

#### Lecture 12

# Collision detection and handling



# Projects Time to consider what to do!



#### 2D collision detection

Even in 2D, collisions is a non-trivial problem.

- Rectanges easy
- Enclosing convex polygon(s)
  - Pixel-level testing



#### Most fundamental collision tests

### Rectangles (axis aligned bounding boxes)

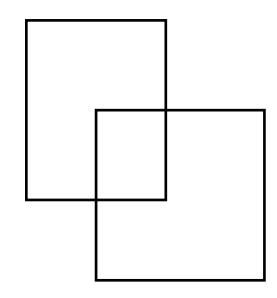
Two tests along each axis

a.left > b.right

b.left > a.right

a.top > b.bottom

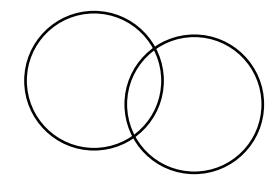
b.top > a.bottom



#### Circles/Spheres

Sum of radii compared to distance between centers

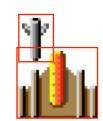
$$r_1 + r_2 > \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$



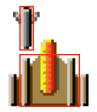


# 2D collision detection with rectangles

Testing with the bounding box: often unsatisfactory. Too crude approximation!



Smaller rectangles make decent compromises.





#### Special cases

When using pseudo-3D, sprites in perspective, the shape outline is not usable.

Simple approach: Modified box:



Wrong

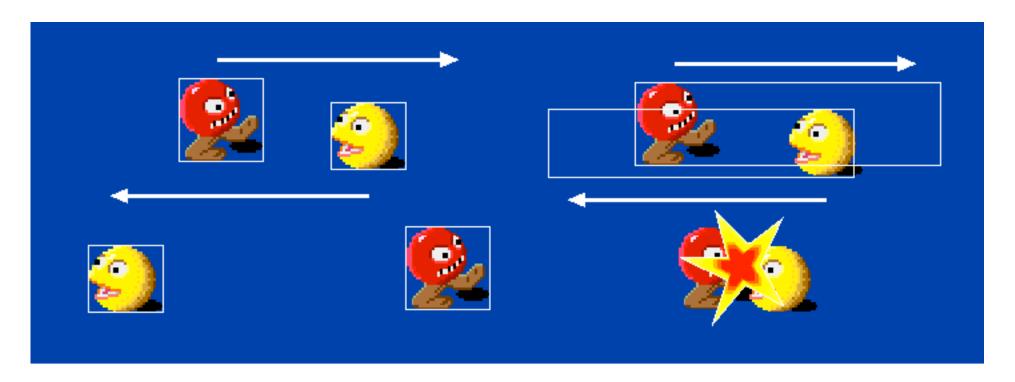


Right



#### Moving objects

Fast moving objects may pass right through each other.



Wrong Right **An example of** *temporal aliasing* 



#### **Fast-moving objects**

- Test with elongated shapes (sweeping)
- Test several times along the trajectory (multisampling)



#### In 3D:

#### Polyhedra-polyhedra collisions

Naive method: Check all polygons in all objects against all polygons in all objects!



#### Polyhedra-polyhedra collisions

#### **Practical methods:**

- 1) Separate into broad phase and narrow phase
  - 2) Simplified shape(s) matching a complex shape



#### Broad phase - narrow phase

Really three phases:

Global phase

**Bounding shapes phase** 

**Narrow phase** 

Broad phase



#### **Bounding shapes phase**

Make simple checks to see if objects are so close that we should test in detail!

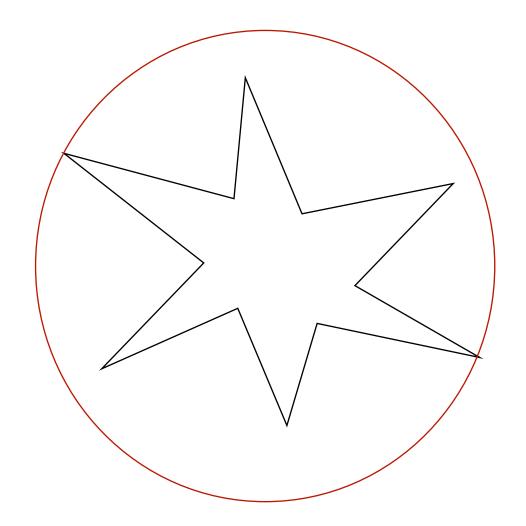
Use simple bounding shapes!

**Typical shapes:** 

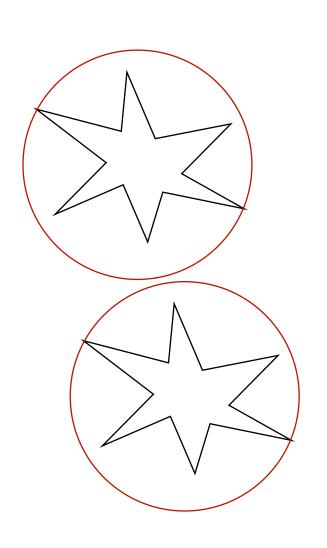
- Sphere
- AABB (axis aligned bounding box)
  - OBB (oriented bounding box)



### Sphere





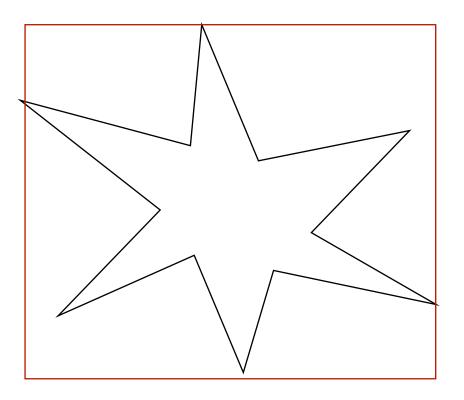


### Sphere

- Very simple tests.  $d^2 < (r_1 + r_2)^2$
- Calculate radius once and for all. Never changes for rigid objects. Loop through all vertices, pick biggest distance to center.
- Rotation allowed!
- Good fit for compact objects.
- No flat surfaces, object can not rest on each other.

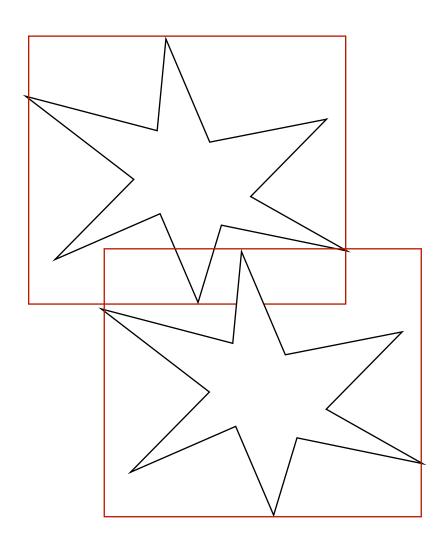


### **AABB**



Axis aligned bounding box



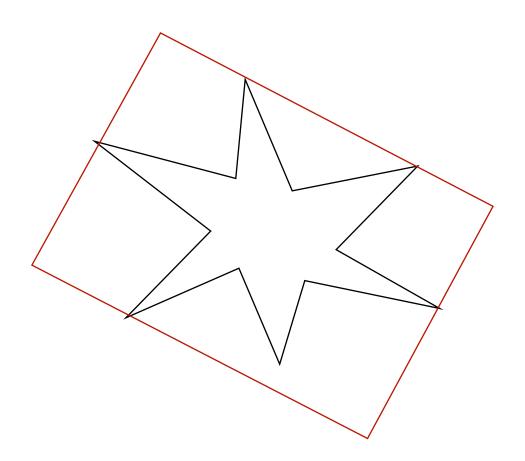


### **AABB**

- Very simple tests. 6 tests, like the 2D case.
- Calculate by finding max and min along each axis.
- Can't be rotated freely!
- 1) Recalculate on rotation.
- 2) Make new AABB from rotated vertices of AABB.
- Not very good fit on many objects.

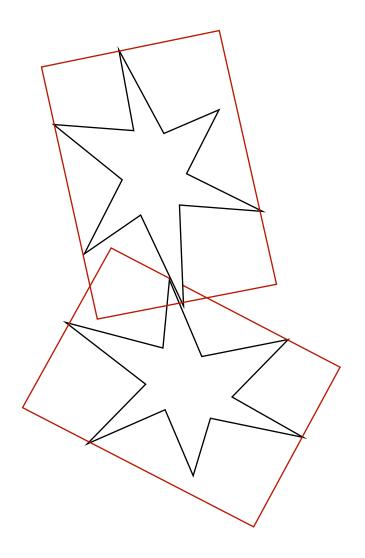


# OBB Oriented bounding box





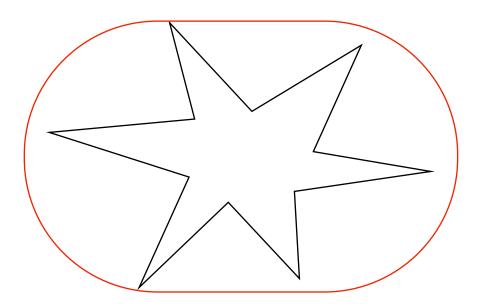
# OBB Oriented bounding box



- Good fit, you can find smallest possible box. Few false hits.
- Complicated tests.
- Rotation allowed.

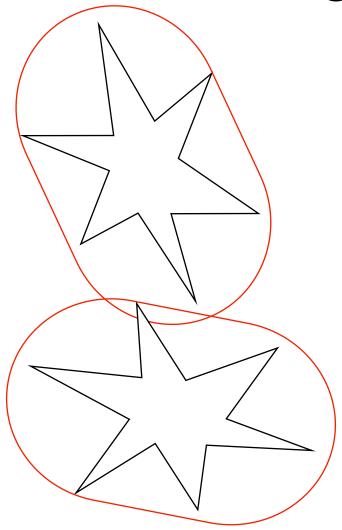


#### Capsule





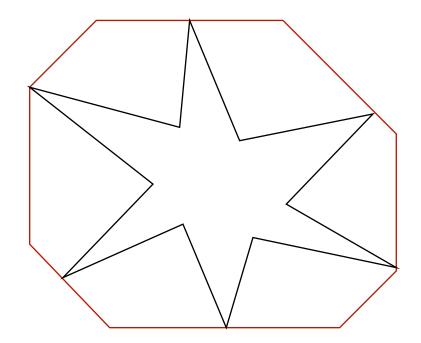
# Capsule Cylinder + 2 half spheres



- Good fit, you can find smallest possible box. Few false hits.
- Fairly complicated tests but easier than OBB.
- Rotation allowed.



# **k-DOP**Discrete oriented polytope with k sides



Like AABB but you can cut off corners and sides Fairly simple tests

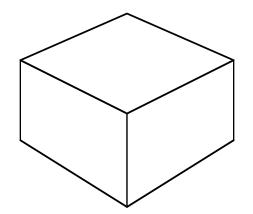
Fewer false hits



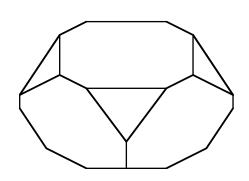
# **k-DOP**Discrete oriented polytope with k sides

#### Four kinds:

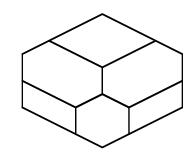
6-DOP (= AABB) 14-DOP (corners) 18-DOP (sides) 26-DOP (sides and corners)



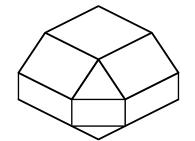
6-DOP



**14-DOP** 



**18-DOP** 



**26-DOP** 



# Balancing the broad and narrow phases

$$T = N_V C_V + N_p C_p$$

Simple broad phase - many false hits - high Np.

Elaborate broad phase - few false hits - lower Np but high C<sub>V</sub>.



#### Narrow phase

**Separating Axis Theorem (SAT)** 

Containment/intersection test

**Volume intersection** 

**Advanced methods: GJK** 



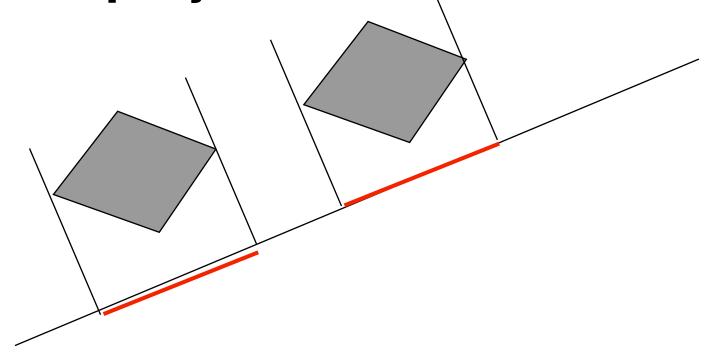
# Separating axis theorem (SAT)

# and its application on collision detection



### Separating axis theorem

Two convex objects do *not* overlap if there exists a line (axis) onto which the two object's projection do not overlap





### Really "Separating plane"

Axis = normal vector of separating plane

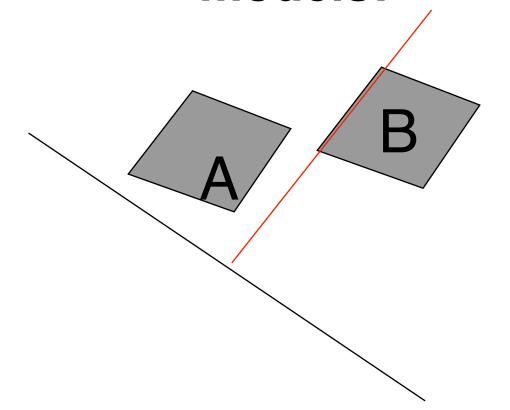
Can you find a plane between them?

Problem: The number of possible planes/ axes to test are *infinite*!



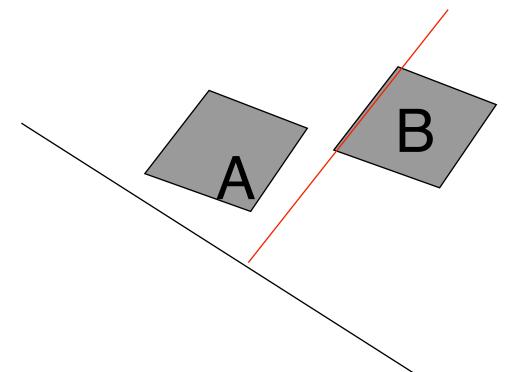
#### **SAT** in practice

For polyhedra models, use the *faces* of the models!





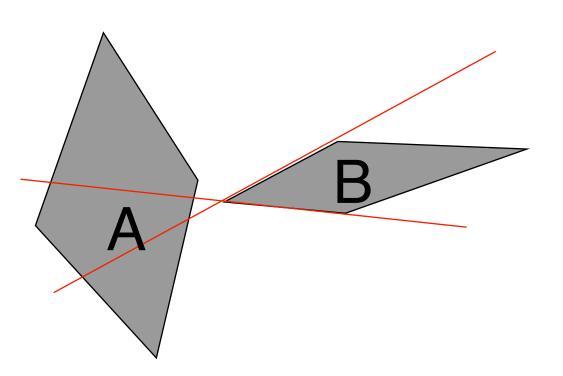
# Fairly simple in the 2D case For every face in B, find plane equation Test all vertices in A with dot product!





#### But you must go both ways!

There are configurations where one model has no single face that will exclude the other!





#### **2D SAT algorithm**

for all faces in A
let a be a vertex in A
hit = false
for all vertices b in B
diff = n · a - n · b
if diff > 0 then
hit = true
if not hit then
return false

for all faces in B (same algorithm with A and B reversed)

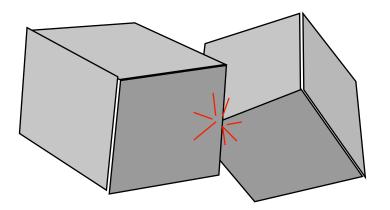
return true



#### SAT in 3D

Not as simple!

Two object meeting at an edge may fail the test!



We must add tests with more planes.



#### SAT in 3D

We must add tests with more planes. Which ones?

Cross product of an edge in a with an edge in b = additional potential separating plane

All edges in a \* all edges in b!

=> Complete SAT on complex 3D objects is expensive!

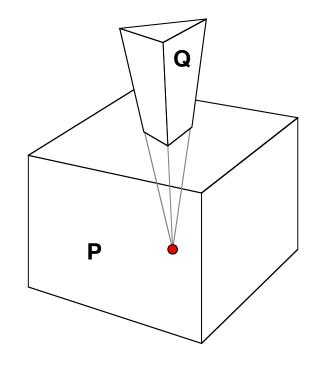


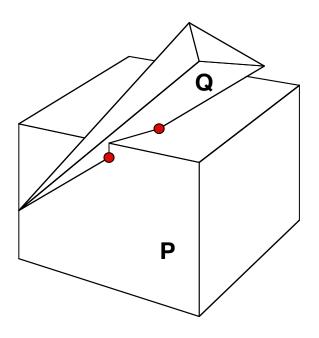
#### So how can SAT be useful?

- Simplify. Skip some tests, accept some false hits.
- Use SAT on simplified bounding shapes.
- Remember separating axis from previous test!



#### Containment/intersection







#### Containment/Intersection

Exact test between two polyhedra, Q and P.

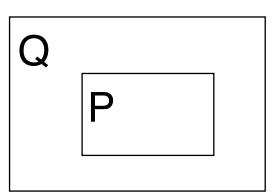
Two tests are needed:

- 1) Is any vertex in Q contained in P or vice versa?
- 2) Does any edge of Q penetrate a face of P?



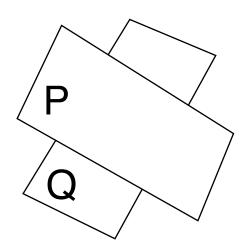
#### The need for all tests

1) in both directions:



Q contains points in P,
P contains no points in Q

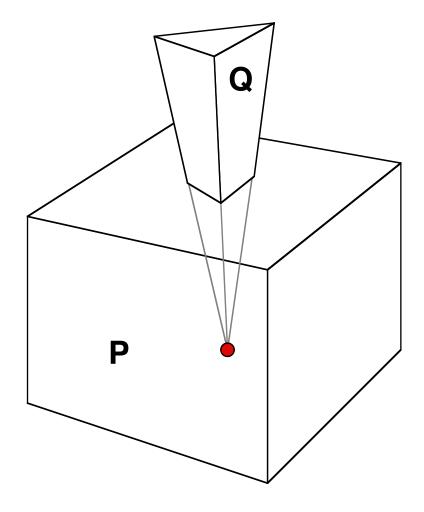
2) when 1) fails:



Neither P nor Q contain points of each other, but still overlap!



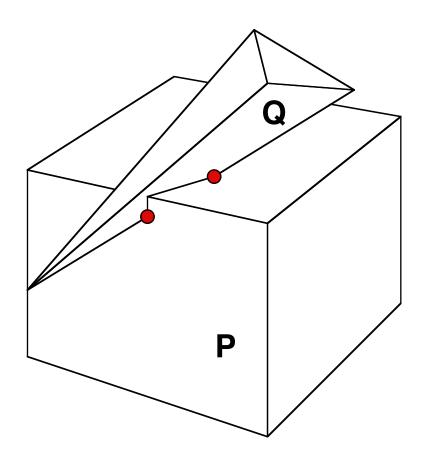
### Test 1:



A point in Q is inside P



### Test 2:



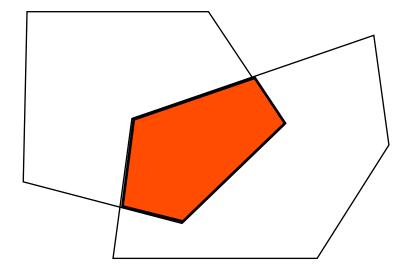
#### An edge of Q intersects sides of P



#### Volume intersection

Split P by any plane in Q, repeat. When all planes have been used, the intersection has been calculated.

Can be fairly fast if a good first plane is chosen.





#### Comparison

**Full SAT** 

$$V_p^*P_q+P_p^*V_q + Ep^*Eq^*Vp + Ep^*Eq^*Vq$$

 $O(N_3)$ 

**Containment/intersection:** 

 $O(N^2)$ 

$$V_p * P_q + P_p * V_q + E_p * P_q + P_p * E_q$$

**Volume intersection:** 

O(NlogN)

 $\Sigma$  k<sup>i</sup>Pq  $\approx$  PqlogPp

where i = 0 to  $P_p$  and k < 1.



#### **Advanced methods**

Volume intersection can sometimes simplify by starting "right".

Advanced methods take this even further. Remember last time, reduce test to very few. Just test the "right test".



# Problem: Convex shapes only!

#### **Solution:**

1) Use the convex hull

May be very different from original

2) Decompose objects into convex parts.

Impossible/impractical for many shapes.



#### **HACD**

#### **Hierarchical Approximate Convex Decomposition**

