
Information Coding / Computer Graphics, ISY, LiTH

!
TSBK 07!

Computer Graphics!
Ingemar Ragnemalm, ISY

1(55)

1(55)

Information Coding / Computer Graphics, ISY, LiTH

!
Lecture 7!

!
More bump mapping!

Light mapping!
Normal matrix!

Painter's algorithm!
Transparency

2(55)2(55)

Information Coding / Computer Graphics, ISY, LiTH

Bump mapping
Simulates surface structure by manipulating

the normal vector

3(55)3(55)

Information Coding / Computer Graphics, ISY, LiTH

Bump mapping - model
Surface with normal vectors

Bump map: scalar function of!
the texture coordinates

Modulate the surface by the bump!
function, along normal

Calculate new normals

Resulting normal vectors

4(55)4(55)

Information Coding / Computer Graphics, ISY, LiTH

Bump mapping - the coordinate
systems

Input:!
A point p, normal vector n!
Texture coordinates s(p), t(p)!
Directions of texture coordinates s, t!
The bump function b(s,t)!
!
Calculate the partial derivative of the bump function, bs and bt!
!
n’ = n + bt * (s x n) + bs * (t x n)!
!
or, if s, t, n are orthogonal!
!
n’ = n + bs * s + bt * t

5(55)5(55)

Information Coding / Computer Graphics, ISY, LiTH

Texture coordinate system!
!

n = normal vector!
s = tangent!

t = bitangent!
!

s and t can be calculated from texture coordinate
variations (e.g. Lengyel's method)

6(55)6(55)

Information Coding / Computer Graphics, ISY, LiTH

Light calculations!
!

needs (n, s, t) to create n'!
needs light source and surface positions!

!
Must transform to the same coordinate system,

e.g. view coordinates

7(55)7(55)

Information Coding / Computer Graphics, ISY, LiTH

Transforming directional vectors!
!

Important!!
!

n, s and t are all directional vectors!
!

Must be transformed by modified model-to-world/
world-to-view matrices!

without translations!
!

More about this in a moment...

8(55)8(55)

Information Coding / Computer Graphics, ISY, LiTH

bs = db/ds!
bt = db/dt!

!
n’ = n + bs·s + bt·t (”in”)!

!
or!
!

n’ = n - bs·s - bt·t (”out”)

Calc of modified normal vector

Gradients are simply one
step differences in s and t!!

!
-bs = b[s, t] - b[s+1, t]!
-bt = b[s, t] - b[s, t+1]!

1!
!

Normalize!

9(55)9(55)

Information Coding / Computer Graphics, ISY, LiTH

Variant/optimization of bump mapping:!
Normal mapping!

!
Precalculate bs och bt, save as picture!!

!
But it is just a simple difference! Why can this be

significant?

10(55)10(55)

Information Coding / Computer Graphics, ISY, LiTH

Storage in texture!
!

”Scale and bias”:!
!

R = (ds+1)/2!
G = (dt+1)/2!

!
Fetch from texture:!

!
ds = 2R - 1!
dt = 2G - 1!

!
nt = (x, y, z)

(Why?)

11(55)11(55)

Information Coding / Computer Graphics, ISY, LiTH

Example of normal map

12(55)12(55)

Information Coding / Computer Graphics, ISY, LiTH

!
Bump map Normal map

Bump map in my example

13(55)13(55)

Information Coding / Computer Graphics, ISY, LiTH

Bump mapping or normal mapping?!
!

Normal mapping optimizes memory access!
!

Bump mapping gives more information and is
easier to edit!

!
We might want both the bump map and the normal

map!

14(55)14(55)

