42(55)42(55)

Information Coding / Computer Graphics, ISY, LiTH

A ray through a polygon

prp

vp
f

sx,sy

Take the case prp = (0,0,0)!
!

Insert (0,0,0) + µ(sx,sy,-f) in plane equation:!
!

Aµsx + Bµsy - Cµf + D = 0!
!

µ = -D / (Asx + Bsy -Cf)

43(55)43(55)

Information Coding / Computer Graphics, ISY, LiTH

Is the point in the polygon?!
!

Triangle: Straight-forward!
Several methods possible.

a

b

c

µ2

µ1

i = a + µ1*ab + µ2*ac!
!

0 < µ1!
0 < µ2!

µ1 + µ2 < 1

i

44(55)44(55)

Information Coding / Computer Graphics, ISY, LiTH

Raycasting in a grid:!
Ray marching

45(55)45(55)

Information Coding / Computer Graphics, ISY, LiTH

Ray marching relatively easy!
!

Step to next potential voxel wall (3 possible in 3D)!
!

Pick the closest, check neighbor space!
!

Repeat until filled space is found.

Essentially a line!
drawing algorithm!

46(55)46(55)

Information Coding / Computer Graphics, ISY, LiTH

Ray-casting applications!
!

• VSD in 2D or 3D grids!
• Visibility tests for AI!

• Visibility tests for global illumination!
• First step of ray-tracing!

• Picking

47(55)47(55)

