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Lecture 14

Off-line rendering and global
illumination

Low-level graphics

Alternative platforms
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Off-line rendering and global
illumination

Performance demanding methods that give
better lighting

Ray-casting
Radiosity
Photon mapping, Path tracing...

2(134)




Information Coding / Computer Graphics, ISY, LiTH

Ray-casting

Follow rays from each pixel through the scene

vp

Prp
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Full 3D raycasting

for every pixel (x,y) in the image

calculate a ray from the pixel through the camera (cop)
and through the scene

calculate intersecions with all objects in the scene

the pixel value is calculated from the closest
intersection found
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Raycasting in 2D grid
("Ray-marching")

N,
SN
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Ray-tracing

The classic method for rendering realistic images
of shiny and transparent objects.
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Ray-tracing

From some surfaces, follow rays to the next surface.
This supports:

» Shiny surfaces.
* Transparent objects.

_ PP

vp
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At the intersection

Three things can happen when a ray
intersects an object

1) Non-mirroring reflection
2) Reflection

3) Refraction
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Non-mirroring reflection
Apply the three-component light model

Ambient light
Diffuse reflection
Specular reflection
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Prp

Reflection and refraction

C
/

Recursive process!
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The ray-tracing tree
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The maximum depth

How deep can the tree get?
How many reflections and
refractions are allowed?
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Reflections
O i Object with mirroring
/ I\ reflection
S
o
n
r=u-(2u-n)n
prp r (u = direction vector of the
Look for more incoming ray)

contributions here
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Refractions

Snell’s law:

M4 SiNB4 = 12 SinB2
Refraction index: Transparent object
n=c/v

C: speed of light in vacuum

v: speed of light in medium Look for more

contributions here

prp N O

Outgoing angle is given by incoming angles
and the density of each material.
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Summing up

The total intensity is the sum of

- ambient light

- diffuse reflections from each light source

- specular reflections from each light source
» mirroring reflections

» refractions
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The shadow ray

Shadowing object

Object that can have
illumination (shading)
by diffuse or non-
perfect specular
reflections

prp The shadow ray tells if a light source can
contribute to illumination
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Ray-surface intersections

Ray equation:

P=po+uu, >0

Combine with the equation of the surface.
Easiest surface: Sphere!

X2+ Y2+ 22=1r2

Not quite as easy as for ray casting, since p, can now be
any point.
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function RayTrace(pg, u, depth)
if depth > max then return BLACK

y := FindIntersection(pg, u) // Returns more data, see below

if y <=0 then return BACKGROUND_COLOR

if kg # 0 and kg # 0 and kg # 0 then
llocal := ka*la + X (diffuse shading + specular shading)
// Sum is for all visible light sources

if KR # 0 then
R := CalculateReflection(u, N)
IR := RayTrace(pg + y*u, R, depth+1)

if KT # 0 then
T := CalculateRefraction(u, N, h1, h2)
IT := RayTrace(pg + p*u, T, depth+1)

return ljgcal + IR + IT
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