
Information Coding / Computer Graphics, ISY, LiTH

61(134)

61(134)



Information Coding / Computer Graphics, ISY, LiTH

Low-level algorithms!
!

Curve generation!
Polygon fill!

Flood fill

62(134)62(134)



Information Coding / Computer Graphics, ISY, LiTH

Curve generation
Problem: Generate a digital curve!
!
Find a connected sequence of discrete pixels that 
follows the curve as closely as possible!
!
The curve should be either 4-connected or 8-
connected, one pixel wide

63(134)63(134)



Information Coding / Computer Graphics, ISY, LiTH

Connectivity
8-connected: horizontal, vertical and diagonal moves are allowed:!
!
!
!
!
!
4-connected: diagonal moves are not allowed:!
!
!
!
!
!
Choose one, don’t mix them! 8-connectedness most common for curve 
generation.

64(134)64(134)



Information Coding / Computer Graphics, ISY, LiTH

We need to move differently in different 
directions

Always 
increment y, 
sometimes 
increment x

Always 
increment x, 
sometimes 
increment y

Always 
increment x, 
sometimes 

decrement y

Always 
increment y, 
sometimes 

decrement x

65(134)65(134)



Information Coding / Computer Graphics, ISY, LiTH

Two line drawing algorithms:

The DDA algorithm:!
!

Simple but slow on low-end hardware!
!

The Bresenham algorithm:!
!

Extremely fast on any hardware

66(134)66(134)



Information Coding / Computer Graphics, ISY, LiTH

Line definition

ps

pe

ps = (xs, ys)
pe = (xe, ye)

y = mx + b!
!
m = (ys - ye) / (xs - xe) = ∆y/∆x!
!
b = ys - mxs

67(134)67(134)



Information Coding / Computer Graphics, ISY, LiTH

DDA (Digital Differential Algorithm)
Assume -1 < m - 1, xse > xs!
!
x := xs!
y := ys!
!
repeat!
!
DrawPixel(x, round(y)!
x += 1!
y += m!
until x > xe

68(134)68(134)



Information Coding / Computer Graphics, ISY, LiTH

Bresenham's line drawing algorithm!
!

Bresenham’s algorithm!
!

Integer-based!
Incremental; Additions and shifts only!

!
Exceptionally fast on any hardware.!

!
Manipulate the line equation to find integer-based 

"decision variable".

69(134)69(134)



Information Coding / Computer Graphics, ISY, LiTH

Bresenham's line drawing algorithm!
!

p0 = 2∆y - ∆x!
!

Inspect p to decide step (if y should change)!
!

Increment by!
!

Horizontal move: 2∆y (p goes up)!
!

Vertical move: 2∆y - 2∆x (p goes down)

70(134)70(134)



Information Coding / Computer Graphics, ISY, LiTH

Line drawing, summary!
!

DDA algorithm!
!

Floating-point!
Simple and straightforward!

!
Bresenham’s algorithm!

!
Integer-based!

Incremental; Additions and shifts only!
Ideal for low-power hardware

71(134)71(134)



Information Coding / Computer Graphics, ISY, LiTH

When do I need a line drawing 
algorithm?!

!
Drawing lines: Rarely. You probably have a well 

optimized algorithm in any library.!
!

BUT it can be used for other purposes. For 
example ray marching! (Ray-casting in grid!)

72(134)72(134)



Information Coding / Computer Graphics, ISY, LiTH

Other curves!
!

Midpoint algorithm!
!

Any curve that can be expressed by 
polynomial!

!
”Midpoint” refers to measurements at the 

midpoint between candidates

73(134)73(134)



Information Coding / Computer Graphics, ISY, LiTH

The midpoint algorithm can draw 
(with excellent speed)!

!
• Circles!
•Ellipses!

• Parabolas!
• Most splines

74(134)74(134)



Information Coding / Computer Graphics, ISY, LiTH

Curve attributes!
!

Width!
Color and patterns!
End caps of curves!

Corner shapes!
Dashed lines

75(134)75(134)



Information Coding / Computer Graphics, ISY, LiTH

Drawing curves with!
greater width than 1!

!
Two approaches:!

!
(1) Using a pen shape!

(2) Using two parallel curves

76(134)76(134)



Information Coding / Computer Graphics, ISY, LiTH

Using a pen shape

77(134)77(134)



Information Coding / Computer Graphics, ISY, LiTH

Using two parallel curves

78(134)78(134)



Information Coding / Computer Graphics, ISY, LiTH

Drawing a wide circle!
!

How?

79(134)79(134)



Information Coding / Computer Graphics, ISY, LiTH

End caps

80(134)80(134)



Information Coding / Computer Graphics, ISY, LiTH

OpenGL vs line and point drawing!
!

For OpenGL, everything are polygons!!
!

Even lines and points are drawn with polygons.!
!

-> Simplifies the optimized OpenGL kernel

81(134)81(134)


