
Information Coding / Computer Graphics, ISY, LiTH

Shading and shadows!
!

Shading will give you light variations due to shape, 
and the back side of objects will be shadowed.!

!
BUT, this will not produce shadows on one object 

cast by another object!

50(84)

50(84)



Information Coding / Computer Graphics, ISY, LiTH

Shading and shadows!
!

Local shading is easy (with simple light models)!
!

Shadows are hard

51(84)51(84)



Information Coding / Computer Graphics, ISY, LiTH

Position after!
flattening

Flatten
No light or texture

Simple shadows!
!

Easiest: Linear planar shadow!
!

Flatten object, paint black (optionally transparently),!
rotate and translate to appropriate position!

!
Example:!

!
	Translate to surface	
	Scale by (1, 0, 1)	
	Rotate as desired	

	Draw model in black

52(84)52(84)



Information Coding / Computer Graphics, ISY, LiTH

Advanced shadows!
!

Planar projective shadows!
!

Shadow volumes!
!

Shadow mapping!
!

Soft shadows!
!

-> Advanced course (TSBK03)!
!

Also: Natural part of ray-tracing and radiosity

53(84)53(84)



Information Coding / Computer Graphics, ISY, LiTH

Surface detail!
!

Shading:!
takes away the surface detail of the 

polygons!
!

Texture mapping and other mappings:!
add the surface detail that we really want

54(84)54(84)



Information Coding / Computer Graphics, ISY, LiTH

Surface mapping techniques!
!

Texture mapping!
Billboards!

Bump mapping!
Light mapping!

Environment mapping

55(84)55(84)



Information Coding / Computer Graphics, ISY, LiTH

Texture mapping!
!

In common use!
!

Special support by the GPU hardware -!
not just a memory access

56(84)56(84)



Information Coding / Computer Graphics, ISY, LiTH

Billboards!
!

A billboard is a texture mapped polygon, 
which always faces the viewer

57(84)57(84)



Information Coding / Computer Graphics, ISY, LiTH

Bump mapping
Simulates surface structure by 
manipulating the normal vector

58(84)58(84)



Information Coding / Computer Graphics, ISY, LiTH

(Image from Wikipedia)

Light mapping!
!

Applies pre-calculated light to surfaces

59(84)59(84)



Information Coding / Computer Graphics, ISY, LiTH

Environment mapping
Maps an pre-rendered image as a!
reflection in the object

60(84)60(84)



Information Coding / Computer Graphics, ISY, LiTH

Texture mapping!
!

“Wrap” a specified part of “texture space” 
onto an object!

!
Consider the texture to be an elastic 

wrapping

61(84)61(84)



Information Coding / Computer Graphics, ISY, LiTH

Texture space

0

1
Texture = image used for texture 
mapping!
!
Built from ”texels”!
!
Texture space is usually 2-
dimensional, (s, t), with textures 
defined in [0, 1]

10 s

t

62(84)62(84)



Information Coding / Computer Graphics, ISY, LiTH

Mapping from texture to surface!
!

Each vertex has a texture coordinate, 
interpolate between, look up texture with 

interpolated coordinates.

63(84)63(84)



Information Coding / Computer Graphics, ISY, LiTH

Texture coordinates!
!

Texture coordinates often included in models.!
!

loadobj.c supports texture coordinates.!
!

Pass as attribute array to vertex shader.!
!

Interpolate from vertex to fragment shader.

64(84)64(84)



Information Coding / Computer Graphics, ISY, LiTH

Example:!
Procedural texture!

!
Texture generated by fragment shader!!

!
• Vertex shader passes on texture coordinates!

• Texture coordinates are used in a texture 
generating function in the fragment shader!

!
Simpler than you might think!

65(84)65(84)



Information Coding / Computer Graphics, ISY, LiTH

Procedural texture, Vertex shader!
	

uniform mat4 proj;	
uniform mat4 view;	
out vec2 texCoord;	
in vec2 inTexCoord;	

	
void main()	

{	
	gl_Position = proj * view * gl_Vertex;	

	texCoord = inTexCoord;	
}

66(84)66(84)



Information Coding / Computer Graphics, ISY, LiTH

Procedural texture, Fragment shader!
!

in vec2 texCoord;	
out outColor;	

	
void main()	

{	
	float a = sin(texCoord.s*30)/2+0.5;	
	float b = sin(texCoord.t*30)/2+0.5;	
	outColor = vec4(a, b, 1.0, 0.0);	

}

67(84)67(84)



Information Coding / Computer Graphics, ISY, LiTH

Procedural texture!
Result

68(84)68(84)



Information Coding / Computer Graphics, ISY, LiTH

Texture objects!
!

Referring to already loaded textures!
!

glGenTextures(...);!
reserves texture numbers, making them available to 

use!
!

glBindTexture(...);!
makes a texture the current one!

!
glTexImage2D(...);!

loads a texture for the current texture number

69(84)69(84)



Information Coding / Computer Graphics, ISY, LiTH

A textured polygon!
!
!

vertex list (x, y, z)!
!

texture coordinate list (s, t)!
!

index list common for both

0,0 0,1

1,11,0

70(84)70(84)



Information Coding / Computer Graphics, ISY, LiTH

Texture data!
!

In order to use predefined texture data, they 
should be communicated from OpenGL!!

!
This is done by a “uniform”, a variable that can 

not be changed within a primitive.!
!

“samplers”: pre-defined type for referencing 
texture data

71(84)71(84)



Information Coding / Computer Graphics, ISY, LiTH

Texture units!
!

Textures are bound to ”texture units”, 
hardware resources for looking up textures!

!
The shader uses the texture unit ID, not the 

texture object!

Texture!
image

Texture!
object

Texture!
unit

Shader!
”sampler”

72(84)72(84)



Information Coding / Computer Graphics, ISY, LiTH

Texture access!
!

Example:	
	

uniform sampler2D tex;	
out vec4 outColor;	
in vec2 texCoord;	

	
void main()	

{	
	outColor = texture(tex, texCoord);	

}	
	

texture() performs texture access

73(84)73(84)



Information Coding / Computer Graphics, ISY, LiTH

Example: texture, uniform sampler:	
	

GLuint tex;	
	

glActiveTexture(GL_TEXTURE0);	
glBindTexture(GL_TEXTURE_2D, tex);	

loc = glGetUniformLocation(PROG, "tex");	
glUniform1i(loc, 0);!

!
zero to glUniform1i = texture unit number!!

!
Use in shader:!

	
uniform sampler2D tex;	

	
vec3 texval = vec3(texture(tex, gl_TexCoord[0].st));

74(84)74(84)



Information Coding / Computer Graphics, ISY, LiTH

Texture loaded from image!
Result

75(84)75(84)



Information Coding / Computer Graphics, ISY, LiTH

Texture parameters!
!

glTexParameter(...);!
!

GL_TEXTURE_WRAP_S!
GL_TEXTURE_WRAP_T!

!
GL_REPEAT!

GL_CLAMP_TO_EDGE

0 1 2-1

0

1

2

-1
0 1 2-1

0

1

2

-1
0 1

1

0

76(84)76(84)



Information Coding / Computer Graphics, ISY, LiTH

MAGMIN

Magnification and minification parameters:!
!

glTexParameteri(GL_TEXTURE_2D, 
GL_TEXTURE_MAG_FILTER, GL_NEAREST);!

!
!glTexParameteri(GL_TEXTURE_2D, 

GL_TEXTURE_MIN_FILTER, GL_NEAREST);!
!

Specifies what should happen when the texture doesn’t match 
the pixel grid

77(84)77(84)



Information Coding / Computer Graphics, ISY, LiTH

Aliasing!
!

A digital image is a sampled signal!
If the signal is not band limited, aliasing 

will occur

78(84)78(84)



Information Coding / Computer Graphics, ISY, LiTH

Aliasing in texture mapping!
!

At large distance, textures get smaller!
!

=>!
!

higher spatial frequencies on the screen!
!

=>!
!

increasing risk for aliasing!

79(84)79(84)



Information Coding / Computer Graphics, ISY, LiTH

Aliasing can be reduced by two methods:!
!

Filtering!
!glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, 

GL_LINEAR);!
!

Mip-mapping!

glGenerateMipmap();!
!

!glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, 
GL_LINEAR_MIPMAP_NEAREST);!

!

!glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, 
GL_LINEAR_MIPMAP_LINEAR);

80(84)80(84)



Information Coding / Computer Graphics, ISY, LiTH

MIP mapping
Texture mapping with anti-aliasing.!

!
A resolution pyramid is built from every texture.!

!
Memory cost: 33% more. Cheap!

128x128 64x64 32x32 16x16

81(84)81(84)



Information Coding / Computer Graphics, ISY, LiTH

MIP mapping filtering!
!

Both within a level and between!

82(84)82(84)



Information Coding / Computer Graphics, ISY, LiTH

MIP mapping filtering!
!

GL_NEAREST!
GL_LINEAR!

GL_NEAREST_MIPMAP_NEAREST!
GL_LINEAR_MIPMAP_NEAREST!
GL_NEAREST_MIPMAP_LINEAR!
GL_LINEAR_MIPMAP_LINEAR!

!
Preferred:!

GL_LINEAR for magnification!
GL_LINEAR_MIPMAP_LINEAR for minification

83(84)83(84)



Information Coding / Computer Graphics, ISY, LiTH

MIP mapping

Gives anti-aliasing at a very low cost.!
!

Good results in most situations.!
!

Aliasing problems remain at steep angles.

84(84)84(84)


