

Low-level algorithms

Curve generation Polygon fill Flood fill

Curve generation

Problem: Generate a digital curve

Find a connected sequence of discrete pixels that follows the curve as closely as possible

The curve should be either 4-connected or 8-connected, one pixel wide

Connectivity

8-connected: horizontal, vertical and diagonal moves are allowed:

4-connected: diagonal moves are not allowed:

Choose one, don't mix them! 8-connectedness most common for curve generation.

We need to move differently in different directions

Two line drawing algorithms:

The DDA algorithm:

Simple but slow on low-end hardware

The Bresenham algorithm:

Extremely fast on any hardware

Line definition

$$y = mx + b$$

$$m = (y_s - y_e) / (x_s - x_e) = \Delta y / \Delta x$$

$$b = y_s - mx_s$$

DDA (Digital Differential Algorithm)

Assume -1 < m - 1, $x_{se} > x_s$

 $X := X_s$

 $y := y_s$

repeat

DrawPixel(x, round(y)

x += 1

y += m

until $x > x_e$

Bresenham's line drawing algorithm

Bresenham's algorithm

Integer-based Incremental; Additions and shifts only

Exceptionally fast on any hardware.

Manipulate the line equation to find integer-based "decision variable".

Bresenham's line drawing algorithm

 $p0 = 2\Delta y - \Delta x$

Inspect p to decide step (if y should change)

Increment by

Horizontal move: 2Δy (p goes up)

Vertical move: $2\Delta y - 2\Delta x$ (p goes down)

Line drawing, summary

DDA algorithm

Floating-point Simple and straightforward

Bresenham's algorithm

Integer-based Incremental; Additions and shifts only Ideal for low-power hardware

When do I need a line drawing algorithm?

Drawing lines: Rarely. You probably have a well optimized algorithm in any library.

BUT it can be used for other purposes. For example ray marching! (Ray-casting in grid!)

Other curves

Midpoint algorithm

Any curve that can be expressed by polynomial

"Midpoint" refers to measurements at the midpoint between candidates

The midpoint algorithm can draw (with excellent speed)

- Circles
- ·Ellipses
- Parabolas
- Most splines

Curve attributes

Width
Color and patterns
End caps of curves
Corner shapes
Dashed lines

Drawing curves with greater width than 1

Two approaches:

(1) Using a pen shape

(2) Using two parallel curves

Using a pen shape

Using two parallel curves

Drawing a wide circle

How?

End caps

OpenGL vs line and point drawing

For OpenGL, everything are polygons!

Even lines and points are drawn with polygons.

-> Simplifies the optimized OpenGL kernel