
Information Coding / Computer Graphics, ISY, LiTH

Radiosity
A method for high-quality rendering of scenes with diffuse
reflections and soft shadows.

(image from Wikipedia)

39(134)

39(134)

Information Coding / Computer Graphics, ISY, LiTH

Reflected light
Problem: Ray-tracing can not accurately model how diffuse
light is reflected from object to object!!

ALL diffusely reflecting objects are turned into light sources!!
!
But – how bright?

40(134)40(134)

Information Coding / Computer Graphics, ISY, LiTH

Radiosity method
Radiosity models the amount of energy that is emitted in
different directions.!
!
Ideal diffuse reflector => same intensity => energy
proportional to the area!

The size of a surface element as seen from some other point
varies with the angle.

dA

41(134)41(134)

Information Coding / Computer Graphics, ISY, LiTH

The model
A surface emits energy that is a sum of reflected and emitted energy:!
!
Energy * area = emitted + reflected!
!
Bk * dAk = Ek*dAk + Rk*∫Bj*Fkj*dAk

Emitted light (true light sources only)

Reflectivity
Outgoing energy from the surface element j

Form factor between j and k

42(134)42(134)

Information Coding / Computer Graphics, ISY, LiTH

Simplified to discrete patches
Bk = Ek + Rk*∑Bj*Fjk

1) Solve equation system!!
!
2) We must interpolate between patches (e.g. Gouraud shading)!
!
3) The form factors Fjk must be calculated

=> Equation system!

43(134)43(134)

Information Coding / Computer Graphics, ISY, LiTH

How much energy comes	
from surface j to k?	
	
	
fjk = energy on k from j / total energy from j	
	
Depends on how of j’s ”view” that is occupied by k, determined by distance,
angle, occlusions.	
	
Note! It is what j ”see”, not what k ”see”!

Calculating form factors

fjk

Surface k

Surface j

44(134)44(134)

Information Coding / Computer Graphics, ISY, LiTH

Calculating Fjk

Major problem of radiosity! Fjk calculations take most of the
processing time!

Fjk = (Energy directly from j to k) / (Total energy from j)

This is calculated from the positions, angles and sizes of the
two surfaces. All surfaces must be subdivided in parts. More
parts give higher realism!

45(134)45(134)

Information Coding / Computer Graphics, ISY, LiTH

Approximates fjk by calculating projections

Hemicube for form factor calculation

46(134)46(134)

Information Coding / Computer Graphics, ISY, LiTH

Progressive refinement radiosity!
!

Step-wise refinement!
!

A method for solving the equation system in real time!
!

Make one step of emission at a time.!
!

Exact solution takes an infinite number of iterations,
but a good approximation is found after a few steps.!

!
Preview can be shown instantly!

47(134)47(134)

Information Coding / Computer Graphics, ISY, LiTH

Surfaces should be sufficiently small	
	
Smaller surfaces where lighting varies	
	
Better form factor approximations

Surface subdivision

48(134)48(134)

Information Coding / Computer Graphics, ISY, LiTH

Weaknesses with radiosity!
!

• Hemicube sampling error!
!

• Insufficient subdivision!
!

• No specular reflections

49(134)49(134)

Information Coding / Computer Graphics, ISY, LiTH

Example!
!

(Unknown!
model)

50(134)50(134)

Information Coding / Computer Graphics, ISY, LiTH

Example
I think this is the ”Sibenik
Cathedral” model.

51(134)51(134)

Information Coding / Computer Graphics, ISY, LiTH

Example!
!

(Power Plant
model, available
on-line for non-

commercial use)

52(134)52(134)

Information Coding / Computer Graphics, ISY, LiTH

Example!
!

TSBK03 project on
progressive
refinement!

!
(Variant of Cornell

Box, standard scene
for illumination)

53(134)53(134)

Information Coding / Computer Graphics, ISY, LiTH

Other global illumination models!
!

Very important problem, much research!!
!

• Photon mapping!
!

• Path tracing!
!

• Approximation by proximity measurements!
!

• Hybrid models!
!

• Many variants and parallel implementations

54(134)54(134)

Information Coding / Computer Graphics, ISY, LiTH

Photon mapping!
!

"Backwards ray-tracing"!
!

Applies ”backwards” light (from light
sources) to measure how light is scattered

over a scene!
!

Gives a good measure of indirect light

55(134)55(134)

Information Coding / Computer Graphics, ISY, LiTH

Photon Mapping!
!

Follow rays from light source with ray-tracing
methods!

!
Accumulate light in ”photon maps”!

!
Saves information about every photon - allows

specular surfaces!!
!

Low-pass filter!
!

Then render scene using these maps as surfaces.
Handles both diffuse and specular reflections!

56(134)56(134)

Information Coding / Computer Graphics, ISY, LiTH

Photon Mapping
Draw
photons in
texture

Low-pass filter

Trace rays, "photons",
from light source!
(Reflections and
refractions are allowed!)

Draw
texture on
surface

57(134)57(134)

Information Coding / Computer Graphics, ISY, LiTH

Caustics!
!
Nice case for photon
mapping!
!
Bottom of lake only
surface to illuminate!
!
(Harder if the lake
bottom is not flat or if
there are several objects
to illuminate.)

58(134)58(134)

Information Coding / Computer Graphics, ISY, LiTH

Photon
Mapping
Example!

!
(The Schindler demo)!

!
Typical features:

Reflections, caustics
and diffuse shadows

59(134)59(134)

Information Coding / Computer Graphics, ISY, LiTH

Summary!
!

Ray-tracing:!
!

Good for shiny surfaces, transparency etc. “Hard” images.!
!

Radiosity:!
!

Good for realistic images of diffuse surfaces. Can not
handle specular reflections!!

!
Advanced methods (like Photon Mapping)

60(134)60(134)

