
Information Coding / Computer Graphics, ISY, LiTH

!
Lecture 14!

!
Off-line rendering and global 

illumination!
!

Low-level graphics!
!

Alternative platforms

1(134)

1(134)



Information Coding / Computer Graphics, ISY, LiTH

Off-line rendering and global 
illumination!

!
Performance demanding methods that give 

better lighting!
!

Ray-casting!
Radiosity!

Photon mapping, Path tracing…

2(134)2(134)



Information Coding / Computer Graphics, ISY, LiTH

Follow rays from each pixel through the scene

Ray-casting

prpvp

3(134)3(134)



Information Coding / Computer Graphics, ISY, LiTH

Full 3D raycasting

for every pixel (x,y) in the image!
!
calculate a ray from the pixel through the camera (cop) 
and through the scene!
!
calculate intersecions with all objects in the scene!
!
the pixel value is calculated from the closest 
intersection found

4(134)4(134)



Information Coding / Computer Graphics, ISY, LiTH

Raycasting in 2D grid!
("Ray-marching")

5(134)5(134)



Information Coding / Computer Graphics, ISY, LiTH

Ray-tracing
The classic method for rendering realistic images 
of shiny and transparent objects.

6(134)6(134)



Information Coding / Computer Graphics, ISY, LiTH

From some surfaces, follow rays to the next surface. 
This supports:!
!
• Shiny surfaces.!
• Transparent objects.

Ray-tracing

prp

vp

7(134)7(134)



Information Coding / Computer Graphics, ISY, LiTH

At the intersection!
!

Three things can happen when a ray 
intersects an object!

!
1) Non-mirroring reflection!

!
2) Reflection!

!
3) Refraction

8(134)8(134)



Information Coding / Computer Graphics, ISY, LiTH

Non-mirroring reflection!
!

Apply the three-component light model!
!

Ambient light!
Diffuse reflection!

Specular reflection

9(134)9(134)



Information Coding / Computer Graphics, ISY, LiTH

Reflection and refraction

prp Recursive process!

10(134)10(134)



Information Coding / Computer Graphics, ISY, LiTH

The ray-tracing tree

prp

S1

S1

S3

S4

S2

R1 T1

R3

R4

R2T3

S2
S3

S4

R1
T1

R3 R2T3

R4

11(134)11(134)



Information Coding / Computer Graphics, ISY, LiTH

The maximum depth

prp

0

1

0
11

2

2

How deep can the tree get?!
How many reflections and 
refractions are allowed?

12(134)12(134)



Information Coding / Computer Graphics, ISY, LiTH

Reflections

Look for more 
contributions here

Object with mirroring 
reflection

prp

s

r

n
r = u - (2u·n)n!
!
(u = direction vector of the 
incoming ray)

u

13(134)13(134)



Information Coding / Computer Graphics, ISY, LiTH

Refractions

Transparent object

Outgoing angle is given by incoming angles 
and the density of each material.

Snell’s law:!
!
η1 sinθ1 = η2 sinθ2!
!
Refraction index:!
η= c / v!
c: speed of light in vacuum!
v: speed of light in medium

prp
T

N θ1

θ1

Look for more 
contributions here

14(134)14(134)



Information Coding / Computer Graphics, ISY, LiTH

Summing up

The total intensity is the sum of!
!
• ambient light!
• diffuse reflections from each light source!
• specular reflections from each light source!
• mirroring reflections!
• refractions

15(134)15(134)



Information Coding / Computer Graphics, ISY, LiTH

The shadow ray

prp

Shadowing object

The shadow ray tells if a light source can 
contribute to illumination

Object that can have 
illumination (shading) 
by diffuse or non-
perfect specular 
reflections

16(134)16(134)



Information Coding / Computer Graphics, ISY, LiTH

Ray-surface intersections
Ray equation:!
!
p = p0 + µu,!µ > 0!
!
Combine with the equation of the surface.!
!
Easiest surface: Sphere!!
!
x2 + y2 + z2 = r2!
!
Not quite as easy as for ray casting, since p0 can now be 
any point.

17(134)17(134)



Information Coding / Computer Graphics, ISY, LiTH

function RayTrace(p0, u, depth)!
!
if depth > max then return BLACK!
!
µ := FindIntersection(p0, u) // Returns more data, see below!
!
if µ <= 0 then return BACKGROUND_COLOR!
!
Ilocal :=0!
IR := 0!
IT := 0!
!
if ka ≠ 0 and kd ≠ 0 and ks ≠ 0 then!
!Ilocal := ka*Ia + ∑ (diffuse shading + specular shading)!
// Sum is for all visible light sources!
!
if kR ≠ 0 then!
!R := CalculateReflection(u, N)!
!IR := RayTrace(p0 + µ*u, R, depth+1)!
!
if kT ≠ 0 then!
!T := CalculateRefraction(u, N, h1, h2)!
!IT := RayTrace(p0 + µ*u, T, depth+1)!
!
return Ilocal + IR + IT

18(134)18(134)


