
Information Coding / Computer Graphics, ISY, LiTH

Radiosity
A method for high-quality rendering of scenes with diffuse 
reflections and soft shadows.

(image from Wikipedia)
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Reflected light
Problem: Ray-tracing can not accurately model how diffuse 
light is reflected from  object to object!!

ALL diffusely reflecting objects are turned into light sources!!
!
But – how bright?
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Radiosity method
Radiosity models the amount of energy that is emitted in 
different directions.!
!
Ideal diffuse reflector => same intensity => energy 
proportional to the area!

The size of a surface element as seen from some other point 
varies with the angle.

dA
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The model
A surface emits energy that is a sum of reflected and emitted energy:!
!
Energy * area = emitted + reflected!
!
Bk * dAk = Ek*dAk + Rk*∫Bj*Fkj*dAk

Emitted light (true light sources only)

Reflectivity
Outgoing energy from the surface element j

Form factor between j and k
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Simplified to discrete patches
Bk = Ek + Rk*∑Bj*Fjk

1) Solve equation system!!
!
2) We must interpolate between patches (e.g. Gouraud shading)!
!
3) The form factors Fjk must be calculated

=> Equation system!
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How much energy comes	
from surface j to k?	
	
	
fjk = energy on k from j / total energy from j	
	
Depends on how of j’s ”view” that is occupied by k, determined by distance, 
angle, occlusions.	
	
Note! It is what j ”see”, not what k ”see”!

Calculating form factors

fjk

Surface k

Surface j
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Calculating Fjk

Major problem of radiosity! Fjk calculations take most of the 
processing time!

Fjk = (Energy directly from j to k) / (Total energy from j)

This is calculated from the positions, angles and sizes of the 
two surfaces. All surfaces must be subdivided in parts. More 
parts give higher realism!
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Approximates fjk by calculating projections

Hemicube for form factor calculation
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Progressive refinement radiosity!
!

Step-wise refinement!
!

A method for solving the equation system in real time!
!

Make one step of emission at a time.!
!

Exact solution takes an infinite number of iterations, 
but a good approximation is found after a few steps.!

!
Preview can be shown instantly!
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Surfaces should be sufficiently small	
	
Smaller surfaces where lighting varies	
	
Better form factor approximations

Surface subdivision
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Weaknesses with radiosity!
!

• Hemicube sampling error!
!

• Insufficient subdivision!
!

• No specular reflections
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Example!
!

(Unknown!
model)
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Example
I think this is the ”Sibenik 
Cathedral” model.
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Example!
!

(Power Plant 
model, available 
on-line for non-

commercial use)
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Example!
!

TSBK03 project on 
progressive 
refinement!

!
(Variant of Cornell 

Box, standard scene 
for illumination)
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Other global illumination models!
!

Very important problem, much research!!
!

• Photon mapping!
!

• Path tracing!
!

• Approximation by proximity measurements!
!

• Hybrid models!
!

• Many variants and parallel implementations
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Photon mapping!
!

"Backwards ray-tracing"!
!

Applies ”backwards” light (from light 
sources) to measure how light is scattered 

over a scene!
!

Gives a good measure of indirect light
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Photon Mapping!
!

Follow rays from light source with ray-tracing 
methods!

!
Accumulate light in ”photon maps”!

!
Saves information about every photon - allows 

specular surfaces!!
!

Low-pass filter!
!

Then render scene using these maps as surfaces. 
Handles both diffuse and specular reflections!
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Photon Mapping
Draw 
photons in 
texture

Low-pass filter

Trace rays, "photons", 
from light source! 
(Reflections and 
refractions are allowed!)

Draw 
texture on 
surface
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Caustics!
!
Nice case for photon 
mapping!
!
Bottom of lake only 
surface to illuminate!
!
(Harder if the lake 
bottom is not flat or if 
there are several objects 
to illuminate.)
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Photon 
Mapping 
Example!

!
(The Schindler demo)!

!
Typical features: 

Reflections, caustics 
and diffuse shadows
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Summary!
!

Ray-tracing:!
!

Good for shiny surfaces, transparency etc. “Hard” images.!
!

Radiosity:!
!

Good for realistic images of diffuse surfaces. Can not 
handle specular reflections!!

!
Advanced methods (like Photon Mapping)
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