o COUMNG =
A\ [4
;u\'- .”$
~ -
. -
.
. -
-
‘|" v‘j
%\'.’ » v

Information Coding / Computer Graphics, ISY, LiTH

Lecture 14

Off-line rendering and global
illumination

Low-level graphics

Alternative platforms

1(134)

lj Information Coding / Computer Graphics, ISY, LiTH
44

“
4,
g .

Off-line rendering and global
illumination

Performance demanding methods that give
better lighting

Ray-casting
Radiosity
Photon mapping, Path tracing...

2(134)

Information Coding / Computer Graphics, ISY, LiTH

Ray-casting

Follow rays from each pixel through the scene

vp

Prp

3(134)

‘1:,'&: Information Coding / Computer Graphics, ISY, LiTH
44

“
4,
%\'; «

Full 3D raycasting

for every pixel (x,y) in the image

calculate a ray from the pixel through the camera (cop)
and through the scene

calculate intersecions with all objects in the scene

the pixel value is calculated from the closest
intersection found

4(134)

- _0”‘&_‘ °

.*’J‘& \o
&

Information Coding / Computer Graphics, ISY, LiTH

Raycasting in 2D grid
("Ray-marching")

N,
SN

5(134)

llllll

Information Coding / Computer Graphics, ISY, LiTH

Ray-tracing

The classic method for rendering realistic images
of shiny and transparent objects.

6(134)

Information Coding / Computer Graphics, ISY, LiTH

e
-r’&" \,
. . - -
. 'q -
oy,

Ray-tracing

From some surfaces, follow rays to the next surface.
This supports:

» Shiny surfaces.
* Transparent objects.

_ PP

vp

7(134)

)
..........

"d’*‘l Information Coding / Computer Graphics, ISY, LiTH
gﬂ | U“‘p

At the intersection

Three things can happen when a ray
intersects an object

1) Non-mirroring reflection
2) Reflection

3) Refraction

8(134)

)
1111111111

"d’*‘: Information Coding / Computer Graphics, ISY, LiTH
% w‘/

Non-mirroring reflection
Apply the three-component light model

Ambient light
Diffuse reflection
Specular reflection

9(134)

kkkkkkk

Information Coding / Computer Graphics, ISY, LiTH

Prp

Reflection and refraction

C
/

Recursive process!

10(134)

kkkkkkk

Information Coding / Computer Graphics, ISY, LiTH

The ray-tracing tree

11(134)

Information Coding / Computer Graphics, ISY, LiTH

The maximum depth

How deep can the tree get?
How many reflections and
refractions are allowed?

12(134)

O IMNe

Information Coding / Computer Graphics, ISY, LiTH

Reflections
O i Object with mirroring
/ I\ reflection
S
o
n
r=u-(2u-n)n
prp r (u = direction vector of the
Look for more incoming ray)

contributions here

13(134)

...........

"d&: Information Coding / Computer Graphics, ISY, LiTH

Refractions

Snell’s law:

M4 SiNB4 = 12 SinB2
Refraction index: Transparent object
n=c/v

C: speed of light in vacuum

v: speed of light in medium Look for more

contributions here

prp N O

Outgoing angle is given by incoming angles
and the density of each material.

14(134)

Information Coding / Computer Graphics, ISY, LiTH

Summing up

The total intensity is the sum of

- ambient light

- diffuse reflections from each light source

- specular reflections from each light source
» mirroring reflections

» refractions

15(134)

..........

"g’*‘l Information Coding / Computer Graphics, ISY, LiTH

The shadow ray

Shadowing object

Object that can have
illumination (shading)
by diffuse or non-
perfect specular
reflections

prp The shadow ray tells if a light source can
contribute to illumination

16(134)

..........

"g’*‘j Information Coding / Computer Graphics, ISY, LiTH
<4

Ray-surface intersections

Ray equation:

P=po+uu, >0

Combine with the equation of the surface.
Easiest surface: Sphere!

X2+ Y2+ 22=1r2

Not quite as easy as for ray casting, since p, can now be
any point.

17(134)

Information Coding / Computer Graphics, ISY, LiTH

function RayTrace(pg, u, depth)
if depth > max then return BLACK

y := FindIntersection(pg, u) // Returns more data, see below

if y <=0 then return BACKGROUND_COLOR

if kg # 0 and kg # 0 and kg # 0 then
llocal := ka*la + X (diffuse shading + specular shading)
// Sum is for all visible light sources

if KR # 0 then
R := CalculateReflection(u, N)
IR := RayTrace(pg + y*u, R, depth+1)

if KT # 0 then
T := CalculateRefraction(u, N, h1, h2)
IT := RayTrace(pg + p*u, T, depth+1)

return ljgcal + IR + IT

18(134)

