
Information Coding / Computer Graphics, ISY, LiTH

Bump mapping
Simulates surface structure by manipulating

the normal vector

53(64)

53(64)

Information Coding / Computer Graphics, ISY, LiTH

Bump mapping - model
Surface with normal vectors

Bump map: scalar function of!
the texture coordinates

Modulate the surface by the bump!
function, along normal

Calculate new normals

Resulting normal vectors

54(64)54(64)

Information Coding / Computer Graphics, ISY, LiTH

Bump mapping - the coordinate
systems

Input:!
A point p, normal vector n!
Texture coordinates s(p), t(p)!
Directions of texture coordinates s, t!
The bump function b(s,t)!
!
Calculate the partial derivative of the bump function, bs and bt!
!
n’ = n + bt * (s x n) + bs * (t x n)!
!
or, if s, t, n are orthogonal!
!
n’ = n + bs * s + bt * t

55(64)55(64)

Information Coding / Computer Graphics, ISY, LiTH

Texture coordinate system!
!

How do we find the s and t vectors? We have the
texture coordinates but no coordinate system!!

!
Cross product with normal vector? With what?

56(64)56(64)

Information Coding / Computer Graphics, ISY, LiTH

Faking it!
!

Cross product with absolutely anything!!
!

s = x ✕ n / |x ✕ n|!
t = n ✕ s!

!
Works for some cases. (Noise bump maps in

particular.!
!

But we can do better!

57(64)57(64)

Information Coding / Computer Graphics, ISY, LiTH

Trivial geometry!
!

Very easy for a cube. Comfortable test case.

s^

t^

58(64)58(64)

Information Coding / Computer Graphics, ISY, LiTH

Lengyel's method!
!

Derive through steps by s and t in xyz space!
!

Straight and clean method using matrix algebra!
!

Express two line segments as function of s and t,
find the inverse!

^ ^

59(64)59(64)

Information Coding / Computer Graphics, ISY, LiTH

Given a triangle with texture coordinates,!
find basis vectors for texture coordinates!

Take edge ab, split to components!
along s and t. Express as matrix.!
Find s and t by matrix inverse!

Lengyel's method

60(64)60(64)

Information Coding / Computer Graphics, ISY, LiTH

float ds1 = sb - sa; float ds2 = sc - sa;!
float dt1 = tb - ta; float dt2 = tc - ta;!
vec3 s, t;!
float r = 1/(ds1 * dt2 - dt1 * ds2);!
s = (ab * dt2 - ac * dt1) * r;!
t = (ac * ds1 - ab * ds2) * r;

Lengyel's method!
!

in program code - fairly simple!

Note! Vector operations!

61(64)61(64)

Information Coding / Computer Graphics, ISY, LiTH

Approximative method!
!

Let each edge of a polygon contribute to s and t
depending on their variation in s and t!!

!
Contribution to s from each edge = the edge direction!

normalized times the variation in s.

62(64)62(64)

Information Coding / Computer Graphics, ISY, LiTH

Approximative method

63(64)63(64)

Information Coding / Computer Graphics, ISY, LiTH

Both methods give good results for
complicated models!

64(64)64(64)

