g Information Coding / Computer Graphics, ISY, LiTH
44

“
4
g o W

Shader languages
Four different:
Assembly language: Obsolete. Avoid.
Cg: “C for graphics”, NVidia
HLSL: “High-level shading language”, Microsoft
GLSL: “OpenGL shading language”

Choice depends on platform and needs (and taste).

All are similar - easy to port between!

18(72)

lj Information Coding / Computer Graphics, ISY, LiTH
44

GLSL
OpenGL Shading Language

Language with syntax similar to C
- Syntax somewhere between C och C++
- No classes. Straight and simple code. Remarkably understandable
and obvious!
- Avoids most of the bad things with C/C++.

Some advantages come from the limited environment!

“Algol” descentant, easy to learn if you know any of its followers.

19(72)

Information Coding / Computer Graphics, ISY, LiTH

GLSL

Example

Vertex shader:

#version 150
in vec3 in_Position;

void main(void)

{
;

gl_Position = vec4(in_Position, 1.0);

“Pass-through shader”, implements the minimal
functionality of the fixed pipeline

20(72)

kkkkkkk

Information Coding / Computer Graphics, ISY, LiTH

GLSL

Example

Fragment shader:

#version 150
out vec4 out_Color;

void main(void)

{
;

out_Color = vec4(1.0);

“Set-to-white shader”

21(72)

\\\\\\\\\

Information Coding / Computer Graphics, ISY, LiTH

Note:

Built-in or custom variables:
gl_Position transformed vertex, out data
in_Position vertex in model coordinates

out_Color resulting fragment color
Also a new built-in type:
vec4d 4 component vector

Some possibililties start to show up, right?

22(72)

..........

"g’&j Information Coding / Computer Graphics, ISY, LiTH
<4

What if it looks something like this?

Fragment

#version 150
Vertex We might want some

in 277 < kind of input, right?

#version 150
out vec4 out_Color;

In vec4 in_Position;

mat4 some_Matrix; void main(void)

{
;

gl_Position = some_Matrix * in_Position;

void main(void) out_Color = calcLight(something here?);

{
}

23(72)

Information Coding / Computer Graphics, ISY, LiTH

GLSL basics

A tour of the language (with some examples)

- Character set
* Preprocessor directives
- Comments
- ldentifiers
 Types
- Modifiers

- Constructors

- Operators
- Built-in functions and variables
» Activating shaders from OpenGL
- Communication with OpenGL

24(72)

\\\\\\\\\\

"g’*‘: Information Coding / Computer Graphics, ISY, LiTH
4

Character set
Alphanumerical characters: a-z, A-Z, _, 0-9
A=/ % <>[]1{}M&~=1:;7?

for preprocessor directives (!)
space, tab, FF, CR, FL
Note! Tolerates both CR, LF och CRLF! ©
Case sensitive
BUT

Characters and strings do not exist! ‘a’, “Hej” mm

25(72)

Information Coding / Computer Graphics, ISY, LiTH

The preprocessor
#define #undef #if etc
VERSION is useful for handling version
differences. It will hardly be possible to avoid In

the long run.

#include does not exist! ©

26(72)

|||||||||

Information Coding / Computer Graphics, ISY, LiTH

Comments

/* This is a comment
that spans more than one line */

// but personally | prefer the one-line version

Just like we are used to! ©

So litter your code with comments!

27(72)

Information Coding / Computer Graphics, ISY, LiTH

Identifiers

Just like C: alphanumerical characters, first non-
digit

BUT

Reserved identifiers, predefined variables, have
the prefix gl_!

It is not allowed to declare your own variables
with the gl_ prefix!

28(72)

)
llllllllll

"g"‘: Information Coding / Computer Graphics, ISY, LiTH
<4

Types
There are some well-known scalar types:

void: return value for procedures
bool: Boolean variable, that is a flag
int: integer value
float: floating-point value
double: double precision floating-point value

29(72)

lllllllllll

"d&: Information Coding / Computer Graphics, ISY, LiTH

More types
Vector types:

vec2, vec3, vec4: Floating-point vectors with 2, 3 or 4
components

bvec2, bvec3, bvec4: Boolean vectors
ivec2, ivec3, ivec4: Integer vectors

mat2, mat3, mat4: Floating-point matrices of size 2x2,
3x3, 4x4

Most common: vec2, vec3, vec4, mat3, mat4!

30(72)

lllllllll

Information Coding / Computer Graphics, ISY, LiTH

Modifiers

Variable usage is declared with modifiers:
const
attribute (in)
uniform
varying (in/out)

If none of these are used, the variable is “local” in its
scope and can be read and written as you please.

31(72)

||||||

Information Coding / Computer Graphics, ISY, LiTH

const

constant, assigned at compile time, can
not be changed

32(72)

Information Coding / Computer Graphics, ISY, LiTH

attribute and uniform

attribute (declared "in" in the shader) is argument
from OpenGL, per-vertex-data

uniform is argument from OpenGL, per primitive.
Can not be changed within a primitive.

33(72)

12} Information Coding / Computer Graphics, ISY, LiTH

“
Yy, 2

varying (”’in”, “out”)
data that should be interpolated between vertices
Written in vertex shader
Read (only) by fragment shaders

Declared "out" in vertex, "In" in framgent shader. In
the fragment shader, they are read only.

Examples: texture coordinates, normal vectors for
Phong shading, vertex color, light value for Gouraud
shading

34(72)

o COMNg .(
o Qot
o =
e -
. -
. .
1
“hk? .

Information Coding / Computer Graphics, ISY, LiTH

varying (”in”, uoutu)
1

1.5

35(72)

..........

"d’&: Information Coding / Computer Graphics, ISY, LiTH
% v‘j

“varying” or ’in/out”?

“varying” is a keyword in older GLSL, replaced by
”in/out” in newer (somewhat more intuitive)

| will use "varying" as a term denoting this kind of
interpolated variables.

36(72)

Information Coding / Computer Graphics, ISY, LiTH

Compilation and execution
Done In two steps:
1) Initialization, compilation

- Create a “program object”

- Create a “shader object” and pass source code to it

- Compile the shader programs
2) Activation

- Activate the program object for rendering

37(72)

)
111111111

Information Coding / Computer Graphics, ISY, LiTH

The entire initialization in code

PROG = glCreateProgram();

VERT = glCreateShader(GL_VERTEX_SHADER);
text = readTextFile(“shader.vert”);
glShaderSource(VERT, 1, text, NULL);

glCompileShader(VERT);
Same for fragment shader

glAttachShader(PROG, VERT);
glAttachShader(PROG, FRAG);

glLinkProgram(PROG);

38(72)

..........

‘d’*‘: Information Coding / Computer Graphics, ISY, LiTH
=

Activate the program for rendering
With an installed and compiled shader program:
extern GLuint PROG;
activate:
glUseProgram(PROG);
deactivate:

glUseProgram(0);

39(72)

